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Abstract We deal with the problem of dynamically allocating the workload
to multiple workers in massively parallel continuous distance-based outlier de-
tection, where the workload is conceptually split in contiguous overlapping
regions. The main challenges stem from the fact that modern streaming pro-
cessing frameworks, such as Apache Flink and Spark Streaming, do not sup-
port feedback loops, the process is stateful while the adaptations do not re-
sult in key redistribution but in modifying the region boundaries associated
with each key. These challenges correspond to overlooked issues, which call
for novel solutions that we provide in our work. More specifically, firstly, we
propose an architecture for allowing such adaptations in Flink. Secondly, we
propose specific techniques for adaptive region definition that are applicable
to any distance metric. Finally, we conduct thorough experimental evaluation
and our results show that our proposal is both efficient and effective even in
small finite streams. In addition, our proposal is shown to be insensitive to the
exact continuous outlier detection algorithm and outlier query parameters.

Keywords adaptive outlier detection · dynamic partitioning · massively
parallel processing · Flink

1 Introduction

Distance-based outlier detection in data streams constitutes a prominent ap-
proach in runtime data analytics and is used in many applications, such as
spam detection, medical diagnosis and fraud detection to name a few. It refers
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to a setting where a sliding window is applied on the data stream, new objects
arrive continuously, and an object in the current window is reported as an
anomaly if the number of its neighbors is below a given threshold [18]. This is
still attracting significant interest, also due to the practical value that has been
identified since many years [25], and several techniques have been proposed
to perform the involved computations in an efficient incremental manner, e.g.,
[3,33,9,19,7,32,8,37,36,31]. In addition to these single-node proposals, there
are efforts to parallelize distance-based outlier detection through employing
partitioned parallelism on top of emerging massively parallel data processing
platforms, such as Spark and Flink [30].

Traditionally, streaming data processing benefits from adaptive techniques
[12], since in a streaming setting, both the data characteristics and the envi-
ronmental conditions are subject to potentially frequent changes. The moti-
vation of our work is the current lack of proposals for handling adaptivity in
continuous massively parallel distance-based outlier detection. In this form of
streaming application the keys correspond to overlapping regions the bound-
aries of which need to change dynamically without redistributing the keys.

More specifically, state management is a key element in modern big data
processing systems [27,20]; when the state is in the abstract form of key-value
pairs, then repartitioning of keys should be accompanied by the movement of
the internal state from one worker to another potentially over the network;
otherwise the result is not correct. This setting has been significantly explored
in the last two decades mainly in the context of adaptive query processing [17,
14,22,16]. However, partitioning in streaming distance-based outlier detection
does not conform to the afore-mentioned more explored field. In our context,
partitioning is value-based and corresponds to overlapping contiguous regions,
e.g. [30,11]. An example is shown in Fig. 1, where there are 12 workers and
each worker is assigned one region. In the figure, the red points (numbered as
2 and 3) are replicated to the top-left partition, whereas point 1 is replicated
to all three partitions that are adjacent to the top-left one. The rest of the
data points belong solely to the top left cell and are not replicated. The repli-
cation due to the overlapping is essential in order for each worker to report
accurate local results without any further (global) pre-processing. The need
for dynamic load-balancing and adaptive partitioning stems from the fact that
in a streaming scenario, the data distribution changes and evolves frequently,
while it is characterized by skews during different time periods. A partitioning
technique based on a sample of the data cannot cope with this change and
thus a practical solution of self-adapting partitioning techniques is necessary.

The main contribution of this work is threefold. Firstly, it presents a
methodology to render continuous massively parallel outlier detection in Flink
adaptive and proposes specific techniques to dynamically redistribute the work-
load among Flink workers. The methodology is based on the development of
a feedback loop architecture in Flink, which requires execution plans to be
acyclic for streaming applications (something common to similar streaming
platforms). Secondly, it proposes specific repartitioning techniques that go be-
yond the simpler value-based scenario (see also Fig. 1) to account for any
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Fig. 1 Value-based grid partitioning of a 2d space

metric space rather than Euclidean only. Thirdly, we thoroughly evaluate our
proposal using both numerical and text datasets, providing strong insights into
the effectiveness (capability to yield lower execution times in realistic settings)
and efficiency (negligible overhead) of our proposal, while investigating aspects
such as sensitivity to parameters and independence from any specific outlier
detection algorithm. The complete open-source implementation is provided.1

The remainder of the paper is structured as follows. We give the back-
ground in Sec. 2. Sec. 3 presents the repartitioning techniques. Our thorough
experiments are presented in Sec. 4, followed by the remainder of the related
work in Sec. 5. We conclude in Sec. 6.

2 Background

Flink execution plan is denoted by a directed graph, with vertices representing
compute tasks and edges data subscriptions between such tasks. For stream-
ing applications, the execution graph is acyclic. Regarding state, Flink distin-
guishes between keyed-state and operator-state. The former deals with
cases where the data is either explicitly or implicitly grouped by a key value,
and more commonly, the number of keys is much larger than the number of task
slots. The latter holds provenance and repartitioning metadata to support elas-
ticity actions. These elasticity actions relate to under- and over-provisioning
moving data partitions to new tasks. The interested reader is referred to [10]
for full details. In this context, our work faces the following two challenges.

1 An early short version of this work has appeared in [29], which introduced the technique
that is termed as naive in this work and was tailored for the Euclidean space and evaluated
using only single-dimensional numerical datasets. We significantly extend and improve upon
this early work through proposing and experimenting with more eager and sophisticated
techniques, while supporting arbitrary metric distances and evaluating using both numeric
and text datasets with a high number of dimensions.
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Firstly, our adaptive methodology contains a feedback loop, which is not in-
herently supported by directed acyclic graph execution plans. Secondly, we do
not deal with elasticity but with using more efficiently the already assigned
resources without re-assigning keys between workers. By contrast, we mod-
ify on-the-fly the state corresponding to predefined keys, as will be explained
shortly.

Distance-based outlier detection requires (i) a distance function dist, which
assigns a non-negative value to each non-ordered pair of points; and (ii) two
parameters R and k. The neighbors of each point are the set of other points
the distance to which according to the dist function is less than R. If there are
less than k neighbors, the point is reported as a distance-based outlier [18]. In
a streaming setting, the set of points continuously evolve, and the outliers are
reported periodically or even after every point insertion or deletion, whereas,
through adopting a sliding window, old points expire after some period.

The problem of continuous distance-based outlier detection is defined for-
mally as follows. Given a set of objects O and the threshold parameters R
and k, for each window slide S, report all the objects oi ∈ O for which the
number of neighbors oi.nn < k, i.e., the number of objects oj , j 6= i for which
dist(oi, oj) ≤ R is less than k.

Our adaptive solution builds upon the non-adaptive parallel techniques in
[30] in the context of an extensible engine, called PROUD, which is described
in [28].2 In the PROUD framework, there are two separate types of Flink
tasks for data partitioning and outlier detection, respectively. Outlier detection
leverages the Flink functionality for sliding windows (as opposed to tumbling
windows), and the contents of each window partition along with all metadata
needed are stored as keyed-state. Finally, there are also tasks to read and
transform initial data, if needed. The window (resp. slide) size is denoted as W
(resp. S). E.g., W = 60 seconds and S = 3 means that only the data from the
last minute are kept and the window contents are updated every 3 seconds; as
such, a specific point is alive for 20 slides.

The work in [30,28] employs two partitioning techniques, namely a grid-
based and a tree-based one. For both techniques, a data point that falls close
to region boundaries of multiple keys is replicated and distributed to every
neighbor region, so that each worker can compute the number of neighbors of
each point in parallel. The tree-based one, uses a VP-tree [35] in order to create
a binary tree in a metric space based on the dist distance function. This kind of
tree splits each node based on the distance of the points it contains from a data
point that is chosen as the vantage point and a threshold. Its advantage is that
it is more suitable for multi-dimensional datasets. A weak point of grid-based
partitioning is that, during adaptations in multiple dimensions, arbitrary cell
shapes may be produced that heavily impact on the effectiveness of adaptivity.
Contrary to [29], in this work we employ tree-based partitioning exclusively,
as the underlying structure to support repartitioning.

2 The implementation of the whole framework along with the tech-
niques in this work is publicly available from https://github.com/tatoliop/

PROUD-PaRallel-OUtlier-Detection-for-streams/tree/adaptive_partitioning
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Fig. 2 Pipeline and architecture overview

3 Adaptive Repartitioning

Adapting the partitioning scheme implies changing the region boundaries of
at least one key. The partitioning tasks are responsible for taking the decision
whether an adaptation is required or not. The decision is the outcome of a
cost function that processes metrics from the forward processing tasks. We
will provide details for all these shortly, but, for the moment, the important
notice is that the need for the partitioning tasks to have access to the metadata
of the processing tasks arises, which corresponds to a feedback loop. This is
not supported by the Flink engine, therefore it has to be created outside of
it. To this end, as a first step, we employ an auxiliary data storage framework
that provides in-memory cache options and does not impede high throughput
in real-time applications; this implies the requirement for fast read and writes.
In our current implementation, we have chosen Redis. Each Flink job writes
metadata regarding data workload and processing times, while also, it reads
metadata from all workers to decide the repartitioning policy.

The architecture is summarized in Fig. 2 and conforms to the PROUD
framework. The solid arrows correspond to the normal flow, whereas the feed-
back loop is shown with the dashed lines and runs in a decentralized manner.
It comprises two additional Flink tasks. The first one is a broadcasted input
stream while the second one is a side output3 that writes the metadata into
the in-memory cache. Thanks to the latter, the cache is updated after each
window slide. The broadcast stream continuously reads data from the cache
and connects with all the partitioning tasks. Partitioning tasks implement two
functions: (i) to partition new points to keys and (ii) upon arrival of new
metadata from the in-memory storage, to run the controller function in Alg.
1, which may trigger adaptivity actions. All partitioning tasks execute the

3 https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/side_

output.html
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Algorithm 1 The controller function
procedure Controller

for each new broadcast metadata do
run assessment policy
if adaptation is required then

wait β slides after the slide triggered the adaptation
shift region boundaries by αR (see Alg. 2)
enter transient period for W

S
slides

discard any new metadata for sleep slides

same deterministic code to update the distribution policy, therefore there is
no need for centralized control.

The assessment policies in the controller function form an extensibility
point in our solution. If an adaptation is decided, the region boundaries of the
affected keys are shifted by αR, where α is a small configurable constant (the
actual process may be more complex and is described in Sec. 3.3). This decision
is taken by all partitioning tasks in parallel and is enacted after a predefined
number β of slides; this buffer period enforces synchronization as it ensures
that all partitioning tasks are ready to apply the new data distribution policy
at the same window slide. The new repartitioning is enforced in the transient
period, during which any new data points arriving are distributed according
to both the old and the new keys depending on their values; the transient
period lasts for W

S slides. Then, a stabilization period follows, where no new
adaptations are allowed for the next sleep slides. The implementation details
of Alg. 1 are discussed below. We have currently implemented two flavors of
the algorithm, termed as Naive and Advanced, respectively.

3.1 Task Metrics

Adaptations are triggered whenever an imbalance is detected according to
the exact controller policies to be presented later in this section. However,
imbalance can be detected in three manners, based on the exact metrics each
task outputs to the in-memory cache after each slide. Overall, if there are l keys
in which the incoming data are partitioning, the controller function receives a
vector < m1,m2, . . . ,ml > of l measurements. These measurements can be of
the following three types:

The first metric M1 corresponds to the number of data points that belong
to each specific task. Essentially, each task outputs the number of data points
without taking into account the replicated points that were sent because they
are close to the boundaries of that task. This metric represents the workload
in its most traditional form, and a relatively high number indicates a skewed
data distribution, which may result in the corresponding task acting as a
bottleneck. The second metric M2 is motivated by the observation that, in
outlier detection, more data points to a specific key do not necessarily imply
higher running times, e.g., if there are no outliers and all points belong to
a dense cluster. Therefore, this metric directly computes the running time
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needed to process the slide, i.e., insert the new slide’s data points, compute
the necessary distance functions, remove old points’ stored metadata and (re-
)assess each point’s outlierness. The third metric M3 aims to combine the two
metrics above with a view to taking into account both the data distribution
and the processing time required to make the necessary computations. To
avoid any normalization issues between M1 and M2, we use their product, i.e.,
M3=M1· M2. Note that only the latest metrics are used, so the main-memory
metadata database does not grow infinitely.

3.2 Controller function

The controller function shown in Alg. 1 is responsible for the adaptation pro-
cess. This function is part of every partitioning task, meaning that each time
new metadata come from the broadcast stream, every partitioning task runs
the controller function to check if an adaptation is required. Each task takes
the same decision at approximately the same time, but all tasks start the
adaptation process at a specific future window slide. This pipeline avoids pos-
sible problems that might occur from a single controller task. In our work, it
is implemented into two flavors, which differ in (1) the assessment policy, i.e.,
how imbalances are detected and (2) the scope of adaptations, where Naive
modifies the boundaries of a single key (and its neighboring partitions), while
Advanced tries to solve all imbalances detected in a single adaptivity step.

Naive policy. The Naive assessment policy compares each key’s reported
metric to the average one; the average is updated whenever new metadata are
read from the broadcast stream and corresponds to the workload of each task
in a perfectly balanced system. More specifically, the policy starts by finding
the key with the maximum cost and compares it with the average one. If
the maximum metric is greater than the average by more than ζover, then an
adaptation action is triggered and the VP-tree is modified so that the region
corresponding to the overloaded key shrinks. The main weak points of this
policy is that it does not consider imbalances due to keys being assigned too
few points and adapts only a single key each time.

Advanced policy. This policy aims to directly tackle the two main weak-
nesses of the Naive one. More specifically, in the same manner Naive treats
the most overloaded key, Advanced treats all keys that exceed the ζover thresh-
old. In addition, it is examined if a key’s workload is lower than the average
by ζunder. If so, adaptations are triggered to move workload to such tasks as
well. All of the keys are considered for both types of imbalance. In addition,
the boundary change rate may differ, as detailed in Sec. 3.3. Further to these
three differences, the Advanced policy stores the latest q metrics and uses their
average (i.e., the metadata from the latest q slides) instead of relying on the
metrics from the latest slide only. This improves the robustness of the policy
and prevents from adapting to spikes and skews lasting for a small number of
slides.
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3.2.1 Adaptation periods

When an adaptation is enacted, the controller function creates three logical
time periods. The first one is the buffer period β which is used to synchronize
all workers in order for the adaptation to start at the same time. This helps
to tackle network and latency problems in the communication between the
workers. More specifically, the main-memory database may not be distributed
since its workload is low, i.e., holding only the cost for each key for a small
history of slides. Any option, i.e., deploying in-memory cache on either a single
machine or (part of) the whole cluster, may create an overhead based on the
network speed connecting the machines of the cluster. Due to this overhead,
partitioners may not be ready to enact an adaptation at the same time. This
is addressed by the buffer period. In our experiments and deployment, we
have adopted a non-aggressive approach, where this period is as long as the
transient period.

The second period is the transient one during which the modified keys
use both the new and old tree nodes; this is required to produce the correct
results. Essentially, due to the transient period, the adaptations are enforced
in a gradual manner so that there is no loss of information or false results,
given that the process tasks have already populated their states based on the
previous keys. More specifically, during this period, when a new data point is
ingested, we distinguish between the three cases below:

1. If a data point is assigned to a key that is not affected by the adaptation,
the process continues without modifications.

2. If both before and after the adaptation, the point belongs to the same key
that is affected by the change, then the process continues as previously
with the difference that it takes into account its neighbor keys based on
both the old and new regions.

3. Finally, if the point belongs to different keys due to the adaptation, then
it needs to be sent to all of them with reverse flagging for the rest of the
transient period. A data point that, during the transient period, is sent to
a key with reverse functionality means that if it is flagged as a replicated
point, it will be processed as if it is a point actually belonging to that key,
and vice versa.

The final period is the stabilization one. During this period the partitioning
uses only the new regions and all the reverse flagging of data points stops to
be taken into account. The length of this period acts as a configuration knob
to prevent from too frequent adaptations.

3.2.2 Correctness

Given that the data points in task are processed independently and the VP-
tree structure, the following two lemmas hold.
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Lemma 1 For a data point pi, all data points pj with dist(pi, pj) ≤ R need
to be partitioned to the same region/key in order to correctly assess pi as an
outlier or inlier.

Lemma 2 A region/key p with vantage point pcenter and threshold rthreshold
contains all data points pi with dist(pi, pcenter) ≤ rthreshold. In addition, to
support Lemma 1, it is assigned all data points pi′ with rthreshold < dist(pi′ , pcenter) ≤
rthreshold+R annotated as replicated points (at the end of each slide, only non-
replicated data points have their status assessed).

Theorem 1 When a region’s boundaries change, the partition needs to dis-
tribute new data points as explained in Section 3.2.1.

Proof A sketch of the proof is as follows. We deal with the third case in Sec-
tion 3.2.1 as the most challenging one. Without loss of generality, we assume
that region’s p boundaries shrink by α = 1, rold threshold = rthreshold and
rnew threshold = rthreshold − R. The state of p during the last slide Sx before
the change took place holds all data points pj as mentioned in Lemma 2.
During the first slide after the adaptation, Sx+1, a new data point pi with
rnew threshold < dist(pi, pcenter) ≤ rold threshold now belongs to the the sibling
region p′. However, the task corresponding to p′ does not have all older neigh-
bors to correctly assess the status of pi, which are contained in the task of p.
Therefore, through sending pi to p as a normal point and to p′ as a replicated
point, we ensure that pi can be evaluated correctly. This holds for the whole
duration of the transient period, upon the completion of which, the task of
key p′ contains all points necessary to assess the status of the points assigned
to it as defined in Lemma 2.

3.3 Vantage Point tree runtime modifications

This part describes the implementation details of the changes that are enforced
by the advanced repartitioning technique to correctly change the boundaries
of each imbalanced region. The VP-tree holds as many leaves as the number
of regions, and each node holds its vantage point and the threshold based on
which the children are split; each node apart from the root of the tree is termed
as either closer (the distance of this node’s points from the parent’s vantage
point is less than or equal to the parent’s threshold) or further (the distance
of this node’s points from the parent’s vantage point is more than the parent’s
threshold).

When only one key is involved in the adaptation, as in the naive tech-
nique, we just have to increase or decrease the parent’s threshold depending
on whether the key is overloaded or underloaded and the node type. Com-
bining the two types of nodes and the two types of imbalance (over- and
under-loaded), we have four distinct cases:

– If a closer leaf is overloaded, then the parent’s threshold needs to be de-
creased, which means that less data points will be partitioned to the over-
loaded leaf.
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Algorithm 2 The controller function
1: procedure Boundary change
2: changes← map()
3: for each overloaded/underloaded region do
4: if only one leaf is imbalanced then
5: changes[parent]← single
6: else if both leaves are imbalanced the same way then
7: changes[parent]← double
8: else
9: changes[parent]← propagate

10: while changes not empty OR root reached do
11: if changes[parent] = single then
12: Change parent’s threshold by α
13: else if changes[parent] = double then
14: Change parent’s threshold by 2 · α
15: else if changes[parent] = propagate then
16: change type← Decide the change type
17: changes[grandparent]← change type

18: Remove parent from changes

– If a further leaf is overloaded then the parent’s threshold needs to be in-
creased, which means that the closer leaf will get more data points from
the overloaded leaf.

– If a closer leaf is underloaded then the parent’s threshold needs to be
increased, which means that more data points will be partitioned to the
underloaded leaf.

– If a further leaf is underloaded then the parent’s threshold needs to be
decreased, which means that the underloaded leaf will get more data points
from the closer leaf.

On the other hand when more than one region is involved in the adaptation,
as in the advanced technique, the process becomes more complex. When the
imbalanced regions are children of different parents, the same procedure that
is described for the single case can be applied for each region. The higher
complexity is encountered when both children of the same parent need to
be changed. To solve this problem we can distinguish between three different
cases.

1. If the closer leaf is overloaded and the further leaf is underloaded then
the parent’s threshold needs to be decreased, which means that more new
data points will be partitioned to the underloaded leaf than the overloaded.
However, the change factor is increased.

2. If the closer leaf is underloaded and the further leaf is overloaded then
the parent’s threshold needs to be increased, which means that more new
data points will be partitioned to the underloaded leaf than the overloaded.
Again, the change factor is increased.

3. When both leaves are either overloaded or underloaded, then the change
needs to be propagated to their grand-parent.
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The explanation behind the third case is that since both leaves have the
same problematic behavior, the threshold of the parent cannot be changed
in a manner to reflect a more balanced distribution. In this case, the change
needs to directly affect the parent, i.e., the data points that get partitioned
to the parent node need to be increased/decreased if both leaves are under-
loaded/overloaded respectively. This type of propagation can reach the root
node where it stops.

After having listed all cases, we introduce Alg. 2, which starts by annotating
all regions (keys) and inserting them to a map data structure. Lines 3-9 iterate
over the overloaded and underloaded regions in order to decide what type of
change is needed. Afterwards, in lines 10-18, we iterate over the map contents
to complete the necessary actions. The node either changes its threshold or
propagates the change to its own parent. In both cases, the node is taken
off the map. Lines 15-17 use both lists of cases above to decide what type of
change is needed for its parent and then insert it along with the parent itself
into the map structure. The process ends when the map is empty (or when it
has reached the root node).

4 Performance evaluation

In total, 6 datasets (4 real-world and 2 synthetic) have been used to provide a
wide and varying setting. We divide these datasets in three groups. The first
group consists of 3 datasets with numerical values, namely Stock, TAO and
Gauss(2). Stock and TAO are real-world datasets with 1 and 3 dimensions,
respectively, with their details described in [31], while Gauss(2) is a synthetic
one that is synthesized from 2 different gaussian distributions that are applied
one after the other in order to simulate a big change in the data distribution on
a specific point in time. Gauss(2) provides insights on the technique’s ability
to cope with a sudden change that completely changes the distribution of the
data, while the former two datasets encapsulate smaller but continuous evo-
lutions of data characteristics. The second group consists of 2 text datasets,
and more specifically sets of 2-grams from Twitter and DBLP, with their de-
tails described in [5]. The third group contains the second synthetic dataset,
and is referred to as Gauss(10), which is a one-dimensional numerical dataset
synthesized from 10 gaussians being applied concurrently during the complete
dataset duration. This dataset does not involve any changes in the data dis-
tribution; its role is to provide insights in the overheads that the in-memory
cache and the whole adaptivity architecture incurs, when the monitoring and
assessment mechanisms run while no adaptivity actions are required.

The distance function is the euclidean distance for every numerical dataset;
for the text datasets, we transform each set to a binary vector of length equal
to the vocabulary size and the distance is 1-Jsim, where Jsim is the Jaccard
similarity between two sets. The window (W ) and slide (S ) size is set to
10K and 500, respectively meaning that, in every slide, 500 new data points
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Table 1 R values for each dataset

Dataset Stock TAO Gauss(2) Twitter DBLP Gauss(10)
R 0.45 1.9 1 0.86 0.8 0.25

Table 2 Parameters for each technique

Parameter Values Advanced Naive Static
change factor α 0.25,0.5 X X -
queue size q 5,10,20 X - -
overload factor ζover 130%,150% X X -
underload factor ζunder 10%,30% X - -
cost metric M1,M2,M3 X X -

are inserted into the window and the same number of old data points expire4.
Although this work is intended for usage in a continuous and intense streaming
environment, for the sake of fair comparison, all of the datasets are resized in
order to provide measurements for the same number of window slides. All
measurements reported below refer to the performance after 1000 slides.

The outlier detection algorithms run with parameter k set to 50 neighbors;
the R parameter differs for every dataset in order for the number of outliers to
be approximately 1% of the total data points in each window. Table 1 shows
the specific R value for each dataset, to allow for experiment reproducability.
In addition, all three adaptation periods last for a complete window to be to-
tally replaced, i.e., for W

S slides. Note that this is the minimum duration for the
transient period, while, setting the buffer period length as such corresponds to
a setting where there are no synchronization issues in practice at the expense
of making adaptations less eager. The adaptations are made less eager also by
setting the stabilization larger than 0. However, the eagerness/aggressiveness
of our adaptation policies are also tuned with the help of additional param-
eters. More specifically, the parameters that affect the adaptation techniques
are presented in Table 2 for each technique. In order to assess the efficiency of
the two techniques, we have also used the default flavor of the PROUD out-
lier detection framework that does not include adaptation and does not use
Redis for read/write operations, which is referred to as Static in the parame-
ter table. Finally, the computing infrastructure of the experimental setting is
as follows. A cluster of 3 heterogeneous machines connected through a 1GB
Ethernet is used to run all of the experiments. The first machine is equipped
with a 6-cores/12-threads CPU and 64GB of RAM. The second machine has
a 8-cores/8-threads CPU with 32GB of RAM while the third one has a 8-
cores/16-threads CPU with 64GB of RAM. One Flink task manager is active
on each machine whereas the first machine also runs Flink’s jobmanager and

4 We have experimented with additional parameters (slide sizes of 1% up to 50% of the
window size) and the results are similar to the ones to be presented; due to space constraints
such experiments are omitted.
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Fig. 3 Average runtimes of the Advanced, Naive and default techniques

Fig. 4 Correlation between runtime and maximum processing task time

the Redis instance; due to the low load, there is no need for increased Redis
parallelism. Each experiment is repeated 5 times.

In the following, we start by providing concrete evidence regarding the ef-
fectiveness of our solution and its capability to yield concrete improvements
in the performance; i.e., to complete the processing of a finite stream in less
time. We then thoroughly discuss the sensitivity to the configuration param-
eters, the outlier detection algorithm and the computation infrastructure. We
conclude with experiments regarding the overhead incurred. Note here that
we do not compare against the grid-based technique in [29], since it is a pre-
liminary technique for adaptations with many limitations, e.g. works only on
1-dimensional datasets and does not support arbitrary metric spaces.
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4.1 Performance experiments

Firstly, we experiment with the Stock, TAO and Gauss(2) and all 72 configu-
ration combinations from Table 2. Fig. 3 presents the results. We are going to
discuss robustness to parameters in a subsequent part of the evaluation, but
here, in order to provide evidence that our proposal can indeed yield lower
runtimes without sophisticated fine-tuning (which would also require exam-
ining thousands of configuration combinations instead of 72 only), we do not
present just the best runtimes, but also the 5th and 10th lower average runtime
for each adaptive technique (corresponding to the 93th and 86th percentile,
respectively). As the figure shows, both techniques exhibit improvements on
the running times by a few seconds on the 1-dimensional datasets and by a
larger margin on the 3-dimensional one, while there is no clear winner between
them. These results are expected since the TAO dataset involves more intense
outlier detection processing in comparison to the other 2 datasets, while Ad-
vanced have more parameters for tuning. More specifically, Advanced is up to
2.95% faster than Naive and up to 15.27% faster than Static. Naive is up to
2.42% faster than Advanced and up to 17.32% faster than Static. Finally, as
shown in the figure, despite the fact that we have only checked 72 combina-
tions of parameters, the performance improvements hold also for the 5th and
10th best performing setting.

The results presented above refer to the final performance as perceived by
the end user. However, the adaptivity techniques directly target task times.
Fig. 4 presents the correlation between the job’s runtime and the average
slide processing time of the slowest outlier detection task. For the correct
interpretation, first it is important to note that Flink’s initial DAG creation
is automated and can allocate two or more different keys on the same task
slot. This means that one task/thread will be responsible for the processing
of two regions simultaneously for the whole streaming process, making it the
slowest task. In this plot, the runtime of the first, fifth and tenth experiments
as mentioned before are presented along with the slowest processing task. In
general, there is a correlation between maximum average task time and job
runtime; however, relatively big differences in the maximum task times may
not be reflected upon the total runtime, since, apart from other factors, internal
scheduling aspects are also involved. Despite all these, as we have shown, we
manage to attain tangible improvements.

The behavior of the two techniques is largely dependent on the data dis-
tributions. For example, Stock is a real-world dataset where the distribution
changes very often but not drastically, which favors more limited adaptations,
such as those enforced by Naive. Meanwhile, the Gauss(2) dataset has a sta-
ble distribution for the first period, which drastically changes after a while.
In this dataset, the adaptation techniques start working after the change. The
Advanced technique can cope with this kind of change in a better way than
the Naive one, since it can change more than one regions concurrently; this is
despite the fact that, due to the smoothing queue that it employs, Advanced
does not start adapting as soon as the change occurs.
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Fig. 5 Timeseries of M1 per region and adaptation points for the Advanced (left) and the
Naive (right) technique when processing the Gauss(2) dataset

Fig. 6 Runtime difference between all techniques for the text datasets

Fig. 5 presents the M1 cost function per key on the time axis along with the
timestamps (denoted as squares) where a decision that an adaptation is neces-
sary was taken; in this setting, overall the data is split across 8 keys(regions).
The two main observations are as follows. In the Naive technique, only two keys
start converging and this stems from the fact that the technique only changes
the most overloaded region. In this case, the region that starts getting ev-
ery data point when the distribution changes, starts decreasing its boundaries
and, at the same time, the boundaries of its neighbor are increased. This re-
sults in the second key getting most data points, which becomes the new most
overloaded one. Overall, the two keys change the load between themselves.
On the other hand, the Advanced technique affects more regions concurrently
and better splits the workload between them. The figure corresponds to 2000
slides; if the stream ran infinitely, at the end, all 8 keys would have received
approximately equal workload.

We now turn our attention to the text datasets. Fig. 6 presents the running
times comparing both adaptation techniques with the default static flavor. The
plot further strengthens the previous experiments’ insights that going up in
dimensions helps hide the overheads created by the adaptation techniques and
improve the workload balance between all regions. The adaptive techniques
improve the runtime. More specifically, Advanced is the dominant solution
and yields lower execution times by a factor of 5.34% compared to Naive and
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Table 3 Speedups for each metric

Stock TAO
M1 7.17% 15.27%
M2 7.88% 15.83%
M3 7.60% 17.32%

Fig. 7 Boxplots for the Advanced and Naive techniques for the numerical datasets

of 51.01% compared to Static. Naive improves upon Static up to 48.24%. In
general, we observe small benefits of Advanced over Naive, which implies that,
at least in the settings examined, lazy adaptivity solutions are competent. We
have experimented with several other settings, including datasets with spikes,
and still, the differences between the two adaptivity proposals were small (no
detailed results are provided due to space limitations). We also observe sig-
nificant differences between the two datasets: for the Twitter dataset, the
improvement of both adaptive techniques are smaller. This is attributed to
the fact that Twitter is more sparse than DBLP. With 37K distinct 2-grams
in comparison with the 17K of DBLP, the initial partitioning yields more
balanced regions. Nevertheless, both techniques manage to improve over the
static flavor meaning that even in a disperse dataset, the adaptation of the
boundaries can help in reducing the work of the processing tasks.

Finally, Table 3 presents the speedups for the real-world numerical datasets
based on the 3 cost metrics. As expected from the previous results, the TAO
dataset produced bigger speedups going up to 15.83%. All 3 cost metrics have
similar speedups that are dependent on the dataset. The cost metrics are
further investigated in the next experiments.

4.2 Parameter analysis and robustness

Our main claim is that our approach is not sensitive to parameters because
we achieved significant improvements without resorting to fine-tuning, we pre-
sented also the 5th and 10th best performing configurations and we explored
a limited number of combinations. In a sense, the benefits presented in the
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Fig. 8 Percentage of improved runtimes of the Advanced (top) and Naive (bottom) tech-
niques compared to the static flavor

first set of experiments constitute a lower bound of the potential benefits,
since exploring more configurations can lead to more significant performance
improvements. Nevertheless, the purpose of this part of experimental analysis
is to find possible correlations between the parameter of each technique and
insights that might be of use during a fine tuning process, although fine tuning
the parameters is out of the scope of this specific work that aims to introduce
the adaptivity methodology.

Fig. 7 shows the boxplots of all 72 combinations regarding the numerical
datasets; from the figure, it is clear that the runtimes can deviate significantly,
and if combined with Fig. 3, it can be deduced that several configurations do
not lead to performance improvements. To further elaborate on this aspect,
Fig. 8 presents the percentage of the experiments for the datasets in the first
group, where the runtime is improved. We can see that for TAO, the majority
of cases leads to improvements, whereas, for the other two datasets, which
involve more lightweight processing, this is not the case.

A main research question that may arise is as to whether we can derive in
this work robust guidelines for performance tuning. To answer this question,
we try to find correlations between the 5 tuning parameters in Table 2 and
the resulted runtime. Fig. 9 presents the percentage of the experiments for
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Fig. 9 Percentage of improved runtime for the Advanced (top) and Naive (bottom) tech-
niques for each parameter value

Fig. 10 Runtime difference for the Queue size parameter on the Advanced technique for
each numerical dataset

each parameter value that the runtime of the system has improved. The top
plot presents all 5 parameters for the Advanced technique and the bottom one
presents the ones used for the Naive technique. Each column represents one of
the configuration values examined. A main observation is that Advanced and
Naive need to be configured in a different manner. The former technique seems
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Fig. 11 Runtime comparison for each technique and dataset between the single machine
and the cluster of machines

to benefit from larger values regarding the change, overload and underload fac-
tors, whereas the opposite holds for the latter technique. The cost metric also
plays a more significant role in Naive. Finally, Fig. 10 presents the percentage
of improvement cases for the Advanced technique for each dataset and each
Queue size value used during the experiments. As the plot presents, there is
no clear winner between the queue settings and different settings perform bet-
ter in different datasets. This observation also holds for other configuration
parameters.5

In summary, although there exist several configurations that can lead to
performance improvements, the limited set of parameters chosen for the ex-
perimental analysis provides a concrete and robust baseline that improves the
performance of the system when the adaptation techniques are chosen against
the static one. More extensive exploration of the parameter space using spe-
cialized techniques is expected to further improve the results significantly.

4.3 Additional settings

In these experiments, we evaluate the behavior under different settings in terms
of the computational infrastructure, the algorithms employed and the outlier
detection queries. First, we rerun the numerical experiments using only the first
machine of the cluster, where also the Flink jobmanager, taskmanager and Re-
dis instances are deployed. Since less taskmanagers are available, the number
of task slots also decreases. In the experiments the number of keys/regions is
kept the same meaning that each slot will need to process more than one keys
and possible other tasks, e.g. partitioning. Fig. 11 presents the comparison of
the best runtimes for each technique and dataset between the single machine

5 To further investigate any possible correlation we have run some tests using the MMPC
algorithm [6] after transforming the runtime values to a binary target variable (improvement
or not-improvement); this has also not yielded any concrete results.
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Fig. 12 Runtime difference for the different algorithms in combination with the adaptive
techniques and the default flavor for the Stock dataset

Fig. 13 Runtime difference for the different k values in combination with the adaptive
techniques and the default flavor

setting and the cluster setting. As expected, the running times on the cluster
are always faster than the single machine and this stems from the fact that
there are more task slots and more computation power overall. Also in most
of the cases, the difference between cluster and single machine is more evident
in the default static algorithm.

Second, we assess the impact of different outlier detection algorithms in
combination with the adaptation techniques. We aim to prove that the benefits
of our methodology are independent of the actual continuous outlier detection
algorithm employed. Thus far, all results were presented using the PMCOD
and Slicing parallel algorithms from [30], for the numerical and text datasets,
respectively. In this new experiment, we also employ the COD algorithm from
[19] after transferring it to a distributed environment.

Fig. 12 presents the difference in runtimes between all 3 algorithms for
both Advanced and Naive techniques along with the static flavor for the Stock
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Fig. 14 Runtime difference for the Gauss(10) dataset on all techniques

dataset. As expected, the impact of the algorithm does not affect the rebal-
ancing process. Overall, the PMCOD algorithm is the fastest one followed by
the Slicing one. The COD algorithm is the slowest one by a big margin as
expected based on the results of [32]. As mentioned previously, we have not
performed fine-tuning of the adaptive techniques, but in general, the same
trend applies to all continuous outlier detection algorithms

Finally, to investigate the impact of the outlier detection parameters on
the adaptation techniques, another experiment is introduced. Changing either
the k or R parameters for these algorithms, the percentage of outliers that
are detected by the system changes as well, while this change also impacts
on the performance, since each algorithm creates different data structures and
has different ways of processing the data points. In this experiment, we used
the PMCOD algorithm and present 3 different values for the k parameter
using each adaptation technique, while keeping the R parameter static based
on Table 1. Fig. 13 presents the runtimes for each k value and adaptation
technique. As shown in the figure, the high-level behavior of each technique
stays the same when changing the parameter values. As expected, a lower k
value provides more inliers and decreased processing times whilst a bigger k
value correspond to an increased number of outliers and increased runtime.

Overall, the adaptivity techniques can be further improved from fine tuning
their parameters, as shown in the previous subsection, but are independent
from additional important aspects, such as exact outlier detection algorithm
employed, computational setting and outlier query parameters, as shown in
this set of experiments.

4.4 Overheads

One of the main concerns described in Section 3 is the overhead that could be
induced by using an external system as a main-memory cache. The problem is
the communication cost that might create delays to the whole system, espe-
cially when the cache is only deployed on a single physical node. To investigate
this possible delay, we used the Gauss(10) dataset which has the same distri-
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bution throughout its lifetime. This means that the rebalancing techniques,
while computing the cost metrics and reading/writing data from Redis, do not
change the boundaries for the whole experiment. This is independent from the
parameters used since all workload is already balanced. A note of attention
here is that the Gauss(10) dataset is a 1-dimensional numerical dataset, which
implies that the outlier tasks have minimal computational requirements. In
the case where more processing time was needed for these tasks, the commu-
nication cost could have been hidden due to the distributed environment and
the parallelism, as is evident in the TAO experiments in the previous exper-
iments. Fig. 14 presents the runtimes for the Gauss(10) dataset using both
rebalancing techniques as well as the default static flavor. As the figure shows,
the runtime difference between the techniques and the default algorithm is less
than 1 second, with Advanced technique being faster and the Naive one be-
ing slower. This means that the communication cost and the Redis overhead
in general is indeed hidden behind the parallelism and the processing tasks
even in one of the most lightweight scenarios possible. The difference in the
runtimes is attributed to the initial sampling and creation of the VP tree.

4.5 Final Discussion and Directions for Future Work

The experiments above provide strong evidence that our technique is 1) ef-
fective, since it can yield performance improvements, 2) efficient, since it is
characterized by negligible overhead and 3) robust to its parameters, since it
does not rely on fine tuning. It is important to note that the magnitude of
its efficiency has not been explored in depth. On the contrary, we have shown
results using small finite streams of 1000 slides and we have explored very few
tuning configurations that nevertheless show important gains. Even in such a
limited setting, performance improvements can be up to 51.01%.

We have already identified the need to delve into fine tuning techniques
for parameter optimization. We believe that, due to the dependence of the
behavior on data characteristics, such techniques should be adaptive as well
thus leading to a more sophisticated self-balancing and self-tuning methodol-
ogy. This is left for future work. A second issue that is worth investigating is
whether higher benefits can be produced if we develop external mechanisms
to assign keys to Flink workers rather than relying on automated mapping.
Finally, investigating more eager adaptations remains an open issue.

5 Additional Related Work

In addition to the related work discussed in the introduction, there are several
other proposals that, in summary, address the problem of adaptive partition-
ing and load balancing in complementary settings and/or manners that are
not applicable to our problem. The most relevant proposals include [2,26],
which perform adaptive partitioning over a static dataset, with the adapta-
tions being driven by the range query workload. However, these works do not
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employ partially overlapped regions as we do. An early technique for adaptive
stream processing has appeared in [4], but this proposal, apart from not fit-
ting well into the Flink framework, it assumes a single node for partial result
aggregation, which creates a bottleneck. The same limitation appears in [24].

[1] presents a new technique for partitioning data in map-reduce stream
processing systems that use micro-batches. The technique partitions the data
of each micro-batch for both the map and the reduce phase based on different
metrics such as block size whilst changing the number of keys on the fly for
better resource utilization. Transferring this technique to our setting corre-
sponds to using far more regions in the partitioning phase, which aggravates
replication issues. [21] presents a Flink implementation of lazy partitioning tai-
lored to distributed joins, which injects delays to account for transient network
skew. This technique operates at a lower-level than ours and does not fit in
a streaming scenario. An interesting approach appears in [23] that advocates
examining random partitioning instead of partitioning in contiguous regions
whilst [34] uses a k-d tree to partition the data into overlapping regions depend-
ing on the distribution. Both these proposals refer to the DBSCAN clustering
technique. In addition, the work in [13] partitions spatio-temporal graphs in
different workers by replicating the nodes and some of the edges. The par-
titioning is based on the supported queries and a single coordinator is used
for meta-data storage and query processing. The work in [15] compares the
different techniques for graph partitioning on large clusters where nodes need
to be replicated wherever their edges are partitioned to. All these proposals
contain interesting ideas regarding partitioning but do not deal with revising
partitioning decisions on the fly.

6 Conclusions

Streaming distance-based outlier detection is a hot area with several propos-
als in the recent years. However, although the problem inherently refers to a
volatile setting in terms of data and environment characteristics, no adaptive
solutions have been proposed so far. Our proposal aims to address this limita-
tion and proposes an adaptive architecture along with concrete techniques for
repartitioning data on the fly in the Flink massively parallel stream processing
platform. To this end, we address several key challenges: to devise a feedback
loop architecture on top of an engine that does not allow cyclic processing
logic, to account for the fact that streaming parallel outlier detection splits
the space into partially overlapping regions instead of multiple keys, and to
devise concrete adaptive techniques. The experiments show that our propos-
als are efficient and capable of yielding tangible performance benefits, even in
settings where the streams are finite and small.

Acknowledgements This research work has been supported by the European Commission
under the Horizon 2020 Programme, through funding of the LifeChamps project (Grant
875329).



24 Theodoros Toliopoulos, Anastasios Gounaris

Declarations

The authors have no conflicts of interest to declare that are relevant to the
content of this article.

Funding: European Commission under the Horizon 2020 Programme, LifeChamps
project (Grant 875329).

Availability of data and material (data transparency): all datasets used are
publicly available from third-part repositories.

Code availability (software application or custom code): all code is available
from https://github.com/tatoliop/PROUD-PaRallel-OUtlier-Detection-for-streams/

tree/adaptive_partitioning

References

1. Abdelhamid, A.S., Mahmood, A.R., Daghistani, A., Aref, W.G.: Prompt: Dynamic data-
partitioning for distributed micro-batch stream processing systems. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pp. 2455–
2469 (2020)

2. Aly, A.M., Mahmood, A.R., Hassan, M.S., Aref, W.G., Ouzzani, M., Elmeleegy, H.,
Qadah, T.: AQWA: adaptive query-workload-aware partitioning of big spatial data.
PVLDB 8(13), 2062–2073 (2015)

3. Angiulli, F., Fassetti, F.: Detecting distance-based outliers in streams of data. In: CIKM,
pp. 811–820 (2007)

4. Balkesen, C., Tatbul, N.: Scalable data partitioning techniques for parallel sliding win-
dow processing over data streams. In: International Workshop on Data Management
for Sensor Networks (DMSN) (2011)

5. Bellas, C., Gounaris, A.: An empirical evaluation of exact set similarity join techniques
using gpus. Inf. Syst. 89, 101485 (2020). DOI 10.1016/j.is.2019.101485. URL https:

//doi.org/10.1016/j.is.2019.101485

6. Brown, L.E., Tsamardinos, I., Aliferis, C.F.: A novel algorithm for scalable and accurate
bayesian network learning. In: M. Fieschi, E.W. Coiera, J.Y. Li (eds.) MEDINFO
2004 - Proceedings of the 11th World Congress on Medical Informatics, San Francisco,
California, USA, September 7-11, 2004, Studies in Health Technology and Informatics,
vol. 107, pp. 711–715

7. Cao, L., Wang, J., Rundensteiner, E.A.: Sharing-aware outlier analytics over high-
volume data streams. In: ICDM, pp. 527–540. ACM (2016)

8. Cao, L., Yan, Y., Kuhlman, C., Wang, Q., Rundensteiner, E.A., Eltabakh, M.Y.: Multi-
tactic distance-based outlier detection. In: ICDE, pp. 959–970 (2017)

9. Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J., Rundensteiner, E.A.: Scalable distance-
based outlier detection over high-volume data streams. In: ICDE, pp. 76–87 (2014)
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