Self-Monitoring Query Execution
for Adaptive Query Processing

Anastasios Gounaris ®* Norman W. Paton ?
Alvaro A. A. Fernandes? Rizos Sakellariou?

aDepartment of Computer Science, University of Manchester, Ozford Road,
Manchester, M13 9PL, UK

Abstract

Adaptive query processing generally involves a feedback loop comprising moni-
toring, assessment and response. So far, individual proposals have tended to group
together an approach to monitoring, a means of assessment, and a form of response.
However, there are many benefits in decoupling these three phases, and in con-
structing generic frameworks for each of them. To this end, this paper discusses
monitoring of query plan execution as a topic in its own right, and advocates an ap-
proach based on self-monitoring algebraic operators. This approach is shown to be
generic and independent of any specific adaptation mechanism, easily implementable
and portable, sufficiently comprehensive, appropriate for heterogeneous distributed
environments, and more importantly, capable of driving on-the-fly adaptations of
query plan execution. An experimental evaluation of the overheads and of the qual-
ity of the results obtained by monitoring is also presented.

Key words: query monitoring, adaptive query processing, query execution,
operators

1 Introduction

Adaptive query processing (AQP) is particularly relevant to settings in which
query planning must take place in the presence of limited or potentially inaccu-
rate statistics for use by the query optimiser, and where queries are evaluated
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in environments with rapidly changing computational properties, such as loads
or available memory (12). As such, the relevance of AQP is growing with the
prevalence of computing environments that are characterized by a lack of cen-
tralised control, such as the web and the Grid (8). Such environments are not
only inherently more complex to model, but it is often the case that runtime
conditions are sufficiently volatile to compromise the validity of predictions.
As a result, robust cost models are harder to come by, thereby reducing the
likelihood that the optimiser will select a sufficiently efficient execution plan
(17; 22). Useful statistics, like selectivities and histograms (e.g., (4; 7; 13)),
may be inaccurate, incomplete or unavailable. Adaptivity is likely to prove
crucial, and, for that purpose, precise, up-to-date, efficiently obtainable data
about runtime behaviour is essential.

AQP generally involves a feedback loop in which there is monitoring, assess-
ment and response. The execution of a plan and the execution environment
itself are monitored, an assessment is made relating to the progress of the exe-
cution, and a response may be taken that affects the continuing evaluation of
the query. The response may be fine grained (e.g., directing the next tuple to
a particular node) or coarse grained (e.g., rerunning the optimiser over some
or all of the query). In AQP, monitoring is not normally addressed as a topic
in its own right. Rather, individual proposals either tend to group together an
approach to monitoring, a means of assessment, and a form of response (e.g.,
(30)); or just take the existence of monitoring for granted (e.g., (27)). Simply
assuming that the monitoring information that drives adaptation is in place
justifies both the necessity and the pertinence of dealing with monitoring sep-
arately. On the other hand, grouping all the phases of adaptivity together has
led to many interesting techniques for AQP, but to date no general framework
has been constructed for identifying or composing generic techniques for mon-
itoring, assessment or response. For example, one could envisage a particular
approach to monitoring being used with different forms of assessment and re-
sponse, or different categories of response being made in the light of a single
approach to monitoring and assessment.

This paper discusses the monitoring of query execution as a topic in its own
right. Monitoring the execution of a query can provide evolving estimates for
properties of the query, such as its completion time and the number of values
in its result. Such information can be useful for providing feedback to users, re-
fining cost models, and suggesting circumstances in which runtime adaptation
of a query plan is likely to yield improved performance, which is the most chal-
lenging task. Three different approaches to monitoring can be identified in the
literature: use of an independent and centralised component within the query
processor for monitoring (e.g., (3; 19)); construction of new physical query
operators dedicated to statistics collection (e.g., (16)); and transformation of
traditional operators to self-monitoring ones (e.g., (11)). A centralised com-
ponent, apart from requiring significant changes in the architecture of query



engines, does not scale well in parallel or distributed settings, due to the com-
munication overhead incurred. Dedicated operators require modifications in
the query optimisers, which are responsible for deciding which monitoring op-
erators are employed for each query and where. Both centralised components
and dedicated operators suffer from limitations in the scope of the monitor-
ing information that can be gathered. For example, a dedicated monitoring
operator can collect useful information about the value distribution of inter-
mediate results, but cannot provide any information about the time cost of
other operators in the query plan, as it can only monitor the data it pro-
cesses. On the other hand, a centralised component can observe the behaviour
of algebraic operators and their cost, but cannot monitor data properties like
value distribution. Our approach is based on self-monitoring operators that
capture metrics in the form of counters, timings (i.e., placing two timestamps
and computing their difference), and computations of tuple sizes. In this way,
modifications are required neither in the engine architecture nor in the opti-
miser, but only in the implementation of the operators themselves, which is,
in our opinion, less disruptive to the query compilation and evaluation archi-
tecture. This feature, combined with the simple nature of the metrics (i.e.,
counters, timings, and size computations), makes the approach portable and
implementable. Moreover, it enables the communication of monitoring infor-
mation between nodes in the same way as the data items manipulated by
operators are exchanged (e.g., through the ezchange operator (9) in the oper-
ator model of parallel execution), and is thus more appropriate for multi-node
environments like the Grid (25).

Additional features of the approach presented in this paper are:

(1) It covers a broad range of query execution aspects, although it is based
only on counters, timings, and size computations, as discussed in Sec-
tion 2. Moreover, it provides monitoring information that is sufficient to
support most AQP proposals to date, as demonstrated in Section 6.

(2) It is able to collect information that is directly relevant to the assess-
ment process of adaptivity by establishing where a plan is deviating from
its anticipated behaviour. In other words, it can provide the necessary
background for on-the-fly adaptation, as discussed in Section 3.

(3) It accommodates different levels of detail in the monitoring information,
monitoring frequency and data movement. In particular, the paper dis-
cusses instantiations of the approach in which (i) no monitoring data
is passed between the operators of the algebra, (ii) monitoring data is
passed between operators of the algebra only within a single computa-
tional node, and (iii) information is passed between computational nodes
in a distributed plan. Thus the approach is able to trade-off monitoring
quality against monitoring overhead, as discussed in Section 4.

(4) As the cost of monitoring and the quality of the results obtained by mon-
itoring are important, experiments have been conducted on both these



features, which are presented in Section 5. We cannot describe this cost
as low or high as there is no general consensus on these terms, but we feel
that the overheads incurred are reasonable and our results encouraging.

2 The scope of the approach: what can be captured

In many query processors, a declarative query is transformed, after being
parsed, into an operator tree that is also referred to as a query plan. Usually,
the query is mapped into a logical algebra and then into a physical one. This
section identifies measurements that can be taken from physical operators in
order to support monitoring tasks, such as accounting, adaptation, and cal-
ibration of the cost model employed. Although the measurements should be
able to be expressed as counters, timings, or sizes, this is not a very restrict-
ing limitation as they can cover, as shown below, a broad range of operator
properties. There are two kinds of measurements, corresponding to two dif-
ferent levels of monitoring: generic measurements that can be applied to any
physical operator, e.g., index-scan, hash join and so on; and operator-specific
measurements that decompose the operator’s functionality into simpler parts,
and that are essential for monitoring at a finer granularity.

2.1 Operator-independent information

Table 1 presents quantifiable properties that are common to all physical op-
erators. Such properties are not related to specific implementations or func-
tionalities of the operators, and cover the following distinct aspects of their
behaviour:

(1) Operator workload and selectivity: the measurements that are useful for
that are the number of tuples consumed n{np, which is equal to the number
of tuples processed, and the number of tuples produced n.

(2) Operator cost: for monitoring the cost of the operator, various timings can
be captured. The time elapsed since the operator’s instantiation ¢ reflects
the evaluation time of that operator in systems where all tuples are first
processed by one operator before being sent to another. In systems that
follow a different approach (e.g., the iterator model of query execution
(10)), in the absence of blocking operators, this time may converge for
all the operators in a query plan, and approximate the query execution
time. In such systems the time the operator is active %, is not the same
as the time elapsed since initialisation. At a finer granularity, ¢,y gives
the time cost for each data item processed.

(3) Resource requirements: when an operator needs to maintain certain state,



Table 1
General measurements on a physical query operator.

Symbol Description

n number of tuples produced so far

n{np number of tuples received from the jth input

t time elapsed since the operator was created

treal time the operator is active

Luple time to process a tuple, i.e. time to evaluate the next() func-
tion in the iterator model (10)

s size of an output tuple

mem memory used

tz}ait time waiting since last tuple from the jth input

it is important to monitor its memory requirements mem, along with the
size s of intermediate results produced, especially in the case when these
have to be kept in main memory or in secondary storage, as such resources
are not always abundant.

(4) Connections with other operators and data stores: as well as obtaining
basic measurements, characteristics of the execution of the part of the
query plan below the relevant operator can be inferred, such as the deliv-
ery rate of data sources, and in a distributed setting, potential points of
network failure, by monitoring the time the operator waits for its inputs
to deliver data tim-t.

However, more useful and easily exploited monitoring information is aggregate

statistics, e.g., averages, sums, counts, minimums and maximums. Aggregates

can be taken in two ways. In one approach, a window is assumed and only
the measurements that belong to that window are used for computing the
aggregate. Windows can be either overlapping or disjoint, and their widths
can be defined in either time units or the number of most recent tuples. In the
second approach, the aggregate is computed over all the values seen. For each
of the metrics in Table 1, additional information can be derived by performing
aggregate functions on them. For example, the average number of result tuples
avg(n) over a period of time gives the output rate for that period; the sum
of the sizes of each output tuple sum(s) equals the size of that intermediate
result; and the minimum time waiting for new tuples from a remote data

source min(tl,,;;) can provide an upper bound on the data delivery rate.

watt
Orthogonally to the nature of the measurements, there are numerous poten-
tial policies with regard to the frequency of monitoring. Some metrics need
to be computed only once during the lifetime of a particular instance of a
physical operator (e.g., the time elapsed since the operator’s instantiation).



Table 2
The signatures of the physical operators examined. Each operator except scan has
either one or two child operators as input.

Name Signature

sequential seq_scan(table name, predicate)

scan

hash join hash_join(left input, right input, predicate)

project project(input, list of fields)

unnest unnest(input, collection attribute, new field)

operation operation_call(input, parameters, predicate)

call

exchange exchange(input, list of consumers, list of producers, data distri-
bution policy)

Other information is inferred from observing each of the tuples that comprise
the operator’s input separately, or just some of them (e.g., by sampling).

2.2 Operator-specific information

In Section 2.1, the information collected was generic to all operators and in-
dependent of their role in the query plan. However, monitoring at a finer
level of granularity may require specific data from distinct operator instances,
according to their functionality. By drawing such distinctions, the set of mea-
surements in Table 1 can be further extended. An important detail is that
operator-specific monitoring cannot be performed using the two alternative
approaches to monitoring, i.e., dedicated monitoring operators or centralised
components. Also, note that, as the functionality of different operators is stan-
dardised, monitoring the inner basic functions of each operator is still generic
and implementation-independent. Such monitoring can be crucial for under-
standing in depth implementation specific properties like execution time. For
instance, we may experience significant variances in the performance of a hash
join that is evaluated completely in main memory due to the existence of skew
in the sizes of the buckets in the hash table. If the operator is considered to
be a black box, such a cause of performance degradation is harder to identify.

Operator-specific monitoring can be applied to any kind of operator. As the
complete set of operators from the database literature cannot be presented for
brevity reasons, therefore a representative set of physical operators is chosen to
demonstrate this approach as shown in Table 2. These operators are sufficient
for evaluating SQL and OQL queries of the Select-From-Where form in a
parallel or distributed environment. Operation_call (25) is used for method



Table 3
Measurements for operators that evaluate predicates.

Symbol Description
Teond number of conditions evaluated per predicate
tpred time to evaluate a predicate
Table 4
Measurements for operators that touch the store.
Symbol Description
teonn time to connect to source
Npages number of pages read
tpage time to read a page
tmap time to map store format into evaluation format

invocation, i.e., it encapsulates a call to a user-defined function.

An example of operator functionality that is not present in all operators is
the predicate evaluation (see Table 2). A predicate consists of one or more
conditions. Table 3 summarises monitoring information with regard to the
evaluation of predicates.

Operators that touch the store include scans and some joins in object-oriented
environments. Because the store format is usually different from the tuple
format required by the query processor, a mapping between the two formats
needs to take place. Monitoring information that is relevant to this kind of
operators is shown in Table 4.

A hash join is executed in two phases. In the first phase, the left input is
consumed and partitioned into buckets by hashing on the join attribute of
each tuple in it. In the second phase, the same hash function is used to hash
the tuples in the right input. The tuples of the right input are concatenated
with the corresponding tuples of the left input by probing the hash table.
Subsequently, the predicate is applied over the resulting tuple. The optimiser
needs to ensure that the smallest input is placed as the left input. Table 5
presents metrics that are particular to hash joins.

The unnest operator takes as input a tuple with a n-valued attribute (or rela-
tionship), and produces n single-valued tuples. The cardinality of the collection
attribute or relationship Card,, can be monitored (Table 6).

The exchange operator encapsulates parallelism in multi-node environments.
It performs two functions concurrently. It packs tuples into buffers and sends
these buffers to consumer processors, while receiving packed tuples from buffers



Table 5
Hash-Join-specific measurements.

Symbol Description
S5 size of a tuple in the ith input
S; size of the ith bucket
N; cardinality of the ¢th bucket
M; number of tuples in the right input that correspond to the ith
bucket
thash time to hash a tuple
teone time to concatenate two tuples
Table 6
Unnest-specific measurements.
Symbol Description
Card.y cardinality of multi-valued attribute
Table 7
Exchange-specific measurements.
Symbol Description
Sq size of input tuple
Nbuffers_sent_i number of buffers sent to the ith consumer
Nbuffers_received_i number of buffers received from the ith producer
tpack time to pack a tuple
tunpack time to unpack a tuple

sent by producers and unpacking them. The monitoring information for ex-
changes is given in Table 7.

From the above, it is evident that operator-specific measurements for a specific
operator are defined solely on the basis of the distinctive functions that this
operator performs. This ensures that the measurements are common in any of
its implementations, and provides the criterion for defining the measurements
of operators not included in Table 2.

3 Enabling adaptations through local operator monitoring

Traditionally, database systems use optimisers that rank candidate query plans
on their predicted cost and, typically, select a plan on the basis of its low pre-



dicted cost. If the cost of the selected plan is substantially different from that
predicted by the cost model, this may indicate that the chosen plan is not in
fact the most suitable. Thus there needs to be an association between the in-
formation collected during monitoring and the cost model for the algebra. The
cost metrics can be indirect (e.g., size of intermediate results), or direct (e.g.,
execution time). It is often the case that not only the complete query plan, but
also the operators that comprise it can be annotated with performance predic-
tions. Monitoring the cost of the operators can thus inform the calibration of
the cost model used in estimation based on a post-mortem analysis. However,
identifying erroneous estimates that refer to the final state of the operator
at runtime, which is a monitoring task directly related to dynamic query ex-
ecution, may be non-trivial. To this end, the monitor mechanism should be
enhanced (i) with the capability to predict the final cost of query plan, or
subplan, based on monitoring information that has become available up to
that point; and/or (ii) with the capability to identify operation states that
will prevent the system from reaching the expected performance.

In this section, the monitoring framework is applied to the operators in Table
2, which include some of the main physical operators evaluated by both par-
allel and non-parallel query processors. More specifically, it is verified that a
deviation from initial expectations can be not simply detected, but also pre-
dicted on-the-fly. It is first examined if this can be achieved through local mon-
itoring, i.e., without passing monitoring information between operators, then,
in Section 4, this constraint is relaxed. The reasons why one would choose
to perform local monitoring are threefold: firstly, one might not want any
extra communication overhead regardless of the potential benefits; secondly,
the query plan could be executed using blocking operators or materialisation
points, which means that, effectively, only one operator is active at any time;
and thirdly, initial estimates may only be available for particular operators or
particular properties of operators, as is commonly the case for heuristic-based
optimisation.

Regarding the predictions, this work does not seek to propose accurate for-
mulas for all the possible cases, implementations, system configurations, value
distributions, etc, but rather to demonstrate that such a generic monitoring
approach is suitable as a basis for prediction mechanisms. For this reason, the
signatures of the prediction formulas are more important than the formulas
themselves, as they depict more explicitly the monitoring information required
to predict whether there will finally be a deviation from the expected perfor-
mance or not. It is important to notice that this section is complemented by
Section 6. There, it is demonstrated how the monitoring framework presented
here can be applied to other adaptive query processing techniques and support
different approaches to feedback assessment and response, some of which may
not use prediction mechanisms at all.



Table 8
Symbols denoting additional operator properties.

Symbol Description

o monitored selectivity

S monitored size of result set
Szjnp monitored size of the jth input
T monitored completion time

ol selectivity as known at compile time

S size of result set as known at compile time
Szjnp size of the jth input as known at compile time
T completion time as known at compile time

The cost of operators is estimated according to the detailed cost model de-
scribed in in time units (23). Here, the focus will be on three aspects of operator
execution: the selectivity o, as it determines the workload for the remainder
of the query plan and is hard to predict accurately at compile time when no
statistics are available; the size of the result S; and the completion time 7',
which defines the operator’s cost.

In the rest of the paper the following additional notations are used: For each
property = being monitored at runtime, ¥ is its static value, either known or
estimated at compile time. Each operator is annotated at compile time with

J

inp> INPUL size S;,, and

expected selectivity o, result size S , input cardinality n i

time cost 7. Table 8 summarises the additional notations.
3.1 Detecting deviations

Spotting deviations from the expected selectivity 7, result size S and comple-
tion time 7' is supported by the framework in a straightforward manner. From
Table 1 we have:

inp inp . 1
*_ otherwise (1)

inp

{ ——"—— for binary operators
o=

S = sum(s) (2)
T_ { sum(tpre) or
treal

After the operator has finished its execution, these values can then be com-
pared against the initials estimates, i.e., , S and T, respectively, in order to

10



assess their accuracy.

3.2  Predicting Deviations

If the overall goal is to predict, rather than simply detect deviations, the mon-
itoring framework should provide the necessary input to the prediction mech-
anism. Table 9 gives examples of prediction formulas that use the monitoring
information and can be applied for that purpose. The focus here, as explained
earlier, is on the nature of parameters used, rather than on the validity of the
formulas; ascertaining the latter is out of the scope of this paper.

The prediction formulas about the final output size belong to two categories:
firstly, when the operator does not change the size of the tuple (i.e., the av-
erage size of the input tuples is equal to the average output size) and the
initial estimate of the input size is correct; and, secondly, when the size does
change or the initial estimate is inaccurate. For the final time cost, we have
considered three approaches: firstly, to decompose the operator function into
subfunctions, such as those in the cost model used (if this is possible), and
to use cost information about these subfunctions obtained up to that point,
which implies the most detailed measurements; secondly, to build the predic-
tion on the cost of the operator up to that point assuming that the elapsed
time is proportional to the number of input tuples, which, intuitively, cannot
perform well when system parameters change; and thirdly, to base the predic-
tion on the cost of the last tuple (or of the n last tuples) processed, which,
again intuitively, can adapt better to load fluctuations, but may be unduly
affected by temporary load changes.

3.2.1 Monitoring Sequential Scans

Based on the measured cardinalities of the input and output at a given point
in the execution, the final selectivity can be estimated, e.g., as in Table 9.
A new estimate for the final cardinality of the result can be obtained by
multiplying the monitored selectivity by the known cardinality of the stored
extent n;,,. The total size of result can be predicted in both ways mentioned
in the previous paragraph. For the estimation of the total execution time, all
three ways considered in the previous paragraph can be applied. In the first
one, which requires the identification of simpler operator subfunctions, we can
follow the approach of (23), where the cost can be divided into the cost for
transforming the format of the tuples (if necessary), evaluating the predicates,
and reading the pages T = tpqge* Npages+ (Emap +pred) -nzlnp. All these parameters
can be monitored as shown in Tables 3 and 4. Different implementations are
expected to vary significantly as to their cost, and the contribution of each of

11
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the three common subcosts to the total execution time. Thus, monitoring at a
finer level may be important in order to identify and quantify such differences.

3.2.2  Monitoring Hash Joins

The approach for predicting the final values of the selectivity and the size
of the output of a hash join is similar to the one used for scans. The main
difference between scans and joins is that the cardinalities of the inputs are
more likely to be estimated rather than measured and building estimates upon
previous estimates may result in compound errors (14). The total execution
time of a hash join consists of the time to hash the tuples for both inputs, the
time to concatenate all the relevant pairs of tuples and the time to evaluate
the join predicate, i.e., T = tpasn - (Pinp 1 Minp) + (torea+ teonc) - pairs- The initial
estimate of the cost of a hash join at compile time uses a constant value for
the time required to hash a tuple. This constant can be monitored (Table 5)
and thus can be corrected in case it is not accurate. Another constant is used
for the time to concatenate two tuples, which is also error prone. The number
of pairs of tuples concatenated is more difficult to estimate. The optimiser can
make a simple assumption that there is a uniform distribution of tuples across
the hash table buckets. A more realistic formula that captures the potential
skew in the partition of tuples into buckets and can be used to estimate the

—

2
52 where m is the total number of

inp

buckets, and the remaining arguments are defined in Table 5. Another option,
if the left input has already been consumed, is to use the time elapsed along
with the time taken to evaluate the last tuple, as shown in the second formula
in the relevant field of Table 9.

. . n
number of pairs is npairs = (Zjn; Ni+ M;) - ~

3.2.8 Monitoring Projects, Unnests and Op. Calls

For projections and operation calls, the cardinality of the output is the cardi-
nality of the input, as their selectivity is always equal to 1. The size and time
prediction formulas resemble those for scan (Table 9). Unnests differ in that
they may have a selectivity greater than 1.

3.2.4 Monitoring Fxchanges

The time cost of an instance of exchange is the sum of the costs to receive
packed tuples from remote nodes, unpack them, pack tuples into a buffer,
and send the packed tuples to other nodes. The communication cost is the
dominant cost.

The cardinality, the size of the output, and the time cost of the operator can

13



be monitored. However, no more accurate estimates for the number of tuples
to be produced can be made at runtime without communication, other than
the estimations made by the optimiser at query compile time. This is because
this metric depends on the number of buffers that other instances of exchange
send to that node, and in order to get this information, data transmission is
required.

On-the-fly updating of the predictions for the output size and the time cost
can occur in a limited range of situations. A better estimate of the size can
be made if the observed average tuple size is different than the estimated one,
but again the information about the total number of result tuples is missing.

More accurate estimates of the time cost are produced by adding together
more accurate estimates of the component costs. The time cost to transmit
data depends on the input cardinality, the average size of a tuple, and the
network speed between the two nodes involved. It also depends on system
parameters that are not expected to vary for a given system, such as the
size of a buffer and the space overhead for each buffer. From the above three
variables, more accurate values can be obtained for the average tuple size. If
this size remains the same, the system cannot detect deviations from expected
cost caused by fluctuations in the network bandwidth, or from the expected
number of incoming tuples. Changes in the expected cardinality of the input
and the output are tracked, but cannot be predicted on the fly.

3.8 Discussion

Section 2 discussed what may be useful to monitor. This section has indicated
how the approach for monitoring individual query operators can be used for
detecting and predicting deviations from expected performance presenting an
example that explained how monitoring can be useful for adaptation when no
monitoring data are transmitted. Notice, however, that other useful monitor-
ing tasks, such as cost model refinement, were not examined as the focus is
on applications that may modify the query execution on-the-fly. Under some
assumptions, predictions on the performance of the system for the remainder
of the query can be made on the fly. The only exception to this is for parallel
query plans that include exchanges. In that case, predictions can only be made
for a limited range of cases and passing data between operators is necessary
for improved estimates. Other examples of how the monitoring framework
presented can be used to support adaptivity are given in Section 6.

The prediction formulas for scans and unnests that only use notation from

Tables 1 and 8 can be generalised for any operator with selectivity different
from 1. The formulas for projections can be generalised for any operator with

14
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Fig. 1. Example query plans executed over (a) a single machine, and (b) two ma-
chines

selectivity equal to 1. The formulas for hash joins that do not use notation from
Table 5 can be applied to any binary operator. In general, the formulas used
here are simple and may not be appropriate in all usage scenarios. It is not the
aim of this paper to explore their validity over more diverse usage scenarios.
The role of such formulas in the monitoring task is to provide feedback for
adaptive query processors. Although the performance criteria were defined to
be the selectivity of operators, the size of (intermediate) results, and the time
cost, there is no fundamental reason why this set cannot be extended and
tailored to different system characteristics.

4 Propagating monitoring information

Section 3 examined the case of monitoring without communication overhead.
This section shows how relaxing this constraint can enhance monitoring pre-
cision. Firstly, the case in which data is not transmitted to remote nodes is
discussed, then the case in which monitoring data is shared among different
nodes. In the first case, the communication overhead can remain low, as the in-
formation does not have to be conveyed through the network. Actually, it may
not need be passed between operators physically at all, but simply recorded
for access by later operators.

4.1 Sharing information among different operations in a node

When lower operators in the query plan propagate more accurate estimates to
operators that lie above them, estimates for the latter become more accurate.
The formulas in Table 9 allow on-the-fly predictions of the final number of
tuples, the final size of the result and the final time cost. These formulas
! 2 ,) and

depend on initial estimates of the input cardinality (n;,, and/or nZ,
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size (S},, and/or SZ,). Monitoring allows more accurate estimates of these
properties. The input size and the input cardinality of an operator are the
output size and the output cardinality of its children, respectively. All physical
operators, except exchange, are able to produce more accurate predictions for
these two metrics. This function operates in a recursive way that results in the
propagation of better estimates from the lowermost to the topmost operator

provided that an exchange operator does not break that chain.

Consider the query plan in Fig. 1(a). For each join, the expected cardinalities
of the inputs are computed at compile time. Even if the selectivities of the
three joins are estimated with the same accuracy, the estimate for the output
of the third join can be much worse than the estimate for the second join
and even worse than for the first one. (14) explains how propagation of errors
affects the quality of these estimates. All operators can continuously update
their expected output cardinalities and selectivities if monitoring is in place.
The propagation of these measurements results in the third join having an up-
to-date estimate for its inputs. These inputs also have up-to-date estimates
for their inputs and so on. In that way, the effect of potentially inaccurate
initial estimates can be ameliorated.

The type of the formulas of Table 9 remain the same. However, for each

operator the values n{n,, and anp are replaced with the relevant predictions of
its child.

4.2 Sharing information among different nodes

In the previous example, assume now that the fourth scan is placed on another
node, and that the third join is evaluated through partitioned parallelism on
both sites. In the operator model of parallelism, tuples are exchanged between
nodes through the exchange operator (Fig. 1(b)). If no communication across
sites is permitted for monitoring, exchanges cannot give up-to-date estimates.
In this case, the third join can only use the initial estimates computed at query
compile time. However, if there is no zero-communication constraint, the mon-
itored information can be transmitted to and across exchanges. In this way,
each instance of exchange can predict on the fly the total number of buffers
and the number of tuples that will be sent to each consumer. New estimates of
the output cardinalities can be produced by gathering this information from
all the exchanges.

Allowing monitored information to be transmitted over the network has ad-
ditional benefits. The relative workload of the nodes can be monitored by
tracking and comparing the number of tuples each instance of an operator re-
ceives. Moreover, the connection speed between two nodes can be monitored
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by recording the time when a buffer is sent from a node and the time it arrives
at its destination. Finally, the relative load between nodes can be monitored
by tracking and comparing the average times to process a tuple on different
sites. Hence, communication overhead can be traded for such benefits.

This approach to propagating the monitoring information through the query
plan allows for adaptive schemes where operators adapt autonomously (e.g.,
(31)) as well as approaches that co-ordinate the query re-optimisation centrally

(e.g., (3))-

5 Ewvaluation

The presentation of the experimental results in this section serves two pur-
poses. Firstly, to provide insights into how large the overhead of monitoring
and predicting can be, and, secondly, to assess the accuracy of the predic-
tions based on monitoring. The data used in the experiments are from the
OO7 benchmark (5). The measurements are taken on a dedicated PC with
1.13GHz AMD Athlon CPU and 512 MB memory (of which 330 - 370 MB
were available at the time of the measurements), running Redhat Linux 7.1.
The query engine used is part of the Polar* Grid-enabled distributed query
processor (25). The operators are implemented in C++ according to the it-
erator model (10) and following the standard algorithms as these appear in
the literature, and all are single-pass, i.e., all intermediate data sets are stored
in main memory, although the data starts off on disk. The granularity of the
system’s timer is one microsecond.

5.1 Querhead of Monitoring

The measurements fall in three categories: firstly, those that involve counters
(e.g., cardinalities of input, output and hash table buckets); secondly, those
that require timings, i.e., two timestamps are taken and their difference is
computed (e.g., time to evaluate a tuple, time to change the tuple format
from the storage format to the evaluator format), and thirdly, those that
compute the size of a tuple. The size of the tuple is not statically known in
two cases. Firstly, when the tuple has one or more tuple fields with string
type of undefined length; and, secondly, when there is a collection attribute of
undefined collection size. Measuring the size of a collection requires a counter.
Measuring the size of a string of characters involves identifying the tuple fields
in the tuple that are string-valued and computing the length of each.

Inserting a counter in an operator has a very small overhead, measured at
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Table 10
The operators used in the experiments for monitoring overheads.

Operator Characteristics
Scan A average size of tuples is 155bytes
Scan B average size of tuples is 727bytes
Scan C average size of tuples is 2Kbytes
Scan D average size of tuples is 20Kbytes
Hash-Join A 1 tuple per hash table bucket
Hash-Join B 10 tuples per hash table bucket
Hash-Join C 20 tuples per hash table bucket
Hash-Join D 200 tuples per hash table bucket
Project project one tuple field out of 10
Unnest fan-out is set to 3, average size of initial tuples is
155bytes
Table 11

The overhead of taking measurements compared to the cost of the operators for
each tuple processed.

Operator time (in psecs) | counter (%) | timing (%) 100-byte

string (%)
Scan A 16.82 0.18 6.60 70.63
Scan B 25.50 0.12 4.35 46.60
Scan C 48.81 0.06 2.27 24.34
Scan D 350.57 0.01 0.32 3.39
Hash-Join A 8.22 0.36 13.50 144.52
Hash-Join B 13.02 0.23 8.52 91.22
Hash-Join C 16.25 0.18 6.83 73.11
Hash-Join D 62.86 0.05 1.77 18.90
Project 0.89 3.39 125.27 1340.71
Unnest 10.16 0.30 10.92 116.88

0.03 usecs. The overhead of measuring timings is of the order of microseconds
(1.11 psecs). The time cost of measuring the size of a string of characters
depends on the size of the string. For small strings, the overhead is small but
for larger strings it can become several milliseconds (e.g., for a 1MByte string
this takes 0.0044 secs).
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The operators that were used in the experiments for monitoring overheads are
shown in Table 10. All the joins are on a key/foreign key condition. Table 11
depicts more clearly the magnitude and relative importance of the overheads,
as it shows the percentage increase in the cost of evaluating a tuple due to
monitoring. For each of the operators in Table 10, the time cost is given
(2nd column in Table 11). The last three columns show the increase in the
cost when a counter, a timing and a character counter for a 100-byte string
are applied to each tuple processed, respectively. As expected, the relative
overheads are higher for computationally-inexpensive operators, like project,
and significantly lower for the computationally-expensive ones, like hash join.
The overhead of a counter is negligible for all the operators. Placing two
timestamps is more costly than projecting an attribute, but the percentage
overhead is relatively low for other operators (between 0.32% and 13.5%).
Measuring the size of a string has essentially no cost if the string is a few bytes
long. If the length is 100 characters or more, the performance may degrade
significantly. For instance, it may increase the cost of a hash join by up to
144%, when the size is monitored for each tuple processed by the operator.
If the size is computed for one tuple in ten, the increase is only 14.4%, and
if the frequency is 5% (one in twenty tuples is monitored), the increase falls
to 7.2%. However, it is not usually necessary to compute this in a database
setting, as often, the length of a string is stored explicitly. The values in Table
11 can inform the choice of monitoring frequency by indicating broadly the
overhead that can be anticipated.

5.2  Querhead of Predictions

Here, only the scan operator is analysed, but a similar approach can be fol-
lowed for the remaining operators. The results for all operators are shown in
Table 12.

It is assumed that the system holds information about the size and cardinality
of the stored collections. The selectivity of an operator is given by o = —t

where n and n}np are the monitored cardinality of the output and the input upp
to that point of execution, respectively (Section 3.2.1). The output cardinal-
ity is predicted by multiplying the monitored selectivity with the known input
cardinality. It requires two counters that are updated for each tuple and the
evaluation of one formula. The formula may be evaluated at various frequen-
cies, but it is processed in time significantly less than a microsecond. The cost
of the two counters is of the order of nanoseconds (0.03 usecs each). So, the
overhead of predicting the final number of tuples produced is some fraction of
a microsecond. If the output tuples do not contain strings with variable length,
the final output size is predicted by multiplying the monitored selectivity with
the known size of the stored collection, and the overhead of this prediction

nl
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Table 12
The percentage increase in the operator cost when predictions are made.

Operator Overhead computing | Overhead computing op-
output cardinality (%) erator time (%)

Scan A 0.36 (6.6/freq + 0.18)
(4.35/freq + 0.12)
(2.27/freq + 0.06)
(0.32/freq + 0.01)
Hash-Join A 0.72 (13.5/freq + 0.36)
( )
( )
(
(
(

Scan B 0.24
Scan C 0.12

Scan D 0.02

Hash-Join B 0.46 8.52/freq + 0.23
6.83/freq + 0.18
1.77/freq + 0.05)
125.27/freq + 3.39)

10.92/freq + 0.30)

Hash-Join C 0.36

Hash-Join D 0.1

Project 6.78

Unnest 0.60

is the overhead incurred by two counters as well. If the tuple produced does
contain strings of undefined length, the total size is given by

.

S =0 njp, - avg(s)

sum(s)-freq
— T

where avg(s) = and freq specifies every how many tuples the tu-

inp

ple size s is monitored. The cost of making these predictions is essentially
dominated by the cost of measuring the length of the strings.

Predicting the total time for completion of the operator involves one timing
tiupie being captured for each monitored tuple as follows:

e

_ 1
Ttotal = avg(ttuple) ) nz’np

The average overhead is 1.11 usecs for each monitored tuple, which is the cost
of a single timing, plus the cost of updating a counter.

Table 12 shows the relative overhead of making predictions. As the prediction
of the output size depends on the size of the variable length strings (if any) and
is not generic, it is not shown in the table. If there are no collection attributes
or variable-length strings, then the cost is the same as the cost to compute
the output cardinality.
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Fig. 2. The accuracy of the predictions for the output cardinality of the three scans
at different stages of the operator execution.

5.8 Accuracy of predictions

The formulas introduced in Section 3 are rather straightforward and may be
expected to give better results when the system is uniform in terms of load,
attribute value distribution, operator workload, etc. However, it is interesting
to examine how large the deviations are when the formulas are applied to
skewed data. Since all operators require initial estimates for their input car-
dinality, an error in that cardinality compromises the accuracy at exactly the
same magnitude. Consequently, it is important that an operator not only is
able to make accurate predictions about the cardinality of its result set, but
also that it is able to pass that information on to its parent operator in the
query tree, as described in Section 4.

Consider three scans. The first, scanl, has selectivity 10% and the tuples that
satisfy the scan condition are spread in a uniform manner across its extent.
The second, scan2, also has a uniform distribution, but the selectivity is 50%.
The third scan, scan3, has a selectivity of 50%, and is satisfied by all but
the first 25% and the last 25% of the tuples. Figure 2 shows how accurate
the predictions for the output cardinality are at each stage in the process
of query execution. The formula used assumes that the final selectivity of
the predicate is the same as the monitored selectivity at that point. If the
tuples that satisfy the predicate are distributed across the dataset in a uniform
manner (e.g., scanl and scan2) the accuracy is very high and not dependent
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Fig. 3. The accuracy of the predictions for the response time of the three scans.

on the selectivity. However, for skewed distributions with unfavourable shapes
(e.g., scan3), the predictions can be erratic over the course of execution. If
the load of the system does not vary during execution and every tuple is
monitored, the operator response time can be accurately predicted from the
very early stages for all three scans (Figure 3). Lower monitoring frequencies
result in worse accuracy, especially if the load varies.

5.4 General remarks on the evaluation

There are several lessons to be learned from the evaluation of the overheads
related to monitoring:

(1) In our approach, there are three types of monitored information: counters,
timings, and sizes of variable-length strings. The overhead of these three
types is not dependent on the type of the query operator. The costs of
counting and of computing a time interval are constant for a given system,
whereas the cost of measuring the size of a string depends on its size.

(2) The cost of a counter is negligible for all the operators examined. However,
this is not true for timings and string computations.

(3) The cost of computing the output cardinality is lower than 1% for all
operators examined except project, for which it is 6.78%. So, it can be
regarded as low. Additionally, the relative cost of predicting the final
response time is lower than 13.5% for all operators except project, even
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if the time cost of each tuple is measured separately. If the time cost is
measured at a frequency lower than 10% (i.e., one in ten tuples is timed),
the cost becomes lower than 1.5% for these operators.

In general, the relative overhead incurred by monitoring remains low if the
monitoring frequency of inexpensive operators (and the monitoring frequency
of all operators when the environment is stable) remains low. Notice that in
multi-pass implementations of operator algorithms, where the data cannot
fit entirely in main memory, the average cost of the operator is expected to
be significantly higher, whereas the cost of monitoring is expected to remain
the same. Consequently, in such systems the contribution of the monitoring
cost to the total execution time is envisaged to be even smaller. Thus, the
results presented here with respect to the proportional overhead of monitoring
approximate the worst-case scenario, as other query processors are expected to
behave either similarly or worse than the query processor used, in terms of the
monitoring overhead. For accurate predictions, a good knowledge of the input
sizes and cardinalities is always required, which means that the children also
need to be able to make good predictions and pass on relevant information
to their parent. If the load of the system does not vary, the total response
time can be predicted accurately from the early stages of execution. When it
varies, the predictions can still converge, but they require higher monitoring
frequencies. Skewed distributions impose significant errors but, even in such
cases, predictions can be better than direct usage of estimates produced at
compile time.

6 Related Work

This work can be related to numerous activities in the area of performance
analysis for databases and software systems, database cost models and perfor-
mance prediction. However, the most relevant work is in the area of adaptive
(or dynamic) query processing (AQP). Adaptive query engines receive infor-
mation from their environment and determine their behaviour according to
that information in an iterative manner (12). The most dynamic are those
that capture specific aspects of the query processing, evaluate this feedback
and react accordingly, during the execution of a single query. According to the
feedback they collect from the query execution, they can be classified in three
broad categories.

The adaptive systems that monitor the rate at which they receive their input
belong to the first category. A typical example is the XJoin (28), a variant
of pipelined hash joins that hides delays in the arrival of the input tuples by
performing other operations when the inputs are blocked. In our approach,
the input tuple rate and the time waiting since the last tuple was processed
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can be monitored for each operator. Consequently, it can be inferred whether
an input is blocked by using a threshold. Ginga (20), Query Scrambling (30),
and Bouganim et al (3) also deal with the problem of experiencing delays in
the delivery of the first tuples from a remote source. (3) proposed an approach
that generalised Query Scrambling to adapt not only to blocked connections,
but to any changes in the data delivery rates as well. To monitor the delivery
rates, they employ a new component, whereas in the approach proposed in this
paper this could be easily achieved within the operator. Information about the
data delivery rates can trigger adaptation also in the context of Rivers (1), a
proposal for parallel I/O intensive applications, which monitors the bandwidth
between data producers (e.g., disks) and consumers (e.g. scan operators).

Another group comprises systems that focus on the workload and the pro-
ductivity of operators measured in tuples. For example, Eddies (2), a very
dynamic technique, encapsulates a multi-join, and dynamically chooses the
order of the individual joins for each incoming tuple. The basic routing policy
observes the number of tuples received by each join so far, and the number of
tuples produced. Both these metrics are covered by the proposed approach,
not only for the joins, but for all the operators (Table 1). Also, Flux (24)
extends the traditional exchange operator to adapt to fluctuations in resource
availability (like resource and memory loads) while executing a query in a
pipelining mode. It relies on the on-the-fly selection of simple statistics like
the number of tuples processed and the time the operator is active. These
systems can be combined together to form even more powerful mechanisms
like the TelegraphCQ (6) and (18; 21). In (29), the Dynamic Pipeline Sched-
uler tries to reduce the initial response time of the query, basing its adaptive
behaviour on the number of the tuples consumed so far by the operators and
on their selectivities.

More generic systems, in terms of the information they collect from a query
plan, fall in the third category. Kabra and DeWitt (16) use a separate mon-
itoring operator for collecting statistics about data on the fly, provided that
this is possible in one pass of the input. Such statistics include the cardinality
of intermediate results, their average size, and certain histograms. However, it
requires the monitoring points to be defined at compile time, it cannot operate
in parts of the plan that are executed in a pipelined fashion, and, it cannot
capture timings referring to other operators (e.g., the time taken for a lower op-
erator to process a tuple). These limitations, which are essentially limitations
of the approach to monitoring in which dedicated operators are employed, do
not arise in our approach, since it is based on self-monitoring operators. The
Tukwila system (15) integrates adaptive techniques proposed in (16; 30). A
special operator is also used to switch to an alternative data source, when the
initial source fails. The execution information that the system monitors for
active operators is the number of tuples produced so far (to check whether the
optimisers estimates were adequately accurate) and the time waiting since the
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last tuple was received (to identify slow or blocked connections). The Conquest
query processing system resembles Tukwila in adopting a triggering approach
to respond to runtime changes (19). Characteristics related to query execu-
tion that can trigger actions include updates to operator selectivities and sizes
of intermediate results. Also, the system monitors the load of the resources.
The framework we have presented can infer relative levels of load by compar-
ing the time to process a tuple at different points of the execution. Operator
selectivities and sizes are monitored explicitly.

Table 13 summarises the aspects of our monitoring proposal in Table 1 that
are used by the AQP systems examined (referring to specific operators). It
demonstrates that the proposal is generic enough to support many adaptive
systems with different functionalities and requirements. The approach pre-
sented integrates and extends existing monitoring approaches with regard to
data characteristics and execution cost. In essence, any of the above adap-
tive techniques can implement its assessment and response strategy on top of
our monitoring framework. This cannot be achieved by operators dedicated
to statistics collection or new components in the architecture of the query
engine, as both these techniques can capture a significantly smaller amount of
monitoring information. In contrast, updated information on computational
resources (like available memory or new machines becoming available) is an
important and complementary factor for deciding about adaptivity that is not
covered by our approach, as such information cannot be inferred solely from
the query execution.

The overhead of monitoring has not been explicitly considered in the litera-
ture above. Information about the overhead is included in LEO (26), which
monitors the query plan but only collects information about operator and
predicate selectivities, and about the cardinalities of the intermediate results.
This additional information is stored so as to enable the adjustment of the
query optimizer for the subsequent queries. The overhead is about 5% and has
been regarded by the authors as small.

7 Conclusions

So far, adaptive query processors have tended to ignore the monitoring phase
at all, or, to use potentially efficient, but ad hoc, ways of collecting feedback
from the environment and the query plan itself, analysing that feedback and
choosing a reaction, all grouped together. This paper argues that these three
functions can be studied separately, in order to exploit the benefits of divide-
and-conquer techniques and to gain generality, substitutability, and reusability.
The main contribution of our work is the construction of a general technique
for monitoring the execution of query plans, based on self-monitoring query
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Table 13
Monitored information that can provide input to existing AQP systems.

Systems Operators slalsvls e |
T | |3 g,

Bouganim et al scan & parent v |V Vv
Conquest any ARV NERY
Dyn. Pip. Scheduler | join NA RV

Eddies join ViV

Flux exchange 4

Ginga scan & parent Vv Vv
Kabra & DeWitt any Vv Vv

Q. Scrambling join & scan v |V Vv
River scan v oV Vv
Tukwila any ViV oV ViV
XJoin join v |V Vv

operators. Our approach is generic in the sense that it is not dependent on any
particular adaptive system or form of adaptation and can support most AQP
proposals to date in terms of the monitoring information required. In addition,
it is capable of identifying and predicting erroneous initial estimates on the
fly. It can be easily implemented as it employs only counters, timestamps and
tuple size computations. It can be easily integrated into existing query engines,
as it does not require changes in the architecture or in the internal logic of the
query optimiser. Moreover, our approach is not centralised and thus fits better
to distributed environments with potentially large numbers of nodes. The
simplicity does not compromise the comprehensiveness, as many properties
of query execution can be captured in a systematic way. Also, it allows for
monitoring at different levels of detail in the monitoring information and at
different frequencies, and it examines the trade-offs between communication
overhead and monitoring quality.

Finally, the monitoring approach was experimentally evaluated. The overheads
and the increase in operator cost incurred by monitoring are reasonable enough
for the approach to be incorporated in query systems that operate in volatile
environments. In addition, the experimental results can provide strong insight
into how the frequency and the intensity of monitoring impact on its cost.
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