
Proceedings of the 27th IEEE International Conference on Data Engineering (ICDE), Hannover, Germany, 2011

Continuous Monitoring of Distance-Based Outliers
over Data Streams

Maria Kontaki, Anastasios Gounaris, Apostolos N. Papadopoulos, Kostas Tsichlas, Yannis Manolopoulos

Department of Informatics, Aristotle University
54124 Thessaloniki, Greece

{kontaki,gounaria,papadopo,tsichlas,manolopo}@csd.auth.gr

Abstract—Anomaly detection is considered an important data
mining task, aiming at the discovery of elements (also known
as outliers) that show significant diversion from the expected
case. More specifically, given a set of objects the problem is to
return the suspicious objects that deviate significantly from the
typical behavior. As in the case of clustering, the application of
different criteria leads to different definitions for an outlier. In
this work, we focus on distance-based outliers: an object x is
an outlier if there are less than k objects lying at distance at
most R from x. The problem offers significant challenges when
a stream-based environment is considered, where data arrive
continuously and outliers must be detected on-the-fly. There are
a few research works studying the problem of continuous outlier
detection. However, none of these proposals meets the require-
ments of modern stream-based applications for the following
reasons: (i) they demand a significant storage overhead, (ii) their
efficiency is limited and (iii) they lack flexibility. In this work,
we propose new algorithms for continuous outlier monitoring
in data streams, based on sliding windows. Our techniques are
able to reduce the required storage overhead, run faster than
previously proposed techniques and offer significant flexibility.
Experiments performed on real-life as well as synthetic data sets
verify our theoretical study.

I. INTRODUCTION

Mining outliers [1] is considered an important task in many
applications like fraud detection, plagiarism, computer net-
work management, event detection (e.g., in sensor networks),
to name a few. In simple terms, an object is considered an
outlier, if it deviates from the “typical case” significantly. To
quote Johnson [2]: “an outlier is an observation in a data set
which appears to be inconsistent with the remainder of that
set of data”. The process of outlier detection may be seen as
the complement of clustering, in the sense that clustering tries
to form groups of objects whereas outlier detection tries to
spot objects that do not participate in a group.

As in the case of clustering, there are many definitions of
the outlier concept. One of the most widely used definitions is
the one based on distance: an object x is marked as an outlier,
if there are less than k objects in a distance at most R from
x, excluding x itself. According to this definition, to detect
distance-based outliers [3], [4] two parameters k and R are
required, to control the density of each object’s neighborhood.

Figure 1 depicts an example. If k = 4 and the parameter R
is set to a fixed value, then an object x is marked as an outlier
if there are less than four objects in a distance at most R from
x (excluding x itself). It is not hard to check that objects p8

and p10 are outliers based on the values of k and R.

R

p8 p10
R

Fig. 1. An example data set with two distance-based outliers.

Outlier detection algorithms can be applied to data of
arbitrary dimensionality and also in general metric spaces. The
only input needed (apart from its specific parameters) is a
distance function to compute pair-wise distances. This means
that it is not necessary to work with a multi-dimensional data
set. Other data sets may be used as well (e.g., time series,
graphs, DNA sequences) as long as a meaningful distance
measure has been defined. Although the metric properties are
well appreciated, the distance function used need not satisfy
triangular inequality. However, this property is important for
indexing purposes, and therefore we will make the silent
assumption that the distance function used is a metric function.

When an outlier detection algorithm is applied to a static
data set, the output comprises the objects that have been
marked as outliers. The answer set is not going to change
unless there is a change in the data set (due to insertions,
deletions and updates). In such a case, the most straight-
forward process is to apply the outlier detection algorithm
from scratch, towards updating the results, but this approach
is expected to be very computationally expensive.

An alternative is to design incremental algorithms for out-
lier detection. An incremental algorithm processes only the
changes performed to the data set with regard to the previous
result to produce the new one. The key issue is that a simple
change in the data set can be handled locally, instead of
re-running the algorithm for the whole data set. Although
incremental algorithms perform much better, there are still
more demanding applications that even incremental algorithms
cannot solve the problem efficiently.

Such applications are based on data streams [5] where data
objects arrive possibly with very high rates, which means
that the update of results must be performed very efficiently.
An example of such a stream-based application is computer

1

network monitoring, where data are continuously arrive and
the server must detect suspicious behavior on-the-fly. In such
a case, a computer is marked as dangerous, if there is a
significant deviation from a typical behavior regarding the
packets sent.

In data stream applications, data volumes are huge, meaning
that it is not possible to keep all data memory resident. Instead,
a sliding window is used, keeping a percentage of the data set
in memory. The data objects maintained by the sliding window
are termed active objects. When an object leaves the window
we say that the object expires, and it is deleted from the set of
active objects. There are two basic types of sliding windows:
(i) the count-based window which always maintains the n most
recent objects and (ii) the time-based window which maintains
all objects arrived the last t time instances. In both cases, the
expiration time of each seen object is known. The challenge is
to design efficient algorithms for outlier monitoring, consid-
ering the expiration time of objects. Another important factor
of stream-based algorithms is the memory space required for
auxiliary information. Storage consumption must be kept low,
enabling the possible enlargement of the sliding window, to
accommodate more objects.

In this paper, we design efficient algorithms for continuous
monitoring of distance-based outliers, in sliding windows over
data streams, aiming at the elimination of the limitations of
previously proposed algorithms. Our primary concerns are
efficiency improvement and storage consumption reduction.
The proposed algorithms are based on an event-based frame-
work that takes advantage of the expiration time of objects
to avoid unnecessary computations. In summary, the major
contributions of this work are as follows:
• A new continuous algorithm is designed, which has two

versions, and requires the radius R to be fixed but can
handle multiple values of k. This algorithm (COD) con-
sumes significantly less storage than previously proposed
techniques and in addition, is more efficient.

• Since different users may have different views of outliers,
we propose a new algorithm (ACOD) able to handle mul-
tiple values of k and multiple values of R, enabling the
concurrent execution of different monitoring strategies.

• We propose an algorithm (MCOD) based on micro-
clusters [6], to reduce the number of distance compu-
tations. There are cases where the metric function used
for distance computation is very expensive, and therefore,
there is a need to keep this number low.

The rest of the paper is organized as follows. Section II
discusses related work in the area, whereas Section III presents
some important preliminary concepts, to keep the paper self-
contained. We present our techniques in Section IV, whereas
Section V contains the performance evaluation results based on
real-life and synthetic data sets. Finally, Section VI concludes
the work and briefly discusses future work in the area.

II. RELATED WORK

Outlier detection has been studied in the literature, both
in the context of multi-dimensional data sets [7] and in the

more general case of metric spaces [8]. Usually, the proximity
among objects is used to decide if an object is an outlier
or not. However, specialized techniques may also be applied
(e.g., projections in the case of multi-dimensional data). Apart
from the fact that outliers are important in many applications,
their discovery allows the data set to be “cleaned” to apply a
particular model [9].

The problem has been studied extensively by the statistics
community [2], [10], where the objects are modeled as a
distribution, and objects are marked as outliers depending
on their deviation from this distribution. However, for large
dimensionalities statistical techniques fail to model the dis-
tribution accurately, leading to performance degradation. In
addition, these techniques do not scale well for large databases.

The problem of outlier detection has been also addressed by
the database and data mining communities, aiming at solving
the problem of scalability. In [11], the local reachability
density is used to mark an object as an outlier. Distance-based
outliers is another simple and intuitive direction [3], [4], where
an object is considered an outlier if there is a limited number
of objects in its neighborhood.

The fundamental characteristic of the majority of the pro-
posed algorithms is that they operate in a static fashion. This
means that the algorithm must be executed from scratch if
there are changes in the underlying data objects, leading to
performance degradation when updates are frequent. A special
case with extremely high interest is the streaming case, where
objects arrive in a streaming fashion [5], and usually in high
rates. In this case, traditional algorithms fail to meet the pro-
cessing requirements and therefore, specialized stream-based
techniques emerge. One of the data mining tasks studied under
the streaming model is clustering, where we are interested in
clustering either a single stream or multiple streams. Similarly,
anomaly detection over data streams is another emerging task
with many applications ranging from real-time fraud detection,
computer network abuse, stock monitoring.

Among the various streaming techniques, we focus on
sliding window methods, which have been used extensively.
Since the stream is continuously updated with fresh data, it is
impossible to maintain all of them in main memory. Therefore,
a window is used which keeps track of the most recent data
and all mining tasks are performed based on what is “visible”
through the window. The most relevant research works are [12]
and [13] which both consider the problem of continuous outlier
detection in data streams, without limiting their techniques
to multi-dimensional data. However, both methods have some
serious limitations that are tackled in this work.

In this research, we propose four algorithms for continuous
outlier monitoring over data streams. In comparison to existing
approaches our techniques manage to reduce the running time
and the storage requirements. In addition, our techniques offer
significant flexibility regarding the parameter values, enabling
the execution of multiple distance-based outlier detection tasks
with different values of k and R. Moreover, by using the
concept of micro-clusters, we manage to reduce the number
of distance computations.

III. PRELIMINARY CONCEPTS

This section serves a two-fold purpose: first to formalize
the problem, and secondly to explain in more depth the
rationale and the limitations of existing approaches to the same
problem. Table I summarizes the most frequently used symbols
throughout the paper, along with their interpretation.

TABLE I
FREQUENTLY USED SYMBOLS.

Symbol Interpretation
qi the i-th query
Q the set of queries
W the window size; q.W is the size of the window for query q
Slide the window slide
P the set of objects in the current window (active objects)
n the number of non-expired objects (n = |P|)
pi the i-th object, i = 1, ..., n
pi.arr the arrival time of object pi

pi.exp the expiration time of object pi

now the current time instance
R the distance parameter for the outlier detection; q.R is the

distance parameter for query q
k the number of neighbors parameter; q.k is the neighbors’

parameter for query q
I(R, k) the set of inliers (i.e., non-outliers) for specific R and k
D(R, k) the set of outliers for specific R and k
nnpi the number of neighbors of pi

Spi the set of succeeding neighbors of pi

n+
pi

the number of succeeding neighbors of pi (n+
pi

= |Spi |)
Ppi the set of preceding neighbors of pi

n−pi
the number of preceding neighbors of pi (n−pi

= |Ppi |)

A. Problem Statement

Sliding window semantics can be either time-based or
count-based. In time-based window scenarios, the window size
W and the Slide are both time intervals. Each window has a
starting time Tstart and an ending time Tend = Tstart + W .
The window slide is triggered periodically by the system time
(wall clock time), causing Tstart and Tend to increase by
Slide. Each window contains a set P of n objects. In general,
n varies between sliding windows reflecting the differences in
arrival rates. The non-expired objects are those whose arrival
time p.arr ≥ Tstart. An object expires after x slides, where
x = d W

Slidee; p.exp is the expiration time point of p. Count-
based windows can be deemed as a special case of time-based
ones, where the window size W is measured in data objects,
n is fixed for all slides, and a slide occurs after the arrival
of a certain number of objects. The proposed methods are
applicable to both types of windows.

Distance-based outliers relate to the notion of object neigh-
bors. These concepts are defined below:

Definition 1: Object neighbors: Let R ≥ 0 be a user-
specified threshold. For two data objects pi and pj , if the
distance between them is no larger than R , pi and pj are said
to be neighbors. The function nn(pi, R) denotes the number
of neighbors that a data object pi has, given the parameter R.

Definition 2: Distance-Based Outlier: Given R and a pa-
rameter k ≥ O, a distance-based outlier is an object pi, where
nn(pi, R) < k.

The set of distance-based outliers is denoted by D(R, k) and
the set of the inliers by I(R, k). These two sets do not overlap
and cover the complete object set, i.e., D(R, k)∪I(R, k) = P
and D(R, k) ∩ I(R, k) = ∅.

Based on the above, the definition of the first problem we
deal with, which refers to a single query q, is as follows

Problem 1: Single-query Distance-Based Outlier Detec-
tion: Given the parameters R and k, and a fixed window size
W output the distance-based outliers between all non-expired
objects at each window slide.

In this work, we also investigate a generalization of the
same problem for multiple queries. More specifically, we
additionally consider the following problem:

Problem 2: Multi-query Distance-Based Outlier Detec-
tion: Given a set Q of queries, output the distance-based
outliers between all non-expired objects for each query qi ∈ Q
at each window slide.

B. Background

A naive solution to the problem of continuous detection
of distance-based outliers over windowed data streams would
involve keeping for each object p ∈ P the complete set of
its neighbors. Clearly, such an approach is characterized by
quadratic space requirements (O(n2)) in the worst case; as
such, it is practically infeasible for large windows.

As stated in the previous section, two more efficient
approaches to this problem have been proposed. The first
leverages the fact that the neighbors of an object p that
have arrived after p.arr, do not expire before p.exp. [12]
makes a distinction between the preceding neighbors of p,
Pp, that will expire before p, and the succeeding neighbors
of p, Sp, that will persist during the entire lifetime of p. The
second approach precomputes the number of neighbors at each
future time slide with a view to improving performance at the
expense of additional memory [13].

According to [12], for each object p, it is sufficient to
keep at most k preceding neighbors and just the number
of its succeeding neighbors n+

p to detect the distance-based
outliers D(R, k) for specific R and k. Furthermore, for each
new object pnew, a range query with radius R is executed
to determine pnew’s neighbors. For each neighbor pi, n+

pi
is

increased by one. Additionally, Ppnew is updated with all the
neighbors found and n+

pnew
is set to zero.

In any time instance, the approach in [12] to deciding if
an object p is an outlier is as follows. First, it computes the
size of Pp that corresponds to objects that have not expired.
Then, if this size is less than k − n+

p , p is reported as an
outlier. Even if n+

p ≥ k, object p is not discarded, although
it cannot become an outlier, as it may impact on the status
of other objects. The cost to compute the size of Pp that
corresponds to objects that have not expired is O(logk), which
means that the cost for all objects is O(nlogk). The approach
in [13] reduces this cost to O(n), as it continuously keeps
the number of neighbors of an object for all window slides
until its expiration. Because of that, the approach in [13] has
worst case space requirements O(nW), as it maintains up to

W counters for each object (for Slide equal to 1 time unit).
In the worst case, the space requirements can become equal
to O(n2). Moreover, each of these counters may be updated
multiple times before becoming obsolete. However, [13] can
answer queries with multiple values of k.

In summary, the approach in [12] has acceptable mem-
ory requirements (O(nlogk)), negligible time requirements to
update the information for each existing object due to the
arrival of new objects and the expiration of old objects (O(1)
for each new object), and significant time requirements to
produce outliers (O(nlogk)). On the other hand, the approach
in [13] has high memory requirements (O(nW)), high time
requirements to update existing information due to changes
in the window population (O(nW) for each new object), and
low time requirements to produce the actual outliers (O(n)).
In addition, both approaches require a range query with regard
to all current objects P for each new object’s arrival. In this
work, we aim to develop algorithms that have both low space
and time requirements, and also do not rely on the execution
of expensive range queries that consider the entire set P .

IV. EVENT-BASED OUTLIER DETECTION

In this section, we provide algorithms for the continuous
detection of distance-based outliers. We start by describing our
framework for detection of outliers. The event-based method
schedules efficiently potential changes in the set of outliers.
On this framework, we develop four algorithms for distance-
based outlier detection.

The first algorithm, a simple approach, which comes in two
flavors, maintains outliers when the radius R and the number
of neighbors k is constant while the second and the third
algorithms build on the first by allowing these parameters to
vary dynamically. The fourth algorithm, builds on the previous
algorithms and reduces considerably the number of range
queries over a sequence of departures and arrivals in the data
stream.

A. The Event-Based Approach

We are interested in tracking the outliers in a set of objects
of a stream defined by a sliding window. In particular, a set
of outliers is maintained subject to arrivals of new objects
from the stream and departures of existing objects due to the
restricted window size (either restricted with respect to time or
with respect to number of objects). The arrival and departure
of objects has the effect of a continuously evolving set of
outliers. At only certain discrete moments, however, this set
may change and an inlier becomes an outlier or vice-versa.
Between these discrete moments, the set of outliers remains
as is. The idea is to focus on the temporal and geometric
relations between objects to guarantee the correctness of the
set of outliers for a period of time.

The effect of arrivals of objects is to turn existing outliers
into inliers. On the other hand, the potential affect of depar-
tures is to turn inliers into outliers. However, the exact time of
the departure of each object is prespecified (due to the sliding
window) and thus we can plan in the future the exact moments

in which one needs to check whether an inlier has turned into
outlier. Unfortunately, this is not the case for arrivals since
we have no information about them (unless probabilistic or of
similar flavor assumptions are made).

Henceforth, an event is the process of checking whether an
inlier becomes an outlier due to departure of objects from
the window. The expiration time of the objects is known
whether we talk about time-based windows (in this case a new
object p has expiration time now + d W

Slidee) or for count-based
windows (in this case p expires after a predefined number of
new objects have arrived). Thus, the time stamp of an event
depends on the expiration time of objects. This forces a total
order on the events which can be organized in an event queue.
An event queue is a data structure that supports efficiently the
following operations:
• findmin: returns the event with the most recent time

stamp (the most recent event).
• extractmin: invokes a call to findmin and deletes this

event from the event queue.
• increasetime(p, t): increases the time stamp of the event

associated to object p by t. It is assumed that we are
provided with a pointer to p and there is no need to search
for it.

• insert(p, t): inserts an event for object p into the queue
with time stamp t.

These operations can be supported efficiently by a min-
ordered priority queue. Employing a Fibonacci heap allows us
to support these operations in O(1) worst-case time as well as
in O(log n), O(1) and O(1) amortized time respectively [15]
(one can also get similar worst-case bounds [16]). Note that
due to the min-order of the heap, these structures support the
operation of decreasetime which, however, can be trivially
changed to support the operation of increasetime.

The event-based method for outliers employs an event queue
to efficiently schedule the necessary checks that have to be
made when objects depart. Thus, in the event queue there
are only stored inliers since only these can be affected by
the departure of an object. Arrival of new objects results in
potential updates of the keys of some objects in the event
queue. Additionally, existing outliers are checked as to whether
they have become inliers and thus they should be inserted in
the event queue. In the following, we use this framework to
describe efficient algorithms for continuous outlier detection.

B. A Simple Algorithm

In a similar manner to [12], it is sufficient to maintain at
most k preceding neighbors and the number of succeeding
neighbors for each object to detect the distance-based outliers
D(R, k) for specific R and k. The preceding neighbors Pp

of an object p are all objects within distance ≤ R from p
while their arrival time is < p.arr. Similarly, the succeeding
neighbors Sp are those with arrival time > p.arr. For the
succeeding neighbors of p only their number n+

p needs to be
stored. Note that, if object p has ≥ k succeeding neighbors
then p will never become an outlier, and it is called a safe
inlier. A safe inlier is not stored in the event queue. Assuming

that p is an inlier but not a safe one, meaning that n+
p < k,

then we store the k−n+
p most recent objects in set Pp. This is

because, only these objects can affect the status of the object p
as in total there are k neighbors (see Figure 5 for an example).
All objects are stored in a structure that supports range queries
efficiently (e.g., an M-tree [17]). In the following, we describe
how the event based-scheme is applied.

Let p be an object and let p.minexp = min{pi.exp|pi ∈
Pp} be the minimum expiration time of Pp. Assume that object
p is an inlier (not a safe one) at the present time instance
(now). The event corresponding to p gets a time stamp p.ev
of p.minexp and thus p will be checked again as an outlier
candidate in time p.ev.

There are two cases as to what triggers the processing of
the event queue and the update of D(R, k). Based on how we
process the arrival of new objects we get two variations of the
proposed method, which handle the event queue in a different
manner. In the first variation, termed LUE (Lazy Update of
Events), when a new object p′ arrives, then a range query is
performed, and for all returned objects pi ∈ D(R, k), n+

pi
is

increased by one. If some object pi gets k neighbors then
it is inserted in the event queue setting the value of p.ev
accordingly. Additionally, the set Pp′ is constructed with size
at most k. All objects pi ∈ I returned by the range query have
their n+

pi
values increased by one. Finally, if n−p′ < k then p′

is an outlier and it is added to D(R, k). Otherwise, p′ is added
to the event queue. When an object departs, then an event may
be triggered by invoking extractmin which returns object x
from the event queue such that x.ev = now. If n−x + n+

x < k
then object x becomes an outlier and is added to D(R, k)
otherwise, x.ev and Px are updated and it is reinserted into
the event queue. The pseudocode of these operations is given
in Figures 2,3 and 4.

In the second variation, termed DUE (Direct Update of
Events), the arrival of the new object p′ forces the recom-
putation of event times of objects inside the event queue. In
particular, all computations are the same with the exception
that all objects pi ∈ I returned from the range query have
their events time updated. In addition, for each such object
pi its set Ppi is updated and finally checked whether it
has become a safe inlier. This means, that for each such
object an increasetime operation is performed which is not
as expensive as extractmin. When an event is processed
concerning object x due to the departure of another object,
then this event will surely cause x to become an outlier.
In this way, we managed to reduce the number of calls to
extractmin by making calls to increasetime. The pseu-
docode of Figure 4 changes slightly as follows. Lines 4 and
6-10 are removed from function Process Event Queue since
each event corresponds to an outlier. Additionally, just below
Line 11 in algorithm Arrival we should add some lines that
recompute the new event time ev for q and call procedure
increasetime(q, ev − now).

In Figure 5 we depict an example of LUE in the two
dimensional space for k = 4 and for some fixed R. Let
the subscripts denote the order of arrival of these objects.

Algorithm Arrival (p, now)
p: the arriving object, now: the current time instance

1. make a range query w.r.t. p. Let A the set of objects returned;
2. for each q ∈ A do
3. n+

q = n+
q + 1;

4. if (q ∈ D(R, k) and (n−q + n+
q == k)) then

5. remove q from D(R, k);
6. if (n−q 6= 0) then
7. ev = min{pi.exp|pi ∈ Pq};
8. insert(q, ev + dW/Slidee);
9. endif;
10. else
11. Remove from Pq object y = min{qi.exp|qi ∈ Pq};
12. endif;
13. endfor;
14. Construct Pp from the k closest objects;
15. if (nnp < k) then
16. add p to D(R, k);
17. else
18. ev = min{pi.exp|pi ∈ Pp};
19. insert(p, ev + dW/Slidee);
20. endif;
21. add p to the data structure supporting range queries;

Fig. 2. Outline for algorithm to handle an arrival of a new object.

Algorithm Departure (p, now)
p: the departing object, now: the current time instance

1. remove p from the data structure supporting range queries;
2. Process Event Queue(p,now);

Fig. 3. Outline for algorithm to handle a departure.

Procedure Process Event Queue(p, now)
p: the departing object, now: the current time instance

1. x = findmin();
2. while (x.ev == now) do
3. x = extractmin();
4. remove p from Px;
5. if (n−x + n+

x < k) then
6. add x to D(R, k);
7. else
8. ev = min{pi.exp|pi ∈ Px};
9. insert(x, ev + dW/Slidee);
10. endif;
11. x = findmin();
12. endwhile;

Fig. 4. Outline of procedure Process Event Queue.

We focus on objects p8 and p14 since all other nodes can
be handled similarly. For object p8 all objects pi with i < 8
are preceding and all objects pj with j > 8 are succeeding

R

p8 p10
R

p1

p16

p18

p14

p7

p12

p22

Fig. 5. Example of LUE variant.

objects. In this example, n+
p8

= 2, Pp8 = {p1} and thus p8 is
an outlier. Similarly, n+

p14
= 0, Pp14 = {p1, p7, p10, p12} and

thus p14 is an inlier. Assume that object p22 arrives and after
the range query we get A = {p8}. Then, n+

p8
is increased by

one and thus p8 gets four neighbors and becomes an inlier.
Thus, n+

p8
= 3, Pp8 = {p1} and p8 is inserted in the event

queue with p8.ev = 1 + 21, assuming that W = 21. For p22

we have that n+
p22

= 0, Pp22 = {p8} and as a result it is an
outlier. Finally, the event queue must be checked to find out
whether some object has become an outlier again. However,
since W = 21 a Departure operation is invoked for object
p1. The event queue is checked and in this simple setting the
object with the minimum event time is p8, since p8.ev = 22
and now = 22. Thus, after the changes we get that n+

p8
= 3,

Pp8 = {} and p8 becomes again an outlier. The next event
to be processed is related to object p14 and after the changes
we get that n+

p14
= 0, Pp14 = {p7, p10, p12} and p14 becomes

also an outlier. The process continues in the same way until
an event is found for which the event time is > now. For
DUE, a similar procedure is followed with the exception that
we process differently the event queue.

Summarizing, the event approach can reduce the number of
object examinations substantially, thus enabling the continuous
outlier detection. Each object is stored in a data structure
that supports range queries. The cost for a range query is
not taken into account, since it depends on the choice of
the data structure. However, one should bear in mind that
for every arrival a range query is performed. To provide a
comparison between these two variations we define some
quantities over a large sequence of departures and arrivals.
For the first variation, let ` be the mean number of events
caused by the departures in the sequence. Similarly, for the
second variation let `′ be the mean number of events caused
by the departures in the sequence. Finally, let α be the mean
number of neighbors over all range queries that update sets
Ppi and n+

pi
for all objects pi for which range queries have

been invoked in both variations. The following two lemmata
provide a theoretical evaluation of LUE and DUE respectively.

Lemma 1: LUE uses O(nk) space, a departure of an object
is settled in O(` log n) time while the arrival of a new object
is settled in O(α) time.

Proof: The space usage is O(nk), since each object
maintains at most k preceding objects as well as a counter

for succeeding objects. The cost of a departure of an object
p is O(` log n). In particular, ` events cause ` extractmin
operations which cost log n each. These ` objects may be
reinserted to the event queue with O(1) cost each such
insertion. When a new object arrives, then a range query is
invoked. Not taking into account the cost of the range query,
the total cost is O(α) since for each such object only O(1)
changes are performed (change of counter for all of them and
k such objects are inserted in the set of preceding objects).

Lemma 2: DUE uses O(nk) space, a departure of an object
is settled in O(`′ log n) time while the arrival of a new object
is settled in O(α) time.

Proof: The proof is similar to that of Lemma 1. The only
difference is that when an object arrives we also make changes
for all its neighbors in the event queue in their event times.
This is accomplished by an increasetime operation which
has O(1) cost. Thus, in total, the arrival of an object costs
O(α) with higher hidden constants in the O notation when
compared to the first variant of the algorithm.

By Lemmata 1 and 2 LUE is preferred over DUE when
the distribution of objects is very dense (meaning that α is
very large and thus the increasetime operations aggregate the
total time considerably) while if it is not very dense then the
second variation is preferred since it handles more efficiently
the departure of objects. This is because `′ ≤ ` since in LUE
an event may not cause an object to become an outlier while
in DUE this is always the case.

C. Multiple Outlier Detection

In a more complex scenario, multiple users could be in-
terested in the distance-based outliers over a data stream.
However, each user comprehends the notion of outlier dif-
ferently by varying values of R and k. Each pair of R and
k determines a query q of distance-based outlier detection.
Therefore D(q.R, q.k) denotes the outliers of query q from the
set of all queries Q. In this section, we study the continuous
evaluation of multiple queries. For simplicity, we discuss
separately the case in which k varies and R remains constant
and vice-versa. At the end, we combine trivially both methods
into one so that both parameters can vary.

First, we examine the case where R is fixed and k varies.
This means that all the valid queries Q have the same R and
different values for the parameter k. The neighbors of an object
are the same for all queries since R is fixed. Therefore, n+

p for
an object p is the same for all queries. Moreover, for a query
q, the value of n−p of an object p is at most q.k−n+

p . Thus, the
only possible difference between queries is the size of Pp with
respect to object p. Notice that, for two queries qi and qj , it
holds that if qi.k < qj .k then D(qi.R, qi.k) ⊆ D(qj .R, qj .k).
Therefore, if kmax = max{qi.k} (0 ≤ i ≤ |Q|), by keeping
kmax−n+

p preceding neighbors for an object p, we can answer
any query with k ≤ kmax.

The algorithms are similar to the ones discussed in the previ-
ous section (both variations). Here we only report the changes.
We continuously evaluate the query with the maximum value

of parameter k, as described in the previous section. When
an object departs, if the examination of an object p, at p.ev
time instance, reports p as outlier we check the other queries
in Q whether p is also outlier in them. In particular, for
each query q, if n−p + n+

p < q.k, then p is outlier in q.
Queries are examined with decreasing order of k, and this
procedure is terminated as soon as we reach a query for which
p is inlier. Moreover, when a new object arrives, if object
p ∈ D(R, q.kmax) and its counter n+

p is increased, we check
all the queries for a possible move of p from outlier set to inlier
set. Notice that p is not necessarily outlier in all queries. For
each query q, if p ∈ D(R, q.k) and n−p + n+

p ≥ q.k then p
should be removed from D(R, q.k). The queries are examined
again in decreasing order of k and the procedure is stopped
when we reach a query in which p is not outlier. We call this
algorithm COD (Continuous Outlier Detection).

We proceed now with the examination of the case of fixed
k and varying R. In this case, two sets for each object p are
maintained, the sets Pp and Sp (recall that we only stored the
size of Sp) along with their distances from p, by taking into
account the maximum distance Rmax = max{qi.R} (0 ≤
i ≤ |Q|). When R varies it is necessary to maintain Sp since
the neighbors of an object depend on the radius of the query.
This may lead to high memory requirements, since in the worst
case the number of neighbors can reach the number of active
objects n. In the sequel, we study a more efficient scheme
in terms of memory requirements. Assuming the maximum
distance Rmax, if n+

p > k we can maintain the k neighbors
with the smaller distances from p. This is because neighbors
with larger distances will not be used in any query. Therefore
the size of Sp is limited to k objects.

However, the decision for the set of preceding neighbors is
more difficult because both the nearest and most recent objects
are preferable. If we keep the most recent objects, then it
is possible to erroneously omit a neighbor, which affects the
answer of a query, with q.R < Rmax and if we keep the
nearest objects it is possible to mistakenly report the object p
as an outlier when one of the nearest objects expires.

The key idea is the observation that all the preceding
neighbors of p, which may have an impact on whether p is
outlier or not, belong to the answer of the k − 1-skyband
query in the expiration time - distance space. A k′-skyband
query reports all the objects that are dominated by at most k′

other objects [18]. Therefore 0-skyband equals to the skyline
query. In our case, the maximization of the expiration time
and the minimization of the distance determine the domination
relationship between objects, i.e., an object dominates another
object if it has greater expiration time and smaller distance
from p. The rationale of this observation is that at each time
instance, the k nearest objects to p belong to the (k − 1)-
skyband of the preceding neighbors.

Therefore, when a new object arrives, the preceding neigh-
bors are detected by taking account the maximum distance
Rmax. Then, these objects are transformed to the expiration
time - distance space. The objects belonging to (k−1)-skyband
will be stored in Pp. Each entry of Pp consists of both distance

and expiration time of the object.
Notice that the evaluation of the skyband query is required

only once, when the object p arrives and the Pp is initialized. 1

Then, it is sufficient to discard the expired objects. Moreover,
if there are n

′+
p (< n+

p) succeeding neighbors of p with
distance less than or equal to Rmin then we can reduce the
preceding neighbors that we keep in those which belong to the
answer of the (k − 1 − n

′+
p)-skyband query. This is because

of the fact that if we have n
′+
pi

succeeding neighbors for all
the queries (since the distance from p is less than or equal to
Rmin) then the maximum number of preceding neighbors that
could be used is k−n

′+
p . During the event processing, we can

update the Pp set without evaluating the (k−1−n
′+
p)-skyband

from scratch, since the (k− 1−n
′+
p)-skyband is subset of the

(k − 1)-skyband. If n
′+
p ≥ k then no preceding neighbors

are stored (n−p = 0). The following theorem guarantees the
correctness of the algorithm.

Theorem 1: Given the n
′+
p succeeding neighbors with dis-

tance less than or equal to Rmin for each object p, the
distance-based outliers D(R, k) can be detected by keeping
the (k− 1−n

′+
p)-skyband of the preceding neighbors of each

object, if (n
′+
p < k) or no preceding neighbors, if (n

′+
p ≥ k).

Proof: It is impossible for an object to be considered as
inlier while it actually belongs to the set of outliers, since less
neighbors are stored. Therefore, it is sufficient to prove that the
method will not mistakenly report an object as outlier. There
are two cases: (a) n

′+
p ≥ k and (b) n

′+
p < k. The first case is

simple; if the number of succeeding neighbors with distance
less than Rmin is more than or equal to k then the object is
always an inlier for all queries with R > Rmin and therefore,
preceding neighbors are not required. For the second case, let
us assume that object p is reported as outlier while it has more
than or equal to k neighbors at a time instance t. This means
that we have missed a preceding (k − n

′+
p)-nearest neighbor

p′ of p. Since p′ does not belong to (k − 1 − n
′+
p)-skyband,

we know that in the set of preceding neighbors, there exist at
least k−n

′+
p objects with smaller distance from p and greater

expiration time than p′. Thus, at time t where p′ is active, at
least k-n′p other objects that are closer to p are active; so p
cannot be reported as an outlier, i.e., our assumption is false.

To support the evaluation of multiple queries with different
R we continuously evaluate the query with the minimum
distance Rmin because ∀R > Rmin,D(R, k) ⊆ D(Rmin, k).
The event-based technique is used. Similarly to the case of
varying k, if the examination of an object p, causes the move
of p from the inliers to outliers then we should check p for the
remaining queries with ascending order of R. The procedure
is stopped when p is not moved to the outliers of a query.
Moreover, when the set of succeeding neighbors of an outlier

1For reasonable values of Rmax, we expect that the number of neighbors
with distance less than or equal to Rmax will be much less than the number
of active objects. For example, for 200K active objects from Zillow, by using
Rmax such that 1% of objects are outliers, on average only 561 objects
belong to Pp (0.281% of P).

p increases due to the arrival of a new object, then we should
check if p should be moved from outliers to inliers. Again
all queries are examined with ascending order of R and the
termination condition is similar.

In cases where both R and k are varying, we follow the
latter methodology and we assume k equals to kmax. We
evaluate the query with q.R = Rmin and q.k = kmax, because
its outliers is a superset of the outliers of any other query.
Finally, we filter the results with respect to each query q to
provide the exact outliers. This algorithm is denoted as ACOD
(Advanced Continuous Outlier Detection).

D. Mitigating the Impact of Range Queries

The previously proposed methods provide an efficient way
to perform potentially multi-parameter distance-based outlier
detection. Nevertheless, they still suffer from a significant
limitation, which characterizes all proposals to date for outlier
detection in streams, namely the need to evaluate range queries
for each new object with respect to all other active objects
[13], [12]. In this section, we propose a methodology to
mitigate this. Our methodology is based on the concept of
evolving micro-clusters that correspond to regions containing
inliers exclusively. The resulting algorithm is denoted as
MCOD (Micro-cluster-based Continuous Outlier Detection).
The additional symbols used are presented in Table II.

Let us assume that, initially, the R and k parameters for
outlier detection are fixed. We set the radius of MCi, which
is the maximum distance of any object belonging to MCi

from mcci, to R/2, and the minimum size of a micro-cluster
to k + 1. An object can belong to at most a single micro-
cluster. As such, there are at most bn/(k + 1)c micro-clusters
at any window. In general, an object may have neighbors that
belong to other micro-clusters. However, the centers of such
micro-clusters are within a range of 2R from that object.

Note that micro-clusters have been employed in several
works to assist clustering in streamed data [19], [20]. Such
works tend to build upon the cluster feature vector introduced
in [6], to attain a more compact representation of the objects
with a view to improving clustering efficiency without sacri-
ficing cluster quality. The actual clustering is performed by a
subsequent offline stage. However, in our case micro-clustering
serves a different purpose, i.e., outlier detection, and micro-
clusters are fully tailored to online processing.

In the example of Figure 6, there are three micro-clusters,
and for the objects of each one of them, a different symbol

TABLE II
ADDITIONAL SYMBOLS USED IN MCOD

Symbol Interpretation
MCi the i-th micro-cluster
mcci the center of the i-th micro-cluster
mcni the size of MCi, i.e., the number of objects assigned to it
p.mc the identifier of the micro-cluster to which object p belongs
p.Rmc the list of micro-cluster identifiers associated with object p
Imc the set of objects that belong to a micro-cluster
PD the set of objects that do not belong to any micro-cluster

R/2
R

MC1

MC2
MC3

p1 p2

Fig. 6. Example micro-clusters for k=4.

has been used. When the micro-clusters are thought of as
spheres with radius R/2, they can be either overlapping (e.g.,
MC2, MC3) or not-overlapping (e.g., MC1). Even in the
former case, an object always belongs to a single micro-cluster,
as explained later. Moreover, the center of the micro-cluster
may correspond to an existing object (e.g., MC1) or may not
(e.g., MC2, MC3); the center does not change to eliminate
the need to reconsider micro-cluster population at runtime. We
regard all objects in PD as potential outliers (e.g., p1, p2);
such objects are depicted with the + symbol. However, an
object that does not belong to any micro-cluster may be an
inlier (e.g., p1).

Note that all the following expressions hold: Imc ⊆ I ⊆ P ,
D ⊆ PD ⊆ P , Imc ∪ PD = P , and Imc ∩ PD = ∅.

Lemma 3: An object that belongs to a micro-cluster (i.e.,
p ∈ Imc) is definitely not an outlier.

Proof: The maximum distance of any two objects in the
same micro-cluster cannot exceed R. Also, the size of the
micro-cluster is at least k + 1, which means that each object
has at least k neighbors within distance R.

Lemma 4: An object p belongs to the set of outliers D if
and only if there are less than k neighbors of p in either the
set of potential outliers PD or in Imc, such that the distance
from the center of those micro-clusters is at most 3

2R.
Proof: An outlier must have less than k neighbors that

belong to P . Imc∪PD = P holds. So, it is adequate to prove
that the subset of Imc not considered in the above lemma does
not contribute to the neighbors’ set of p. This means that we
need to prove that there can be no neighbors of p in the micro-
clusters, whose center is more than 3

2R apart. However, given
that the radius of a micro-cluster is R

2 , the smallest distance
between p and an object in a micro-cluster MCi is bounded
by the distance between mcci and p minus R

2 . Obviously, this
lower bound is 3R

2 − R
2 = R, which completes the proof.

The information kept for each object in the current window
differs on the basis of the set it belongs to. More specifically,
for objects p ∈ Imc, we only keep p.mc. For each object
p ∈ PD, we keep the expiration time of the k most recent
preceding neighbors and the number of succeeding neighbors,
as described in the previous sections. In addition, we keep a list
containing the identifiers of the micro-clusters, whose centers
are less than 3

2R far. The reason we keep this information
derives from the lemma above. The assignment of objects to

those micro-clusters may lead to a change in the status of the
potential outliers; in other words, the micro-clusters of this
type may affect the objects in PD. The list of identifiers is
stored in p.Rmc. Also, we employ a hash data structure so
that we can find (i) the objects in each micro-cluster, (ii) the
objects deemed as potential outliers, and (iii) the objects in
PD referring to a particular micro-cluster in O(1) time.

The main rationale behind our approach is to drastically
reduce the number of objects that are considered during the
range queries when these are performed. The detailed steps of
the modified algorithm after each window slide are as follows:

Step 1: The expired objects are purged after having updated
the counters mcn of corresponding micro-clusters (if any),
accordingly. Subsequently, steps 2 and 3 are performed for
each new data object p; new objects are processed in the order
of their arrival.
Step 2: For each p, we detect (i) the micro-cluster, the center
of which is closest to that object, and (ii) all micro-clusters,
the centers of which are within a 3

2R range. Conflicts (i.e.,
when there are two centers with equal distance) are resolved
arbitrarily. Note that we can employ a specific structure to
store the micro-cluster centers, such as an M-tree, to perform
this task efficiently.
Step 3: If the distance from the closest center is not greater
than R/2, then:
(3a-i) the new object is assigned to the corresponding micro-
cluster and the value of p.mc is updated;
(3a-ii) the size of the corresponding micro-cluster is increased
by one;
(3a-iii) let MCi be the micro-cluster where the new object
is inserted. We evaluate the distance between the new object
and all objects in PD that contain MCi in their Rmc lists,
to check (i) whether the number of succeeding neighbors of
the latter should be increased and (ii) whether any previous
reported outliers have become inliers;
Otherwise, i.e., if the distance from the closest center is greater
than R/2, no assignment takes place and the following process
is applied:
(3b-i) For the new object p that has not been assigned to a
micro-cluster, we perform a range query taking into account
only (i) the objects in PD and (ii) the objects in the micro-
clusters for which the distance from their centers is not greater
than 3

2R (the relevant micro-clusters have been detected in
Step 2).
(3b-ii) If the number of neighbors from the PD set within
R/2 distance exceeds θk, θ ≥ 12, then a new micro-cluster is
created, with the new object as its center. All the corresponding
objects are moved from PD to Imc. All objects still in PD
that are less than 3

2R apart update their Rmc lists with the
identifier of the new micro-cluster.
(3b-iii) Otherwise, the event-based algorithm described in the
previous sections (i.e., creation of the list of the expiration

2Parameter θ helps to avoid cases where micro-clusters are continuously
created and destroyed. We have found that values between 1 (less memory)
and 1.1 (better performance) are appropriate. In the experiments we set θ = 1.

times of the neighbors of the new object and update of the
number of succeeding neighbors) is applied. The objects in
p.Rmc are the cluster identifiers for which the distance from
their centers is not greater than 3

2R.
Step 4: If the size of a micro-cluster shrinks below k + 1,
then this micro-cluster is dissolved, and its former objects are
treated in a way similar to that described in Step 3b.

At the end of these steps, additional outliers are reported
with the help of the event queue, which in MCOD, does not
include any object p ∈ Imc. The main advantage compared
to the algorithms in the previous sections is that the number
of distance computations is reduced significantly.

Theorem 2: MCOD produces correct results.
Proof: A sketch of the proof is as follows. MCOD does

not check objects p ∈ Imc. However, this does not have any
impact on the set of outliers produced, because of Lemma 3.
Also, when range queries are performed for objects p /∈ Imc,
no objects in micro-clusters for which the distance from their
centers is greater than 3

2R are considered. Again, this does not
impact on the result accuracy, because of Lemma 4.

The efficiency of this algorithm is expected to increase with
the proportional size of Imc. In other words, if the size of PD
is small, and close to the size of the actual outliers, then the
performance improvements are expected to be higher. This is
the case when the (average) density of the objects is higher
than the density threshold implied by the R and k parameters
by several factors.

Finally, this methodology can easily support multiple values
for k, if the minimum size of a micro-cluster is set to kmax+1.
However, for the rest of the values of k, the number of inliers
regarded as potential outliers would increase thus leading to
performance degradation.

V. PERFORMANCE EVALUATION

We have conducted a series of experiments to evaluate
the performance of the proposed algorithms. We compare
algorithms COD, ACOD and MCOD against the algorithm
in [13], which is termed Abstract-C. Note that, we do not
include the simple algorithm of Section IV-B which requires
k and R to be fixed, since its functionality is covered by COD
algorithm. All methods have been implemented in C++ and
the experiments have been conducted on a Pentium@3.0GHz
WinXP machine with 1GB of RAM.

We have used two real-life and one synthetic data sets.
The real data sets are (i) FC (Forest Cover), available at the
UCI KDD Archive (url:kdd.ics.uci.edu), containing 581,012
records with quantitative attributes such as elevation, slope
etc. and (ii) ZIL (Zillow), extracted from www.zillow.com,
containing 1,252,208 records with attributes such as price
and number of bedrooms. The synthetic one (IND) contains
5M objects with independent attributes that follow a uni-
form distribution. We study the performance of the proposed
methods by varying several of the most important parameters
such as the window size W , the distance R, the number
of required neighbors k and the number of queries. We

1

10

10 100 200 300 400 500

C
P

U
 T

im
e

(s
ec

)

Window Size (K)

COD
ACOD
MCOD

Abstract-C

(a) FC

0.1

1

10

10 100 200 300 400 500

C
P

U
 T

im
e

(s
ec

)

Window Size (K)

COD
ACOD
MCOD

Abstract-C

(b) ZIL

0.1

1

10

10 250 500 750 1000

C
P

U
 T

im
e

(s
ec

)

Window Size (K)

COD
ACOD
MCOD

Abstract-C

(c) IND

Fig. 7. Running time vs. active objects.

0.1

1

10

0.1 0.5 1 2 3

C
P

U
 T

im
e

(s
ec

)

outliers (% W)

COD
ACOD
MCOD

(a) FC

0.1

1

10

0.1 0.5 1 2 3

C
P

U
 T

im
e

(s
ec

)

outliers (% W)

COD
ACOD
MCOD

(b) ZIL

0.1

0.2

0.5

1

0.1 0.5 1 2 3

C
P

U
 T

im
e

(s
ec

)

outliers (% W)

COD
ACOD
MCOD

(c) IND

Fig. 8. Running time vs. number of outliers.

0.3

1

3

10

1 10 100 1000

C
P

U
 T

im
e

(s
ec

)

queries

COD
ACOD
MCOD

(a) FC

0.3

1

3

10

1 10 100 1000

C
P

U
 T

im
e

(s
ec

)

queries

COD
ACOD
MCOD

(b) ZIL

0.3

1

3

10

1 10 100 1000

C
P

U
 T

im
e

(s
ec

)

queries

COD
ACOD
MCOD

(c) IND

Fig. 9. Running time vs. number of queries with different values of k.

1

10

100

1000

1 10 100 1000

C
P

U
 T

im
e

(s
ec

)

queries

COD
ACOD
MCOD

(a) FC

0.1

1

10

100

1000

1 10 100 1000

C
P

U
 T

im
e

(s
ec

)

queries

COD
ACOD
MCOD

(b) ZIL

0.1

1

10

100

1000

1 10 100 1000

C
P

U
 T

im
e

(s
ec

)

queries

COD
ACOD
MCOD

(c) IND

Fig. 10. Running time vs. number of queries with different values of R and k.

measure the CPU cost, the memory requirements, the number
of distance computations and other qualitative measurements.
Count-based windows have been used, whereas time-based
ones are supported, without significant changes in the results.
The default values for the parameters (unless explicitly spec-
ified otherwise) are: W = n = 200K, |Q| = 1, i.e., there is
a single query, k = 10 and the parameter R is set in a way
that the number of outliers |D| = (0.01± 0.001)n. Since we
want to investigate the most demanding form of continuous
queries, we set Slide = 1. All measurements correspond to
1000 slides, i.e., 1000 insertions/deletions in P .

A. Running Time

First, we study the performance of the methods for varying
values of W in the range [10K, 1000K]. Figure 7 depicts the
results. For Slide = 1, the memory requirements for Abstract-
C are very high. More specifically, Abstract-C stores W ·(W−1)

2
counters, which corresponds to 74GB for W = 200K and
465GB for W = 500, assuming integers need 4 bytes. Because
of that, in Figure 7, Slide = 1 only for COD, ACOD and
MCOD, while we choose Slide = 0.001W for Abstract-
C. Despite that favorable configuration, Abstract-C performs
significantly worse than our algorithms in terms of running
time. Our event-based techniques benefit from the fact that
not all objects need to be investigated at each slide. From this
experiment, it is evident that Abstract-C is rather inefficient
for continuous outlier monitoring and therefore it is omitted
from subsequent experiments. Note that we do not present
experiments with [12], because its running time is worse than
Abstract-C for continuous outlier detection, and its memory
consumption is not lower than ours.

Further observations can be drawn from Figure 7. As
expected, COD performs better than ACOD since there is
only a single query, whereas, ACOD should be used only in
cases of multiple queries with different R values. In general,
MCOD runs faster than COD because it reduces the number
of distance computations by avoiding the application of a
range query for each new object. However, the two methods
have similar performance for the IND data set, where MCOD
generates a negligible number of micro-clusters and therefore
the method degenerates to COD.

Next, we study the performance of the proposed methods
with respect to the number of outliers. The results are given
in Figure 8. The outliers’ number varies from 0.1% to 3%
of n, which is set to its default value 200,000. As before,
the CPU time of COD is lower than that of ACOD, whereas,
as expected, the performance of MCOD may degrade as the
number of outliers increases.

In the third experiment, we investigate multiple queries.
Parameter R is fixed for all queries to examine the efficiency of
the COD and MCOD, which can support different values only
of k. More specifically, for IND, R = 73.5 while k ∈ [5, 14],
for FC, R = 42 and k ∈ [5, 10], whereas for ZIL, R = 3600
and k ∈ [5, 10]. Figure 9 illustrates the CPU time of the
algorithms. Notice that there may exist similar queries, due to
the limited number of different values of k. However, to better

examine scalability, the methods do not exploit the existence
of similar queries. As mentioned before, ACOD is appropriate
for varying values of R and therefore it presents the worst
performance. It is evident that the running time of all methods
increases sublinearly with respect to the number of queries.
Again, MCOD is better than COD except for IND data set,
for which it generates only a few micro-clusters.

The next experiment studies the usability of ACOD by
varying the number of queries while allowing different values
for both R and k. The methods COD and MCOD are used for
comparisons reasons. ACOD evaluates all the queries together
whereas COD and MCOD evaluate each query separately and
the sum of all the running times is presented. Figure 10 shows
the results. ACOD performance improves as the number of
queries increases. Although the evaluation of the query with
kmax and Rmin with the ACOD method is the most time
consuming, ACOD has the best performance because of result
reuse for the remaining queries.

B. Memory Consumption

Table III presents the memory consumption of the two
real data sets for the experiment of Figure 7. The consumed
memory corresponds to the memory needed to store the infor-
mation for each active object (i.e., preceding and succeeding
neighbors), the heap size used for the events prioritization, the
outliers of all the queries and the micro-cluster information for
MCOD. As can be seen, the required amount of memory is
only a small fraction of the total memory available in modern
machines, even for the ACOD method.

TABLE III
MEMORY REQUIREMENTS (IN MBYTES).

FC ZIL
W COD ACOD MCOD COD ACOD MCOD

10,000 0.46 2.95 0.27 0.48 4.29 0.11
200,000 9.58 100.45 4.94 9.60 111.85 2.74
300,000 14.11 133.27 11.04 14.47 194.28 4.01
400,000 18.76 178.30 15.40 19.32 280.37 5.43
500,000 23.52 232.72 20.23 24.23 377.51 6.56

C. In-depth Investigation of the Event-Based Approach

In this part, we examine the behavior of the event-based
technique. For each method, the following measurements are
taken: a) the average number of events that exist in the system,
b) the average number of events triggered by the arrival of new
objects, and c) the average number of events processed after
each arrival. Table IV illustrates the results for the FC data set
in the experiment of Figure 8.

Notice that the number of events triggered is more than
the number of object processed. This is because the former
includes also events related to expired objects and events corre-
sponding to objects that have become safe inliers. These events
are immediately discarded without any further processing and
only the remaining events are processed. Event processing
includes the update of the neighbors of the object, the check
for possible inclusion of the object to the outliers and the

TABLE IV
EVENT ANALYSIS (FC DATA SET).

outliers algorithm #events (K) #events triggered #events processed
(%W) (avg) (avg)

0.1
COD 198.5 1.3 0.19

ACOD 144.4 9.6 0.55
MCOD 16.1 1.1 0.19

0.5
COD 196.2 1.9 0.67

ACOD 145.4 10.3 1.49
MCOD 46.6 1.9 0.67

1
COD 194.5 2.4 1.09

ACOD 146.4 10.6 2.04
MCOD 65.9 2.5 1.08

3
COD 189.5 3.3 1.61

ACOD 149.3 10.2 2.49
MCOD 113.3 3.5 1.61

re-estimation of the event for the specific object. From the
fourth and the fifth column of the table, it is evident that the
majority of events are discarded immediately. In COD, the
number of events is very close to the number of objects not
in the outliers set, thus the events are reduced as the number
of outlier increases, contrary to the behavior of ACOD and
MCOD. For the other data sets, the total number of events
is similar but less events are processed, due to the fact that
the average number of neighbors for an object is higher and
therefore more objects are safe inliers.

D. LUE vs. DUE

In all the previous experiments the first variation (LUE) of
event handling is used. Table V compares experimentally both
variants of event handling as described in Section IV.B. for
COD. For each variant, we measure a) the average number of
events that exist in the system, b) the average number of events
triggered by each arrival, c) the average number of events
inserted in the queue after each arrival and d) the average
number of increasetime operations in each update.

DUE has much better space usage because all objects that
are safe inliers are removed straight away from the event
queue. This is more tense when the distribution of objects
is skewed as in the cases of FC and ZIL. The number of
triggered events (and as a result the number of (re)inserted
events) is lower in DUE than in LUE. This was expected, since
DUE focuses on reducing these costly operations and replacing
them with increasetime operations, which are theoretically
cheaper. Note that due to the smaller size of the event queue in
DUE, the operation of extractmin (event trigger) is cheaper
and thus the savings are twofold. However, the implementation
of the event queue in DUE is much more complicated and thus
these operations have larger absolute cost. Although further

TABLE V
EVENT HANDLING VARIATIONS (W = 200,000, OUTLIERS = 1%W)

IND FC ZIL
LUE DUE LUE DUE LUE DUE

#events (in K) 164.4 79.9 194.5 7.50 195.8 9.91
#events triggered 6.07 0.12 2.37 0.92 1.58 1.38
#events inserted 1.55 1.10 1.91 1.74 1.16 1.11

#increasetime ops - 9.81 - 10.1 - 9.57

experimental analysis is needed to clarify in which setting
each algorithm is better, DUE is clearly more preferable in
cases where the available memory is restricted.

VI. CONCLUSIONS

Anomaly detection is an important data mining task aiming
at the selection of some interesting objects, called outliers, that
show significantly different characteristics than the rest of the
data set. In this paper, we study the problem of continuous
outlier detection over data streams, by using sliding windows.
More specifically, four algorithms are designed, aiming at
efficient outlier monitoring with reduced storage requirements.
Our methods do not make any assumptions regarding the
nature of the data, except from the fact that objects are
assumed to live in a metric space. As it is shown in the
performance evaluation results, based on real-life and synthetic
data sets, the proposed techniques are by factors more efficient
than previously proposed algorithms.

An interesting direction for future work is the design of
randomized algorithms for outlier detection, aiming at signifi-
cant improvement of efficiency by sacrificing the accuracy of
results. Another direction for future work is the continuous
outlier detection in uncertain data.

REFERENCES

[1] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in SIGMOD Conference, 2000,
pp. 427–438.

[2] R. Johnson, Applied Multivariate Statistical Analysis. Prentice Hall,
1992.

[3] E. Knorr and R. Ng, “Algorithms for mining distance-based outliers in
large data sets,” in VLDB Conference, 1998.

[4] E. Knorr, R. Ng, and V. Tucakov, “Distance-based outliers: algorithms
and applications,” The VLDB Journal, vol. 8, no. 3-4, pp. 237–253, 2000.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in PODS Conference, 2002, pp.
1–16.

[6] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data
clustering method for very large databases,” in SIGMOD Conference,
1996, pp. 103–114.

[7] C. Aggarwal and P. Yu, “Outlier detection for high dimensional data,”
in SIGMOD Conference, 2001, pp. 37–46.

[8] Y. Tao, X. Xiao, and S. Zhou, “Mining distance-based outliers from
large databases in any metric space,” in SIGKDD Conference, 2006, pp.
394–403.

[9] G. J. Williams, R. A. Baxter, H. X. He, S. Hawkins, and L. Gu, “A
comparative study of rnn for outlier detection in data mining,” in ICDE
Conference, 2002, pp. 426–435.

[10] V. Barnett and T. Lewis, Outliers in Statistical Data. Wiley and Sons,
1994.

[11] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” in SIGMOD Conference, 2000.

[12] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in streams
of data,” in CIKM Conference, 2007, pp. 811–820.

[13] D. Yang, E. Rundensteiner, and M. Ward, “Neighbor-based pattern
detection for windows over streaming data,” in EDBT, 2009, pp. 529–
540.

[14] Y. Zhu and D. Shasha, “Statstream: statistical monitoring of thousands
of data streams in real time,” in VLDB Conference, 2002, pp. 358–369.

[15] M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithms,” Journal of the ACM, vol. 34, no. 3,
pp. 596–615, 1987.

[16] G. Brodal, “Worst-case efficient priority queues,” in SODA, 1996, pp.
52–58.

[17] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” in VLDB Conference, 1997, pp.
426–435.

[18] D. Papadias, Y. Tao, F. G., and B. Seeger, “Progressive skyline com-
putation in database systems,” ACM TODS, vol. 30, no. 1, pp. 41–82,
2005.

[19] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” in VLDB, 2003, pp. 81–92.

[20] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in SDM, 2006.

