Using OGSA-DQP to Support Scientific
Applications for the Grid

M. Nedim Alpdemir!, Arijit Mukherjee?, Anastasios Gounaris®, Norman W.
Paton!, Alvaro A.A. Fernandes', Rizos Sakellariou', Paul Watson?, and Peter
Li?

! Department of Computer Science 2 School of Computing Science
University of Manchester University of Newcastle upon Tyne
Oxford Road, Manchester M13 9PL. Newcastle upon Tyne NE1 7TRU
United Kingdom United Kingdom

Abstract. The data management problems in grid computing are often
challenging in many aspects such as data volumes, heterogeneity, struc-
tural complexity and semantic content. Thus, e-Scientists and scientific
application developers stand to benefit from tools and environments that
either hide, or help to manage, the inherent complexity involved in ac-
cessing and making concerted use of the diverse resources. This paper
describes OGSA-DQP, a high level data integration tool for service-based
grids, and illustrates how it can be used to support grid users, via an
example scientific study in bioinformatics. The paper also discusses var-
ious options for employing OGSA-DQP to handle data integration tasks
as service orchestrations involving both data and analysis services.

1 Introduction

Both commercial and scientific applications increasingly require access to dis-
tributed resources. Grid technologies have been introduced to facilitate efficient
sharing of resources in a heterogeneous distributed environment. However, from
its inception, grid computing has provided mechanisms for data access that lie at
a much lower level than those provided by commercial database technology [7].
This is despite the fact that the data management problems in grid computing
are not likely to be less complex, rather the contrary, insofar as in all relevant
aspects (viz., data volumes, structural complexity and semantic content) data in
the grid is likely to be at least as complex as that found in current commercial
environments. Furthermore, in those applications for which grid solutions seem
particularly appropriate (e.g., scientific ones), data is often more fragmented
and more in need of computationally-demanding analyses than in classical Web
applications (e.g., e-commerce ones). Thus, high-level data access and integra-
tion services are needed if applications that have large amounts of data with
complex structure and complex semantics are to benefit from the grid. This
paper briefly describes OGSA-DQP [1], a high level data integration tool for
service-based grids, and aims to illustrate how it can be used to support grid

users in accessing distributed resources in a bioinformatics context. The paper
also discusses how OGSA-DQP can be exploited to provide a relatively low-cost
implementation of complex scientific applications for the grid.

The rest of the paper is structured as follows: Section 2 briefly introduces
the service-oriented approaches to resource utilisation on the grid; Section 3 de-
scribes the architecture and usage of OGSA-DQP as a high-level data access and
integration tool for service-based grids; Section 4 illustrates how OGSA-DQP can
be exploited to support e-scientists in conducting their studies, through an ex-
ample bioinformatics application; Section 5 briefly discusses various options for
employing OGSA-DQP in more complex grid applications and finally Section 6
presents a number of conclusions.

2 Service-Oriented Architectures for Resource Utilisation

Service-based approaches [4] (such as Web Services and the Open Grid Services
Architecture) have gained considerable attention recently for supporting dis-
tributed application development in e-business and e-science. The service-based
approach seems to many a good solution to the problem of modelling a vir-
tual organisation as a distributed system, and is perceived to offer a convenient
paradigm for resource sharing through resource virtualisation. Web Services, in
particular in conjunction with the resource access and management facilities of
grid computing, show considerable promise as an infrastructure over which dis-
tributed applications in e-business and e-science can be developed. As such, it
is argued that uniformly treating the diversity of resources and applications as
services significantly simplifies their use and management [5].

One particular impact of service-oriented approaches on application develop-
ment, is the introduction of new techniques that permit various models for aggre-
gating distributed software modules as loosely-coupled compositions of coarse-
grained services to construct more complex applications [6]. Workflow languages
such as Business Process Execution Language (BPEL) appear to be central to
service aggregation approaches. However, It is worth noting that although it
is likely that workflow languages will have a prominent role, service-based Dis-
tributed Query Processing (DQP) also offers service orchestration capabilities,
accomplishing system-supported optimisation of declarative requests with im-
plicit parallelism, a combination that should yield significant programmer pro-
ductivity and performance benefits for large-scale, data intensive applications.
OGSA-DQP is one approach to provide such capabilities.

3 OGSA-DQP: A Grid Service Framework for Data
Integration and Analysis

3.1 Overview

OGSA-DQP [1] is essentially a high-throughput distributed data-flow engine that
relies on a service-oriented abstraction of grid resources and assumes that data

sources are accessible through service-based interfaces. OGSA-DQP relies on in-
frastructure support from other grid Middleware at two distinct levels: it uses
the reference implementation of Open Grid Services Architecture (OGSA) [3]
viz., Globus Toolkit 3 (GT3) [8], which implements a service-based architecture
over virtualised resources referred to as Grid Services (GSs), thus enabling dy-
namic allocation of resources necessary for efficient evaluation of a distributed
query; it also builds upon OGSA-DAT [2] which implements Grid Data Services
(GDSs) that insulate users from certain aspects of data source heterogeneity,
ensuring that metadata and data held in a particular data source are accessed
via a standard, well-defined and uniform interface. By building on those layers,
OGSA-DQP delivers a framework that

— supports declarative queries over many Grid Database Services (GDSs) by
creating a union of the database schemas of the participating data sources.

— supports calls to external web services through insertion of the web service
operation invocations into a query, thereby combining data access with data
analysis;

— adapts techniques from parallel databases to provide implicit parallelism for
complex data-intensive requests; and

— automates complex, onerous, expert configuration and resource utilisation
decisions on behalf of users via its query optimisation module.

OGSA-DQP provides two services to fulfil its functions: The Grid Distributed
Query Service (GDQS) and the Grid Query Evaluation Service (GQES). The
GDQS provides the primary interaction interfaces for the user, collects the nec-
essary metadata, and acts as a coordinator between the underlying query com-
piler /optimiser engine and the GQES instances. The GQES, on the other hand,
is used to evaluate (i.e. execute) a query sub-plan assigned to it by the GDQS.
The number of GQES instances and their location on the grid is specified by
the GDQS, based on the decisions made by a query optimiser and represented
as an execution schedule for query partitions (i.e. sub-plans). GQES instances
are created and scheduled dynamically, to evaluate the partitions of a query
constructed by the optimiser of the GDQS.

Figure 1 illustrates the high-level architecture of OGSA-DQP, where the
client application queries multiple data resources via a global schema that presents
a union of the schemas of the participating data sources. Notice that OGSA-DQP
utilizes the computational resources and data resources available to it, via ser-
vices provided by a core grid middleware (i.e. OGSA and OGSA-DATI). As such,
by virtue of this core middleware support the query execution engine is con-
structed dynamically (i.e. at run time) by instantiating GQESs for each section
(or partition) of the distributed query plan, as stipulated by the query optimizer
encapsulated within the GDQS.

3.2 Using OGSA-DQP for Querying Distributed Data Sources

This section describes, briefly, how OGSA-DQP can be used in practice as a
high-level tool for retrieving and combining data from multiple data sources, as
well as feeding retrieved data into analysis services if desired.

Global Schema
(Union of local schemas)

query / response

LR, T TR, T

OGSA-DQP - Control flow
4_GDQS Query
/ Execution
Dataflow /" Engine |[——

ES | GQES

-L-)\l‘(;QES | :

Data Access and | ntegration Framework (OGSA-DAI)

[
A

Local S¢hema

CoreGrid Middleware

Grid Service Infrastructure (OGSA / GT3)

{

Web Application Servers (e.g. Tomcat - Axis)

OS & Network Layer

Computational Grid Resources

Fig. 1. A High-level Architecture of OGSA-DQP

Starting a query session Preparing OGSA-DQP for query submission in-
volves identifying the data sources and the analysis services to be used in a
query session. This process may start with a search and discovery phase at the
end of which the user finds the set of resources s/he is interested in. OGSA-
DQP does not currently offer direct support for this initial discovery process,
largely because this is conceived to be an application level functionality. Instead,
it is assumed that the user has already identified the required resources. Thus,
the user submits an XML document containing the list of the data sources and
analysis services as illustrated by the following XML fragment:

<GDQDataSourceList>
<importedDataSource>
<GDSFactoryHandle>
http://host:port/ogsa/services/ogsadai/ProteinDBGDSFactory
</GDSFactoryHandle>
</importedDataSource>
<importedDataSource>
<GDSFactoryHandle>
http://host:port/ogsa/services/ogsadai/GenesDBGDSFactory

</GDSFactoryHandle>
</importedDataSource>
<importedDataSource>
<GDSFactoryHandle>
http://host:port/ogsa/services/ogsadai/MicroarrayDBGDSFactory
</GDSFactoryHandle>
</importedDataSource>
<importedService
name="EntropyAnalyser"
wsdlURL="http://host:port/services/EntropyAnalyserService?wsdl"/>
</GDQDataSourceList>

Note that the data sources are indicated by the Grid Data Service Factory
(GDSF) handles of the services that wrap those data sources. The analysis ser-
vices are indicated by URLSs that point to the WSDL documents describing those
services.

\4

)
GDQ Resource List Doc. (XML) 2 || | GDSF
== oSy
GDQS 2

Comp. Resource
DB Schemas @ Metadata

v

GDSF

DB Schema (XML)

Query
Optimiser || Web
Services

]

WSDL doc

Fig. 2. Metadata Retrieval During OGSA-DQP Set-up Phase

As illustrated in Figure 2, on receipt of the XML document containing the
resource list (interaction 1), the GDQS obtains metadata about each resource
in the list (interactions 2 and 3) to aid the query optimiser in generating an
efficient execution plan. This metadata includes database schemas (both the
logical structure of the data and some physical characteristics such as index
information, cardinality, row sizes, etc.) that are obtained from the data sources,
and WSDL documents that are obtained from the web services.

Submitting query requests After the GDQS is set-up with a resource set and
a query session is initiated, the user can submit multiple query requests until
the GDQS instance is destroyed, which effectively terminates the session.

As illustrated in Figure 3 (a), for each query request a GDQS instance com-
piles, optimises, partitions and schedules the query to generate a distributed
query plan optimised for specific requirements of the submitted query. Each
partition in the distributed query plan is assigned to one or more execution
nodes. The GDQS, then, commands the creation of GQESs as stipulated by the

S Distributed Query sut»quejy
Execution Engine

GDS Query ,
D Request Doc. 1

GDQS |e—

oQL
Query String

Distributed Query
Plan Doc. L
Polar* Query Optimiser Engine data blocks

(@) (b)

Fig. 3. Query Optimisation and Execution Process

partitioning and scheduling decided on by the compiler (Figure 3 (b), interaction
1), and co-ordinates the GQESs into executing the plan. Each execution node
corresponds to a GQES instance, each of which initiates its evaluation upon
receiving its plan partition. The whole process effectively constructs a tree-like
data flow system with the GDQS instance at the root, GDS instances at the leaf
and a collection of GQESs in the middle (Figure 3 (b), interactions 2-3).

4 How Grid Users Can Benefit from OGSA-DQP

This section illustrates OGSA-DQP in use as part of the solution to a bioin-
formatics problem. First a brief explanation of the problem is provided in Sec-
tion 4.1, followed by a description of how OGSA-DQP is put into use to aid in
providing a solution, in Section 4.2.

4.1 An Example Bioinformatics Application: The Graves’ Disease
Scenario

The myGrid project (www.mygrid.org.uk) has developed an application that
uses a number of middleware services to build in-silico tools for a study that
seeks to identify genes and SNPs associated with a genetic autoimmune condition
known as Graves disease (GD). The condition is an disease of the thyroid in
which the immune system of an individual attacks the cells of the thyroid gland
resulting in hyperthyroidism (thyroid overactivity).

Researchers studying human genetic disease such as this, ultimately wish to
establish which genes are affected in the diseased state, the changes in those
genes between individuals and the underlying molecular mechanisms that lead

to the autoimmune response. The hypothesis is that single nucleotide polymor-
phisms (SNPs) are instrumental in the disease mechanism. Thus, there are three
objectives:

1. Investigate what genes and loci are involved in GD.

2. Examine which single nucleotide polymorphisms (SNPs) located in genes are
involved in GD

3. Develop genotyping experiments to test the above hypotheses

One of the several in-silico experiments designed for the whole study is an
annotation pipeline that aims to help the user establish which genes in the can-
didate gene pool may be involved in the diseased state [9]. In other words, the
main purpose is to retrieve information associated with candidate genes that
were differentially expressed in GD. The user can assimilate the information
provided and make a decision as to which gene or genes they wish to examine
in more detail, and ultimately take back to laboratory studies. To achieve that,
however, it is necessary to return links to annotation data from a range of ge-
nomic databases and the literature, for each gene in the dataset. A distributed
query over grid enabled databases can achieve the required data integration at a
relatively low cost compared to other approaches that require a separate, isolated
interaction with each of the databases and do the integration as a custom post-
processing step (e.g. application-specific scripting solutions, or workflow-based
solutions that either include application-specific logic in each of the data-access
services or a separate service in the workflow to perform the integration).

4.2 The Distributed Queries for the Annotation Pipeline

The key functionality required in the annotation pipeline is the ability to map
from the Affymetrix probe set identifiers referencing a candidate gene to sequence
or database identifiers in biological databases. For the nucleotide sequence an-
notation pipeline, the mappings from an Affymetrix probe set ID to EMBL
accession number, and OMIM, GO and Medline identifiers are required. Some of
those mappings can be generated by using existing annotation tools and stored
in a custom database. In the example application presented in this paper, the
mapping between probe set IDs and OMIM, GO and Medline IDs are stored in
a single database. Thus, in total three distributed databases need to be accessed
to retrieve and join the required information. Those are:

1. The AffyMapper database (named as Map_tabs in the query below) which is a
custom database created by obtaining mappings using Affymetrix’s NetAffx
gene annotation tool.

2. An arbitrary microarray database (named as expressions in the query below)
containing gene expression data from the Affymetrix microarray analyses.

3. The Gene Ontology (GO) database (named as goterms in the query below).

The following is an example query that integrates data from the three databases
listed above:

P client - User Mode _181x]

File Edit View

[CEclFEEaEEE]

| # oraves bisease Exp. annatation Pipeline 7 #] Graves Disease Ep, Annotation Pieline Plan

|| Query Expression | N
[selecte ProheSetid, m OMIM, . Molecular_Function_GO, -

m Biologieal_Process_GO, m.Cellular_Component_GO

[[from & in yeastsequence_expressions, DELIVER:
1 it dptestibs_Map_tah_nosegs. g in goterris_goterms e e

here e.Signal = 1000 and e.ProbeSetld = m.Probe_Set ID & daptestdos Map_tab_noseq Biological_Process_GO,

and m Molecular_Function_GO = g.id and g name like "en%”; _ozeq.Callular_Com ponent GO,
eq.Holecular_Function GO

Schema: Tables & Services 7/

|| HrmaL | ([UK, [2]; UK, [3]giga0iiNevcastle, UK

PROJECT

yeasteequencs_sxpression.ProbsSatld,

) daptestdas_Map_tab_noseq. oM I,

& sgptestaos_map_tab_noseq Molecular_Funciion_CO,
dqptestabs_Map_tab_noseq Biological_Process_CO,

daptestdys_Map_tab_noseq.Cellular_Canponsnt GO

Imported Datahases (Logical Schema)

Table: dqptestdhs_Expression (Extent name : diptestihs_Expressions)

HASH DM
Jeastsequence._expression Probesetid = daptestdbs_Map_tab_noseq Frobe_secID
narne Tngth sl Typame
Sangple ot BCCHANCE 2 - 1, 2.3 BXCHANGE L. 3 > 41,231
Tpe warchar 5
([2)rpedF Manchastar, UK)
ProbeSetld 20 warchar
i gy LS UK, Leloigant Mencaste, UK)
Sgual 10 g Qyeastsequence_expression signal HESH DN
Detaction 10 wvarchar “ dqptestdbs_Map_tab_noseq.Malecular_Function_GO = goterm s_goterm.id

TABLESTAN

DetoctionP pafue 12 float yasteequance_sxpression.Signal > 1004

EXCHANGE (1) -» (1. 3
Table : dapiesidbs_Map_tah (Extent name : dgpiesidbs_Map_izhs) | eresihe HANGE (31 -> (1, 3

| F
(] Graves Disease Exp. Annotation Pipeline Results o B ELIghugbusManthaag LRY
= ... et e ([3aiaspd Neveastls, UK) S

- aoterms_goterm id. 9 daptestaps_Hsp_ab_noseq Biological_Process GO,

HIML oterms_goterm nams A daptestdbs_Map_tab_noseq M,
ATptestdS5_Map Tab_noseq Probe_SerID,

yeastsequence_expression ProbeSetld | doptestdbs_Map_tah_nosey ONMIN | doptestdbs_Map_tah_noseq Biological_Process dapnitd) N fpriabSiieryqiolcklar fun a0

- - - - - - - by TABLE_SCAN TABLE_SCAN

Jotirms_goterm.nams LIKE eng
GO:6463 protein phosphorylation{ experimental

35261 _at 604104

evidzace) : i

gotern Map_tab_noseq

e D @ @

Fig. 4. OGSA-DQP GUI Client Screen Shot showing the Query Plan and the Results

QUERY1:

select
e.ProbeSetId, m.0OMIM, m.Molecular_Function_GO,
m.Biological_Process_GO, m.Cellular_Component_GO

from
e in expressions, m in Map_tabs, g in goterms

where
e.Signal>1000 and e.ProbeSetId = m.Probe_Set_ID and
m.Molecular_Function_GO = g.id and g.name like <input name>

The query selects those Affymetrix probe set IDs which have an expression
signal over 1000 and which have also been annotated with a given GO ID. In
other words, the query answers questions such as “which genes are expressed in
my samples and have a molecular function activity x?”.

Figure 4 illustrates the OGSA-DQP GUI client that was used to execute
the example query. The GUI client supports an administrator mode where a
system administrator can create and save configurations with a resource set
and pre-defined queries, and a user mode where a more novice user can load a
configuration, execute pre-defined queries or add more queries if necessary. The
screen shot illustrates the user mode and includes three small windows on the
left representing — from top to bottom in order— the query text, the tabular
representation of the union of the database schemas of the participating data

sources, and the query results in tabular form. The figure also shows a graphical
representation of the query execution plan on the right hand side of the window.
The plan is dynamically generated for each executed query and is annotated
to indicate the partitioning and scheduling of the distributed plan (denoted
by dashed rectangular boundaries), algorithms employed to evaluate each sub-
plan (denoted by circular nodes with textual annotations such as HASH_JOIN;,
TABLE_SCAN, etc.) and the location of the servers that were used to execute
a particular sub-plan (denoted by textual labels above the dashed rectangular
boundaries).

|#] Graves Disease Exp. BLAST Analysis Plan

(o
DELIVER.
dqptestdbs_Map_tab Sequence_ID,

yeastsequen ce_expression. Probesetld,
NEElblasix

E{CHANGE (1, 2 -= (0}

([1]phogbus:Manchastar, UK, [2]rpcBd:Manchester, UK)

FROJECT
weastsequence_expression.ProbeSetld,
dqptestdbs_Map_tab Sequence_ID,
MCEIblas:x

OPERATION_CALL
HNCEBlblastx
i dqptestdbs_Map_tab.Target Sequence)

HASH_ION
yeastsequente_expression.ProbeSetld = dqptestdbs_Map_tab Probe_Set 10

EXCHANGE (1) -= (1. 2)
E{CAANGE (2) - (1, 2)

([1lphogbus:Manchestar, UK)

PROJECT
dgptestdhs_Map_tab.Sequence_ID,
daptestdos_Map_tab Target Sequence,
dgptestdos_Map_tab Frobe_Set_ID,
dgptestdhs_Map_tab.Molecular_Function_G0

([2]rpeafiManchester, UK)

PROJECT
yeastsequence_expression. Probesetld,
yeastsequence_expression. Signal

TABLE_SCAN

TABLE_SCAN dgptestdbs_Map_tab.Molecular_Function_CO LIKE CO:0000%

yeastsequence_sxpression.Signal = 1000

i

I

| Map_tab
expression

=

Fig. 5. The Query Plan with the BLAST Call

OGSA-DQP can also be used to implement another step in the GD study
which involves applying the Basic Local Alignment Search Tool (BLAST) anal-
ysis service. The BLAST call here can be used for identifying PDB records that
might provide information on the structure of the protein that is encoded by the
nucleotide sequence of the candidate gene. An example query is given below:

QUERY2:
select

e.ProbeSetId, m.Sequence_ID, NCBIblast(s.sequence)
from

e in expressions, m in Map_tabs, s in sequences
where

e.Signal > 1000 and e.ProbeSetId = m.Probe_Set_ID and
m.Molecular_Function_GO like <input GO:Id>

This query includes a call to a Web Service that wraps the BLAST analysis
program hosted by the European Bioinformatics Institute (EBI) (see http://www
.ebi.ac.uk/blastall/index.html) and it demonstrates a powerful feature of OGSA-
DQP; that of combining invocations to analysis programs with data retrieval in
a single query statement. Notice that the gene sequences retrieved from the
sequences database (which may potentially constitute a set), are fed into the
NCBIblast function call. Figure 5 shows the distributed query plan generated
for QUERY?2. Note that the sub-plan that contains an invocation to BLAST web
service (i.e. OPERATION_CALL operator) is parallelised across two nodes (i.e.
servers) on the grid (indicated by the textual label above the rectangular box in
the middle with two machine names separated by a comma), since BLAST is a
relatively high-cost operation.

Note that during execution of the queries, the databases are accessed via grid
services (i.e. GDSs) and the intermediate data processing computations are also
carried out by grid services (i.e. GQESs) all of which are linked with dynamically
forged data-flow and control-flow paths, which effectively constructs a service or-
chestration framework. Note also that with the second query, the service orches-
tration is extended beyond data services and internal query evaluator services
(i.e. GQESs) to external (i.e. third party) analysis services, making OGSA-DQP
a declarative (i.e. query-driven) alternative to procedural (e.g. workflow-based)
service-orchestration systems.

5 Alternative Methods for Using OGSA-DQP in Grid
Applications

Although Section 4 described how OGSA-DQP can be used via a stand-alone
GUI client, this is not the only way OGSA-DQP delivers its functionality. As
OGSA-DQP is itself a Grid Service, exposing a programming interface in con-
formance to interaction patterns specified by the OGSA-DAI project, it can be
integrated into higher-level applications in at least two other ways:

1. An application can discover the GDQS from public service registries, and
interact with it via its service interface to submit the list of resources re-
quired for the distributed queries, and subsequently to pass the query re-
quests themselves. The results received as a response to the query requests

can then be transmitted to other processing modules in the application or
presented to the user via application-specific user interfaces.

2. The GDQS can be invoked in an intermediate step in a more complex work-
flow involving calls to other services. This is a particularly interesting case
as it leads to simplified workflows due to the replacement of many inter-
linked activities (i.e. a sub-workflow) with a call to OGSA-DQP as a single
task, and could potentially result in performance gains, since OGSA-DQP
optimizes and parallelises its query plans.

6 Conclusions and Future Work

This paper has described a distributed query processing service, namely OGSA-
DQP, for service-based grids, and demonstrated how it can support the develop-
ment of scientific grid applications via an example application from the bioinfor-
matics domain. In summary, developers and users of scientific applications for
the grid can stand to benefit from OGSA-DQP from several angles:

1. The users of the grid can benefit from OGSA-DQP as a generic data inte-
gration and analysis tool. A typical use-case involves deploying OGSA-DQP
to a virtual organisation application server and configuring it with a set of
frequently used data and analysis resources; a procedure most likely to be
carried out by a system administrator. The configured OGSA-DQP can then
be used to pose queries against the resource set. Section 4.2 described how
the user mode of the OGSA-DQP GUI client allows one to query a set of
resources.

2. The developers of scientific applications for the grid can delegate data inte-
gration tasks to OGSA-DQP, to implement a distinct functional part of a
sophisticated application. It is worth noting that since a GDQS is fully com-
pliant with data delivery and transformation patterns specified by OGSA-
DAI, the application can command the GDQS to channel the results to
another Grid Data Service, to send the results to a remote file system via
FTP, to compress and save the results to the local file system, or to deliver
the results asynchronously in blocks via streaming. See the OGSA-DQP user
guide at www.ogsadai.org.uk/dqgp for details.

3. As programming practice evolves from traditional coding models to service
composition or service coreography, the developers of scientific application
workflows can employ the GDQS to undertake the orchestration of a sub-set
of services required for the overall solution. Our future work plans include
integrating OGSA-DQP into various workflow execution environments, and
carrying out more quantitative research on comparing performance charac-
teristics of the two.

Acknowledgements — The work reported in this paper has been supported by
the UK e-Science Programme.

References

1. M. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson, A. A. Fernandes, A. Gounaris,
and J. Smith. Service-based distributed querying on the grid. In M. E. Orlowska,
S. W. M. P. Papazoglou, and J. Yang, editors, the Proceedings of the First Interna-
tional Conference on Service Oriented Computing, pages 467-482. Springer—Verlag,
15-18 December 2003.

2. A. Anjomshoaa et al. The design and implementation of grid database services in
OGSA-DAL In S. J. Cox, editor, Proceedings of UK e-Science All Hands Meeting
Nottingham. EPSRC, 2—4 September 2003.

3. L. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Technical
report, OGSI-WG, Global Grid Forum, 2002. Draft 2.9, June 22, 2002.

4. K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web Services
Architecture. IBM Sys. Journal, 41(2):170-177, 2002.

5. S. Graupner, V. Kotov, A. Andrzejak, and H. Trinks. Service-centric globally dis-
tributed computing. IEEFE Internet Computing, 7(4):36 — 43, July/August 2003.

6. R. Khalaf and F. Leymann. On web services aggregation. In B. Benatallah and
M. C. Shan, editors, Proceedings of VLDB Technologies for e-Services Workshop,
LNCS 2819, pages 1 — 13. Springer—Verlag, 2003.

7. R. W. Moore, C. Baru, R. Marciano, A. Rajasekar, and M. Wan. Data-Intensive
Computing. In I. Foster and C. Kesselman, editors, The Grid: Blueprint for a New
Computing Infrastrcuture, chapter 5, pages 105—-129. Morgan Kaufmann, 1999.

8. T. Sandholm and J. Gawor. Globus Toolkit 3 Core A Grid Service Container
Framework. Technical report, 2003. www-unix.globus.org/toolkit/3.0/ogsa/docs/.

9. R. Stevens et al. Performing in silico experiments on the grid: a users perspective.
In S. J. Cox, editor, Proceedings of UK e-Science All Hands Meeting Nottingham,
pages 43 — 50. EPSRC, 2—4 September 2003.

