
HySet: A Hybrid Framework for Exact Set Similarity Join Using a GPU

Christos Bellasa, Anastasios Gounarisa

aDepartment of Informatics, Aristotle University of Thessaloniki, Greece
{chribell,gounaria}@csd.auth.gr

Abstract

Set similarity join is a fundamental operation used in a wide range of applications such as data mining, data cleaning
and entity resolution. Existing methods proposed for set similarity join conform to a filter-verification framework where
potential candidate pairs are generated in the filtering phase and then undergo a verification phase to output the final
result. Several different kinds of filtering techniques have been proposed and techniques also differentiate in the manner
they couple filtering with verification. However, it has been shown that no globally dominant technique exists. Depending
on the dataset and query characteristics, each technique has its own strong and weak points. Based on these findings,
the main contribution of this work is the development of a hybrid framework for the set similarity join operation for a
single GPU-equipped machine setting. Our framework encapsulates a partitioning mechanism to utilize appropriately
both the CPU and the GPU. We present all technical details and we show performance speedups up to 3.25x after
thorough evaluation.

Keywords: set-similarity join, GPU computing, CUDA

1. Introduction

Exact set similarity join is the operation of finding all
similar pairs between two collections of sets. Two sets are
considered similar only if their similarity degree is equal to,
or exceeds a user defined threshold. Because of its general-
ity, set similarity join is used in a wide range of application
domains including data mining [1], data cleaning [2] and
entity resolution [3].

Existing solutions proposed for the set similarity join
problem conform to a filter-verification framework. First,
in the filtering phase, potential candidate pairs are gen-
erated in order to be fully evaluated next, in the verifi-
cation phase. The pairs that successfully pass the veri-
fication phase are considered similar. Different filtering
techniques have been developed to accelerate the filtering
phase [2, 4, 5, 6, 7, 8]. However, it is now well established
from the work of Mann et al. [9], that most of the compu-
tational cost is spent on the filtering phase (for relatively
high thresholds) and also that sophisticated filtering hurts
overall performance.

The majority of the proposed techniques in literature
are implemented in a non-parallel setting. Nonetheless,
there have been previous studies for set similarity join in
a parallel setting, namely, using MapReduce and General-
Purpose GPU (GPGPU) paradigms. For the MapReduce
paradigm, Fier et al. [10] show in an experimental survey
that distributed solutions cannot scale efficiently and are
sensitive to certain data characteristics such as set size, set
element frequency, and also to query characteristics such
as threshold value.

On the other hand, there are more promising results
for the GPGPU paradigm as shown in [11]. Even so, em-
ploying the GPU may not be beneficial in some occasions.
More specifically, according to the experimental evidence
in [11], no globally dominant technique exists, and as also
reported in [10], it is extremely challenging to achieve high
speedups for the set similarity problem. Depending on the
dataset and query characteristics, each technique has its
own strong and weak points.
This work makes the following three contributions:

1. Motivated by the fact that in a single GPU-endowed
machine setting, no globally dominant technique ex-
ists, we develop a hybrid framework for the exact set
similarity join operation which utilizes concurrently
both the CPU and the GPU. Thus, we achieve an
execution overlap between both ends.

2. We propose a two-level partitioning scheme in order
to process the join operation conveniently on both
the CPU and the GPU. In addition, we present two
main approaches to handle the workload splitting, (i)
by using a concurrent queue, or (ii) by dichotomizing
the input appropriately.

3. We conduct extensive experiments on real world and
synthetic datasets and provide a thorough experi-
mental analysis. We show that our hybrid framework
can achieve speedup of up to 3.25x over the best
single-threaded CPU-standalone and GPU-enabled
techniques. We also show the benefits over multi-
threaded CPU solutions, where speedups are higher.

The rest of the paper is organized as follows: In Sec-
tion 2, we provide some preliminaries on the set similarity

Preprint submitted to Elsevier April 19, 2021

join problem alongside with the state-of-the-art solutions.
We present our framework in Section 3. We evaluate our
framework in Section 4 and discuss our findings in Sec-
tion 5. We give an overview of the related work in Sec-
tion 6. Finally, we conclude our study and discuss possible
future work in Section 7.

2. Background

In this section, we give a formal definition for the set
similarity join problem and introduce the state-of-the-art
solutions to tackle the problem. In addition, we give an
overview of how incorporating a GPU may lead to signifi-
cant speedup.

2.1. Problem Definition
Given collectionsR, S and a normalized threshold value

τn ∈ [0, 1], set similarity join is the operation of comput-
ing:

R ./ S = {(r, s) ∈ R× S|sim(r, s) ≥ τn}
where sim(·, ·) corresponds to a function used to calcu-

late the similarity degree between each (r, s) set pair. Sets
consist of elements from a finite universe E = {e1, e2, . . . , em}
with m the number of distinct elements.
Similarity Functions. To measure the similarity be-
tween sets, normalized similarity functions such as Jac-
card, Cosine and Dice are typically used. The given nor-
malized threshold τn is translated to an equivalent over-
lap τ and thus, a pair (r, s) is considered similar only if
|r ∩ s| ≥ τ . In addition, τn can be further used to denote
the set size range for all possible candidates of a set r.
Table 1 shows the τn translation and size bounds for the
Jaccard similarity function.
Self Join. Most commonly, the set similarity join is in-
vestigated as a self-join using only a single collection of
sets (R = S). However, non self-joins can be transformed
to self-joins as discussed in [5].
Data Layout. Set elements are sorted by their frequency
in increasing order, so that infrequent elements appear first
in a set. The sets of a collection are sorted first by their
size and then lexicographically within each block of sets of
equal size. An example collection R consisting of ten sets
is illustrated in Figure 1. In this figure, the sets are sorted
by their size in ascending order. For instance, consider the
set r8, the first element of which is the most infrequent
one in the complete dataset, i.e. e1 and in contrast, the
most frequent element, i.e. e16, is at the end. This data
layout is preferred in order to enable effective filtering, as
we explain next.

2.2. Existing Solutions
Existing solutions for the set similarity join problem

conform to a filter-verification framework (Algorithm 1)
with the majority focusing on how the filtering cost could
be decreased. As a result, several filters have been pro-
posed. We examine the most established and effective fil-
ters.

fe13; e15gr1

r2

r3

r4

r5

r6

r7

r8

r9

r10

fe4; e7; e13; e14; e16g
fe6; e9; e12; e15; e16g
fe9; e11; e14; e15; e16g
fe10; e13; e14; e15; e16g
fe8; e10; e11; e12; e14; e15; e16g
fe5; e8; e10; e11; e12; e13; e14; e16g
fe1; e2; e7; e8; e11; e13; e14; e15; e16g
fe3; e5; e9; e10; e12; e13; e14; e15; e16g
fe6; e8; e9; e10; e11; e12; e14; e15; e16g

Figure 1: An example collection of records R.

Algorithm 1 Filter-Verification Framework
Input: A collection of sets R, a threshold τn
Output: All similar pairs with sim(ri, rj) ≥ τn

1: I ←− index(R)
2: for each set ri ∈ R do
3: C ←− {}
4: for each element e ∈ preπi

(ri) do
5: if (ri, rj) < C and |rj | − pose(rj) + 1 ≥ τ then
6: C ←− C ∪ {(ri, rj)}
7: for each pair (ri, rj) ∈ C do
8: if |ri ∩ rj | ≥ τ then
9: output(ri, rj)

2.2.1. Filters
There are two basic filters that rely on the existence

of an index-like data structure, namely, the prefix and the
partition filter. Both have the highest filtering potential
among all filters found in literature. Based on which filter
they use, existing algorithms can be categorized into (i)
prefix-based, and (ii) partition-based.

Apart from basic filters, there are other simpler filters
that exploit the given threshold value and set size. Nev-
ertheless, more sophisticated filters exist, such as the one
presented in [12]. We give a concise description for each
of the examined filters below. We also omit the partition
filter since our framework’s basic filter is prefix-based.
Prefix filter. The first applied filter, called prefix-filter,
examines only two subsets called prefixes, one from each
sorted set in the candidate pair, and discards the pair if
there is no overlap between the prefixes. More specifically,
a prefix of a set ri, denoted as preπi

(ri) is formed by the
πi = |ri| − τ + l first tokens of the set, where l is the
required overlap. Thus (ri, rj) is considered a candidate
pair if

(a)

(b)

r3 e6 e9 e12 e15 e16

π3

r2 e4 e7 e13 e14 e16

π2

r10

9

e6 e8 e9 e10 e11 r3

5

e6 e9

(c) r4

5

e9 e11 e14 e15 e16 r3 e6 e9 e12 e15 e16

4

e12 e14 e15 e16 e12 e15 e16

Figure 2: Example of the most established filters: (a) prefix, (b)
length, (c) positional.

2

I(e1)

I(e2)

I(e3)

I(e4)

I(e5)

I(e6)

I(e7)

I(e8)

I(e9)

I(e10)

I(e11)

I(e12)

I(e13)

I(e14)

I(e15)

I(e16)

r8

r9

r2

r7 r9

r3 r10

r2

r6

r8

r7 r10

r9 r10

r7 r9 r10

r6 r7 r8

r6 r7 r9 r10

r2 r7 r8 r9

r10

r3

r1

r2 r5 r6 r7 r8

r3 r4 r6 r8

r3 r4 r5 r6 r7 r8 r9 r10

r9 r10

r9 r10r4

r1

r2

r3 r4

r4

r5

r5

r6

r8

r5

Figure 3: The complete inverted index for collection R. The materi-
alized index is highlighted in gray cells (τn = 0.8, l = 1).

|preπi(ri) ∩ preπj (rj)| ≥ l
In Figure 2(a), for τn = 0.8→ τ = 5 and l = 1, there is

no overlap between the respective set prefixes, thus, even
if there is an overlap on the remaining tokens, any overlap
threshold set to 5 or higher cannot be reached, and in such
cases, the candidate pair can be safely pruned. Since sets
in R are processed in increasing size order, no candidate set
rj is longer than the current probing set ri. This enables
the use of shorter prefixes of size πi = |ri| − dlbrie + l for
indexing which consequently results in a smaller inverted
index. An example of such inverted index can be seen in
Figure 3.
Length filter. Another filter, known as length filter,
takes advantage of the normalized similarity functions de-
pendency on set size. Hence, a set rj is considered a can-
didate pair of ri if

lbri
≤ |rj | ≤ ubri

In Figure 2(b), if τn = 0.8, the shown candidate pair
(r10, r3) is pruned by length filter despite the prefix overlap
because set r10 requires a candidate set rj of size 8 ≤ |rj | ≤
11.
Positional filter. Given the first match position for an
element e, denoted as pose, positional filter evaluates if a
candidate pair can ultimately reach the required overlap.
Thus (ri, rj) is a candidate pair if

|rj | − pose(rj) + 1 ≥ τ
As an example, in Figure 2(c), the first match position

is pose9(r3) = 2, and thus for τn = 0.8 → τ = 5, the pair
(r4, r3) is pruned since the remaining tokens from set r3
are not enough to reach the required overlap.
Bitmap filter. The authors of [12] propose a new low
overhead filtering technique called bitmap filter. Essen-
tially, the bitmap filter uses hash functions to create sig-
nature bitmaps of size b for the input collection sets. Thus,
the initial collection elements are mapped in a fixed bitmap
space. Without compromising the exactness of set similar-
ity join, bitmap filter can deduce an overlap upper bound
for a candidate pair. If the upper bound is less than
the minimum required overlap the candidate can be safely
pruned. More formally, (ri, rj) is considered a candidate
pair if

e3

⊕

e5 e9 e10 e12 e13 e14 e15 e16

0 1br10

e5r7 e8 e10 e11 e12 e13 e14 e16

0 1 0 1 0 0 1 1 0 1 0 1 1 1

0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0

0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1br7

r9

Figure 4: Candidate pair (r9, r7) can be safely pruned for τn =
0.8 → τ = 8 since its expected overlap upper bound is 7 (Adapted
from [12]).

b
|ri|+ |rj | − popcount(bri ⊕ brj)

2 c ≥ τ

with bri ,brj the bitmap signatures of ri,rj respectively,
and popcount the operation of counting the hamming dis-
tance of the bitmap signatures. Figure 4 illustrates the
application of bitmap filter on the (r9, r7) candidate pair.

2.2.2. CPU Algorithms
The main difference between existing CPU algorithms

for set similarity join is observed in the filtering phase and
specifically on what filters each employs. We summarize
the best three among seven state-of-the-art main memory
algorithms as reported in [9]. The first algorithm to in-
volve the prefix and length filters, noted as AllPairs, was
proposed in [4]. The authors of [5] introduce PPJoin, ex-
tending AllPairs by applying the positional filter during
candidate generation. Last, in [6] introduce GroupJoin as
an extension to PPJoin. In GroupJoin sets with identical
prefix are grouped together and each group is handled as a
single set. This results in faster filtering, as candidate pairs
are discarded in batches. During the verification phase,
the candidate pairs are expanded.

The key observation provided in [9] is that all the evalu-
ated algorithms have small performance differences except
those which involve sophisticated filtering and that future
techniques should investigate on lower overhead filters. To
this end, the authors of [12], developed and incorporated
bitmap filter on the best performing CPU algorithms. As
a result, they manage to achieve speedups of up to 4.50×.

2.2.3. Leveraging Set Relations
The majority of the techniques proposed for set sim-

ilarity join examine each set independently. This results
in an accumulated computational cost and possible work
overlap. Motivated by this, Wang et al. [13] introduce two
skipping techniques, on top of prefix-based methods, which
leverage relations among sets and achieve a computational
cost decrease through shared computations.

Moreover, in the first skipping technique, noted as index-
level skipping, the inverted index is rearranged so that set
elements indexed in the same inverted list are partitioned
into different blocks. Each block consists of sets of the

3

same size and its entries are sorted in non-decreasing or-
der of the set element position on the corresponding sets.
Thus, for a probe set, whenever an entry fails the posi-
tion filter all the remaining unprobed entries in the same
block are skipped. This also applies for the next sets to
be evaluated. As a result, by exploiting index relations
among sets, there is a significant reduction on the amount
of redundant index probes.

The second skipping technique, noted as answer-level
skipping, takes advantage of the possibility that two simi-
lar sets may also have similar answer-sets. An answer-set
A(ri) is defined as the collection of similar sets for set
ri. For each similar set record rj where (ri, rj) ∈ A(ri),
using a cost estimation, it is determined if A(rj) will be
computed from scratch or derived from A(ri). The latter
leads to a complete skip of the rj evaluation.

2.2.4. Using the GPU
Set similarity join is mostly investigated in a non-parallel

environment. As shown in [11], prominent speedups for set
similarity join in a parallel environment emerge from in-
corporating the GPGPU paradigm. The techniques that
employ the GPU fall into two categories: (i) those that
move the whole workload on the GPU, and (ii) those that
split the workload between the CPU and the GPU. We
give a concise overview of each category below.

Standalone GPU. To process collections of arbitrary size,
state-of-the-art standalone GPU techniques adopt a block
partitioning scheme. Thus, the input collection is divided
into blocks that fit in GPU memory. Workload is evenly
distributed among GPU cores using the inverted index
in case of prefix filter or by bitmap signatures in case of
bitmap filter. In general, the GPU outperforms single core
implementations and can lead up to two orders of magni-
tude speedup. However, this is not always the case. In
particular, to conduct the join, the GPU must allocate and
process an O(n2) memory space on each invocation. This
results in an accumulated overhead, which may dominate
runtime1.

Cooperative CPU-GPU. In certain cases, where the GPU
standalone techniques do not perform better than single
core implementations, a cooperative solution that splits
workload among CPU and GPU is preferred. More specif-
ically, filtering is conducted on the CPU, while verification
is delegated to the GPU. As a result, there is an execu-
tion overlap which leads up to 2.5x speedup over the single
threaded CPU implementations [14], which is a previous
work of ours. In the current work, we also combine CPU
and GPU but in a different manner; where the technique
in [14] can be combined with CPU-only solutions.

Table 1: Normalized threshold τn translation and size bounds for
the Jaccard(r, s) = |r∩s|

|r∪s| similarity function (Adapted from [9]).

Equivalent overlap (τ) τn

1+tn (|r|+ |s|)
Size lower bound (lbr) τn|r|

Size upper bound (ubr) |r|
τn

Table 2: Notation summary.
Notation Description

R = {r1, . . . , r|R|} A collection of records
E = {e1, . . . , e|E|} Element universe set

Ri = Ri1 ∪ · · · ∪Ri|Ri| A partition of blocks
Rij The j-th block of the i-th partition
τn Normalized threshold
n Block size
p Number of partitions

3. Framework

In this section, we present our hybrid framework. With
the exception of the cooperative CPU-GPU technique, ev-
ery other technique works as standalone on either the CPU
or the GPU. Consequently, this results to inactivity of the
other end. The main goal of our framework is to minimize
this inactivity by splitting the join workload in smaller
chunks and utilize both ends efficiently.

First, we introduce our partitioning scheme which lever-
ages two existing GPU-based techniques [15, 14] and com-
bines them with CPU-based solutions. Next, we propose
two workload allocation strategies to utilize both the CPU
and GPU. Finally, we give a concise overview of our frame-
work’s pipeline and provide further details on the imple-
mentation.

3.1. Partitioning Scheme
CPU-standalone techniques process the complete join

in a loop-style fashion where each iteration outputs similar
sets for a specific set. On the other hand, GPU-standalone
techniques process the complete join in batches due to the
GPU’s limited memory space and inefficiency in dynamic
memory allocation. We conform to a two-level partitioning
scheme that supports both.

Our two-level partitioning scheme is composed of two
type of segments: (i) block, and (ii) partition. On the first
level, input collections are divided into blocks of size n so
that the required O(n2) memory space fits in the GPU.
On the second higher level, input collections are divided
into p partitions. Essentially, a partition Ri is a segment
consisting of a sequence of blocks (Ri0, Ri1 . . . , Ri|Ri|). Fig-
ure 5 illustrates our partitioning scheme. We summarize
frequently used notations in Table 2.

1We refer the reader to [11] for more details on the quadratic
space overhead.

4

R

S

R1 R2

S1

S2

R
2

2
⊲⊳ S

1

4

n

Figure 5: Partitioning scheme, each both input collections are di-
vided into partitions (p = 2) that are composed of blocks of size
n.

S1

R1 Queue

R1

1
⊲⊳ S1

1

R1

2
⊲⊳ S1

1

. . .

R1

4
⊲⊳ S1

4

CPU

GPU

Figure 6: Concurrent queue workload allocation strategy.

3.2. Workload Allocation Strategies
In order to utilize both ends concurrently and effi-

ciently, workload allocation is of paramount importance.
Based on the partitioning scheme, the GPU supports only
joins between blocks, whereas the CPU supports also joins
between partitions. In respect to this, we develop two
workload allocation strategies. We describe each strategy
below.

Concurrent Queue. The most evident approach to keep
both the CPU and GPU utilized is by splitting the com-
plete join workload into smaller joins and have each end,
as soon as it becomes available, process a portion of them.
Hence, we split the join matrix into pairs of blocks which
are used to populate a concurrent lock-free queue. Thus,
both ends can run concurrently and independently until
the queue is empty. An overview of our concurrent queue
strategy is depicted in Figure 6.

Dichotomy. Another approach is by dichotomizing the com-
plete join workload. To achieve this, we split the probe col-
lection into two partitions (p = 2), i.e. two separate joins
between partitions, and assign each to either the CPU or
the GPU. For the GPU, the partition join is decomposed
to joins between blocks. Figure 7 illustrates the dichotomy
work allocation strategy.

Table 3: An overview of the applicable filters.
CPU GPU CPU-GPU

main prefix
bitmap

auxiliary length
positional

S1

R1 R2

S1

R1 R2

S1

GPU CPU

Figure 7: Dichotomy workload allocation strategy.

R

S

S

R

CPU

GPU/CPU-GPU

Output

Partitioning

Indexing

Join

Bitmap

Preparation

Generation

Figure 8: Framework pipeline.

3.3. Overview and Technique Selection
Since there is no dominant solution for the set similar-

ity join problem as shown in [11], our framework must en-
capsulate the best performing techniques. We enumerate
three categories of available techniques, (i) CPU-standalone
and (ii) GPU-standalone, where the complete join is con-
ducted exclusively on either side, and (iii) cooperative
CPU-GPU where filtering is conducted on the CPU and
verification on the GPU.

We categorize the applicable filters per category of tech-
niques into (i) main, i.e. those which require an external
structure (either an index or bitmap signatures), and (ii)
auxiliary, i.e. those which exploit only set size to deter-
mine if the required overlap can be met. Table 3 summa-
rizes the filters used in our framework. Bitmap can also
be used as a main filter for the CPU-enabled techniques
alongside prefix filter. However, the speedup gains in this
case for the best performing CPU techniques are relatively
small, up to 1.35x on average [12]. In addition, length fil-
ter can also be used at block level which enables pruning
of whole blocks.

Figure 8 depicts our framework’s pipeline. Initially we
partition input collections and proceed to the preparation
step where, based on our work allocation strategy, we build
the inverted index, and if necessary the bitmap signatures.
Then, we launch two separate threads, (i) a CPU-only
thread that executes only CPU-standalone techniques, and
(ii) a GPU-enabled thread that may run GPU-standalone
or cooperative CPU-GPU techniques. Both these threads
run in parallel until the whole process is finished.

In order to determine the most effective filters and tech-
niques per execution, we rely on the findings of the work
presented in [11]. There, the authors distinguish three key
dataset characteristics, (i) dataset cardinality, (ii) average
set size, and (iii) the number of different elements, and
discuss on how they affect the performance. Dataset car-
dinalities in the order of 105 are referred to as small, the
ones in the order of 106 medium, and those in 107 as large.
When the average set size is less than 10, it is referred to
as small; otherwise, as large. Finally, the number of dif-

5

ferent elements is characterized as small up to the order of
104, and otherwise, as large.

Table 4 presents the summary of the best performing
techniques as reported in [11]. We consider threshold val-
ues of 0.9 as very high, 0.8 as high and 0.5−0.7 as medium.
We do not consider threshold values lower than 0.5 where
filtering is not effective and only the alternative of brute-
forcing the output is the best performing approach. As it
can be seen in Table 4, the GPU-standalone prefix tech-
nique handles better non large datasets on medium and
high threshold values. As the dataset cardinality increases,
cooperative CPU-GPU techniques tend to perform better
on medium and high thresholds. Respectively, the CPU-
standalone prefix technique remains competent regardless
of the dataset cardinality on very high thresholds. Last,
the GPU-standalone bitmap technique is quite efficient on
medium thresholds for medium dataset cardinalities com-
bined with low number of different elements and high av-
erage set size.

By using the findings of [11] as a baseline, we transit
to a hybrid solution more conveniently. More specifically,
since we have a good overview on each technique’s strong
and weak points, we can select the best performing ones
per scenario and adapt them to our work allocation strate-
gies. For example, it is evident that for large datasets and
high to very high thresholds, the GPU-standalone tech-
niques do not perform well. Therefore, in these cases,
we prefer to run concurrently CPU-standalone techniques
alongside cooperative CPU-GPU techniques. We provide
further details in Section 4.

Algorithm 2 Hyset Queue
Input: R, n, τn, Bitmap size bmp
Output: All similar pairs with sim(ri, rj) ≥ τn

1: blocks←− divide(R,n)
2: I ←− {}
3: for each block bi ∈ blocks do
4: I ←− I ∪ {index(bi, τn), offsets(bi)}
5: bitmaps←− {}
6: if bmp > 0 then
7: bitmaps←− constructBitmaps(R, bmp)
8: queue←− populate(blocks)
9: while queue , ∅ do

10: cpuJoin(queue.pop(), I, τn)
11: gpuJoin(queue.pop(), I, bitmaps, τn)

Runs in parallel

Runs in parallel

3.4. Implementation details
We give an algorithmic overview of our two work allo-

cation strategies in Algorithms 2 and 3. In order to incor-
porate the state-of-the-art techniques in a single frame-
work, there are some implementation peculiarities. The
first one concerns how index data might be shared be-
tween the CPU and GPU, while the second one concerns

Algorithm 3 Hyset Dichotomy
Input: R, n, τn, Bitmap size bmp, Dichotomy point x
Output: All similar pairs with sim(ri, rj) ≥ τn

1: R0 ←− R[0− x)
2: R1 ←− R[x− |R|)
3: I0 ←− {index(R0, τn), offsets(R0)}
4: bitmaps←− {}
5: if bmp > 0 then
6: bitmaps←− constructBitmaps(R, bmp)
7: cpuJoin(R0, I0, τn)
8: gpuJoin(R1, R, bitmaps, n, τn)

the effect of the selected work allocation strategy on the
indexing step.

Since prefix filter is supported in every category of tech-
niques, we design a uniform inverted index structure in
order to be used by both the CPU and GPU conveniently.
Thus, the inverted index consists of two linear memory ar-
rays, (i) index, and (ii) offsets. The former holds inverted
lists in a sequence, while the latter is used to delimit each
inverted list boundaries.

We delegate indexing to the GPU since it can be re-
garded as a composition of two primitives, sort and prefix
sum, in which the GPU excels the CPU. However, de-
pending on the selected work allocation strategy, there are
different memory requirements. For the concurrent queue,
since joins are conducted at a block level, the required
memory space for the offsets array is increased by a factor
of |R|

n . On the other hand, that is not the case for the
partition join, since the inverted index is constructed at
a partition level and the required memory for the offsets
array is increased only by a factor of p.

In addition, we note that for the concurrent queue, the
complete inverted index is constructed on the GPU and
copied back in main memory where it resides throughout
the complete process (Algorithm 2, lines 3-4). Whenever
the GPU is to conduct a block join, we transfer the corre-
sponding block’s inverted index to the GPU memory. In
case of dichotomy, we build the inverted index to be used
by the CPU beforehand (Algorithm 3, line 3) and con-
struct every inverted index required for a block join on
the GPU (Algorithm 3, line 8) on the fly .

For the bitmap filter, since it is only available for the
GPU part, we generate and store all bitmap signatures
in the GPU memory (Algorithm 2, lines 6-7, Algorithm
2, lines 5-6). Thus, for both work allocation strategies,
the CPU relies on the inverted index whereas the GPU is
index-independent.2

4. Evaluation

In this section, we experimentally evaluate our hybrid
framework with the state-of-the-art techniques found in

2Source code is publicly available from
https://github.com/chribell/hyset.

6

Table 4: Summary of the best techniques as reported in [11].
Dataset cardinality - Average set size

τn small-small small-large medium-large large-small large-large
Very high (0.9) GPU-prefix CPU-prefix CPU-prefix GPU-prefix CPU-prefix CPU-prefix CPU-prefix CPU-GPU

High (0.8) GPU-prefix GPU-prefix GPU-prefix CPU-GPU CPU-GPU CPU-GPU
Medium (0.5-0.7) GPU-prefix GPU-prefix GPU-prefix GPU-bitmap CPU-GPU GPU-prefix CPU-GPU

Table 5: Dataset characteristics.
Dataset Cardinality Average set size # different elements

original
AOL 1.0 · 107 3 3.9 · 106

BMS 5.1 · 105 6.5 1657
DBLP-200K 2.0 · 105 88 8817
DBLP-300K 3.0 · 105 88 1.0 · 104

DBLP-1M 1.0 · 106 88 1.5 · 104

ENRON 2.5 · 105 135 1.1 · 106

KOSARAK 1.0 · 106 8 4.1 · 104

LVJ 3.1 · 106 36.5 7.5 · 106

ORKUT 2.7 · 106 120 8.7 · 106

TWITTER 1.6 · 106 75 3.7 · 104

increased
BMS-25 1.3 · 107 6.5 1681
ENRON-25 6.1 · 106 135 1.1 · 106

LVJ-5 1.5 · 107 36.5 7.5 · 106

Table 6: Synthetic datasets’ characteristics.
Cardinality 5M, 10M, 20M
different elements 50K, 500K
Average set size 5, 25

literature and conduct in-depth analysis of the results. We
begin by providing some preliminaries on our experimen-
tal environment and dataset characteristics. We proceed
with our main experiments and evaluate our work allo-
cation strategies. Finally, we report end-to-end runtimes
and conclude with some overall observations.

4.1. Experimental Environment
In order to incorporate the CPU-standalone techniques

and the cooperative CPU-GPU techniques to our frame-
work, we modify the original implementations, provided
by [9] and [11] respectively. For the GPU-standalone tech-
niques we use the implementation of [15] for the prefix
filter and of [11] for the bitmap filter.

The experiments were conducted on a machine with an
Intel i7 5820k clocked at 3.3 GHz, 32 GB RAM at 2400
MHz and a NVIDIA Titan XP on CUDA 10.1. This GPU
has 3840 CUDA cores, 12 GB of global memory and a
384-bit memory bus width. We compile our code with
g++/nvcc with the -O3 flag.

We focus on self-joins using the Jaccard similarity and
encapsulate in our framework, main-memory techniques
on a single machine as in previous works [9, 11]. Thus,
datasets alongside any other required data, must fit in the
RAM main-memory of the host machine. We perform an
aggregation on top of the set similarity join to measure the
count of the results but after producing the full result set.

The reported runtime for each experiment, noted as
join time, is the average over 3 independent runs. Since
there is no significant deviation, no higher number of re-
peated runs is needed. We do not include any data prepro-
cessing and initial I/O read time unless explicitly stated.
Note that GPU data transfer times (i.e., transferring the
initial datasets and/or the indices from RAM to the GPU
and the results from the GPU to RAM) are also included
in the join time. We measure the total join time with the
std::chrono library. Correspondingly, we use the CUDA
event API to measure the GPU operations.

We conduct experiments on three types of datasets: (i)
original, choosing the real-world datasets that have been
previously used in the literature, (ii) increased, where we
inflate specific original datasets by an appropriate factor
in order to test the performance in even greater datasets,
and (iii) synthetic, where we create artificial datasets using
different combinations of dataset characteristics. Table 5
shows an overview of the characterictis of each original and
increased dataset. Accordingly, for the synthetic datasets
the combination of characteristics are listed in Table 6.
The original datasets can be found in [9] and [11]. We
describe the steps followed to reproduce the increased and
synthetic datasets further below.

4.2. Main Experiments
We compare our two hybrid work allocation strategies

denoted as queue and dichotomy with the state-of-the-art
single threaded CPU-standalone and GPU-enabled tech-
niques for the set similarity join. We present the best
join times measured for all the techniques for the original
datasets in Table 7 and our speedups in Table 8. Respec-
tively, for the increased datasets, the join times are pre-
sented in Table 9 and our speedups in Table 10. Last, for
the synthetic datasets, the join times are presented in Ta-
ble 11 and our speedups in Table 12. We note every unsuc-
cessful test, either due to memory constraints or very long
run time, as not available (N/A). Each time reported for
the CPU is the overall best among the three best perform-
ing algorithms (i.e. Allpairs, PPJoin, GroupJoin) as stated
in [9]. To account for advances after the publication of [9],
we also report times for the skipping algorithm presented
in [13], denoted as SKJ, which has a single threaded CPU
implementation. The source code of SKJ was provided by
the authors of [13]. Respectively, for the CPU-GPU each
time reported is the overall best among the three CPU
algorithms and the best GPU verification techniques de-
scribed in [14]. For the GPU, each time reported is the
best between the total times for all the GPU operations

7

required to perform the set similarity join, using either the
prefix or bitmap filter in line with the discussion in Section
3.3.

We conduct experiments for all the original datasets
in the threshold range τn ∈ [0.5 − 0.9]. Respectively, for
all the increased and synthetic datasets, we narrow the
threshold range to τn ∈ [0.7− 0.9] due to large overall join
times. In addition, for our partitioning scheme, we set a
global block size n = 10000. In general, this block size is
smaller than the available GPU global memory available
(after storing the data and indices), but we have found that
it leads to lower amortized overhead for memory cleaning
and more efficient length filtering at the block level. We
analyze the experimental results for each dataset category
in turn.

Original datasets. We present the main results in Table 7,
where, the dichotomy technique is restricted so that each
type of device is allocated at least 20% of the workload. As
can be seen from the table, in 70% of the cases, our hybrid
techniques achieve speedup over the state-of-the-art tech-
niques. We observe 1.68x speedup on average, with the
largest one achieved at 3.05x for the ORKUT dataset with
τn = 0.9. Table 8 provides an overview of the speedups
per dataset and per threshold for the original datasets.

On the other hand, for the rest 30% of the combinations
of datasets and thresholds, none of the hybrid techniques
yield any performance speedup, when the dichotomy tech-
nique is forced to allocate at least 20% to a second type of
device. This happens for three reasons. First, in certain
datasets such as BMS, DBLP with its variations and LVJ,
for very high thresholds, i.e. τn = 0.9, standalone prefix
filtering is quite effective and the overall join times are in
general very low; in these cases the queue-based hybrid
technique is slightly worse than the optimal solution. Sec-
ond, for datasets such as DBLP-1M and TWITTER with
threshold τn ∈ [0.5 − 0.8], GPU-standalone bitmap filter
is the fastest solution due to its high filtering ratio (ef-
fectiveness) and efficiency. In contrast, incorporating the
CPU by using prefix filter in such cases only adds over-
head. Third, there is the case of AOL dataset, where for
threshold τn ∈ [0.5− 0.6], the skipping algorithm SKJ [13]
is the fastest solution.

We defer the discussion about the cases where SKJ
dominates when we consider the synthetic datasets. Re-
garding the first and second reasons above, we need to
stress that they are direct consequence of splitting the
workload in the dichotomy technique so that a processor
takes at least 20% of the workload. If we allowed either
CPU or GPU to process up to 100% of the workload and
we had a mechanism to derive the optimal splitting point,
then the dichotomy would be the best performing solution
in all cases, apart from those where SKJ dominates (96%
of the cases).

The bottom line of our observations is that the hybrid
framework, even without fine-tuning is capable of yield-
ing tangible benefits. If we perform fine tuning and al-

low dichotomy to split the workload arbitrarily, then the
dichotomy would perform better than what reported in
Table 7, while queue-based hybrid would become obsolete.

Increased datasets. We artificially increase the BMS, EN-
RON and and LVJ datasets using the method employed
in [16]. When increasing the datasets, the benefits of
our hybrid solutions become even more significant. As
reported in Table 9, for the 89% of the total experiments,
we measure 1.94X speedup on average, with the largest
speedup observed being 3.25X for the ENRON-25 dataset
with τn = 0.7. Please note the threshold in these experi-
ments is 0.7 to 0.9; for lower threshold, the speedups in-
crease on average. As an exception, for the LVJ-5 dataset
with τn = 0.7 the SKJ algorithm is faster.

The respective speedups for the original datasets is
1.26X, i.e., our hybrid techniques achieve further improve-
ment by 70%. We present the exact speedups in Table 10.
When the prefix filter is efficient, both the CPU and GPU
can contribute greatly to the set similarity join. Hence,
when the dataset cardinality increases, our hybrid tech-
niques can utilize both edges quite effectively and as a
result, speedups become more evident. However, we note
the inability to run our queue hybrid flavor due to memory
constraints in some cases. We further analyze the queue’s
memory cost in Section 4.3.

Synthetic datasets. We create twelve artificial datasets us-
ing the combination of characteristics list in Table 6. In
addition, the synthetic follow a zipf-like element frequency
distribution. We use the original script provided by the
authors of [9]. To distinguish each dataset, we use the no-
tation Dataset cardinality - Number of different elements
- Average set size.

The aggregate results for the synthetic datasets are pre-
sented in Table 11. For the 44% of the total experiments
our hybrid techniques achieve 1.48X speedup on average.
The largest speedup measured is 2.22x for the 10M-500K-
5 with τn = 0.9. For the rest 56%, SKJ achieves 2.08X
speedup on average over the state-of-the-art and 1.49X
over our hybrid techniques. Table 12 shows the speedups
of our hybrid techniques for the synthetic datasets. By
comparing the hybrid solutions against SKJ, we see a pat-
tern on the runtimes which is independent of the dataset
cardinality and, instead, is mainly based on the number
of different elements and average set size or a combination
of both. When the average set size is small (5), hybrid
techniques perform well since prefix filtering on both the
CPU and GPU remain competent, especially for threshold
τn ≥ 0.8. However, as the average set size increases, SKJ
performs better because of the computational cost sharing
it encapsulates. In addition, with the combination of a low
number of different elements (50K), sets have higher prob-
ability of sharing common elements, which favors SKJ.

However, when SKJ behaves better, we need to keep in
mind that SKJ is constructed in a different manner, where
indexing is performed out of the filtering phase. Thus, the

8

Table 7: Join Times for the original datasets (in seconds).
Threshold τn

0.5 0.6 0.7 0.8 0.9

A
O

L

CPU 276.16 69.32 10.41 3.23 1.21
GPU 693.21 466.36 310.14 239.87 202.56
CPU-GPU 207.12 50.41 7.31 2.52 1.01
SKJ 126.74 29.71 7.22 3.67 2.16
Queue 142.63 65.42 29.13 20.78 16.92
Dichotomy 163.12 49.31 6.00 2.47 0.74

D
BL

P-
20

0K

CPU 442.30 228.59 104.11 23.13 2.33
GPU 8.21 6.73 4.39 1.47 0.41
CPU-GPU 201.60 128.08 57.83 19.14 2.81
SKJ 615.02 212.01 52.11 8.14 0.86
Queue 4.64 4.16 2.81 1.68 0.54
Dichotomy 3.81 3.51 2.80 2.09 1.77

D
BL

P-
1M

CPU N/A N/A 4560.34 1157.92 96.76
GPU 72.97 40.09 29.11 16.95 6.76
CPU-GPU N/A N/A 2023.29 463.16 41.17
SKJ N/A N/A N/A 234.06 16.60
Queue 63.60 44.61 35.53 19.5 6.91
Dichotomy 102.86 41.63 33.44 17.13 6.93

K
O

SA
R

A
K

CPU 113.57 30.66 10.22 7.33 7.05
GPU 12.2 6.23 3.35 2.63 2.24
CPU-GPU 100.5 26.69 7.66 5.01 4.63
SKJ 52.10 13.40 5.27 4.38 4.13
Queue 9.37 3.74 1.74 1.16 0.95
Dichotomy 18.99 6.06 3.22 2.41 2.01

O
R

K
U

T

CPU 161.40 59.51 24.13 9.72 3.23
GPU 78.08 38.73 19.60 10.49 5.32
CPU-GPU 128.58 57.51 23.73 10.32 3.36
SKJ 397.64 128.28 46.14 19.58 9.46
Queue 97.28 42.99 20.90 12.05 8.26
Dichotomy 27.41 13.87 6.87 3.18 1.61

Threshold τn
0.5 0.6 0.7 0.8 0.9

BM
S

CPU 41.12 13.67 4.20 1.06 0.50
GPU 3.51 2.07 1.09 0.83 0.60
CPU-GPU 27.36 9.51 3.19 1.14 0.31
SKJ 19.99 6.38 2.22 0.88 0.34
Queue 3.08 1.62 0.89 0.59 0.39
Dichotomy 4.39 2.49 1.37 1.03 0.79

D
BL

P-
30

0K

CPU 1151.44 569.53 215.72 52.67 5.58
GPU 17.20 14.18 9.86 3.21 0.79
CPU-GPU 473.15 278.32 135.24 39.87 6.89
SKJ 1498.01 519.65 122.58 18.55 1.72
Queue 10.11 6.94 4.85 3.23 0.84
Dichotomy 12.70 5.35 4.38 3.04 2.07

EN
RO

N

CPU 38.12 11.47 3.64 1.06 0.27
GPU 4.37 1.98 0.99 0.65 0.27
CPU-GPU 33.03 10.21 3.47 1.09 0.29
SKJ 36.57 10.02 3.15 1.41 0.67
Queue 7.69 3.15 1.34 0.70 0.46
Dichotomy 3.14 1.76 0.92 0.47 0.25

LV
J

CPU 277.03 70.34 17.21 4.72 1.35
GPU 64.7 36.73 21.98 13.47 6.82
CPU-GPU 187.73 49.56 13.82 4.46 1.36
SKJ 235.23 145.51 97.03 50.25 25.67
Queue 71.96 33.33 16.41 9.48 6.22
Dichotomy 54.49 26.94 9.12 3.51 1.82

T
W

IT
T

ER

CPU N/A N/A 4697.91 897.66 63.39
GPU 114.01 83.47 47.7 29.86 9.56
CPU-GPU N/A N/A 3001.98 557.41 46.19
SKJ N/A N/A 1385.29 189.09 16.17
Queue 143.36 107.95 64.04 37.96 8.55
Dichotomy 136.75 110.51 64.54 42.09 9.62

Table 8: Speedups for the original datasets.
Threshold τn Overall0.5 0.6 0.7 0.8 0.9

AOL - - 1.2 1.02 1.36 1.19
BMS 1.13 1.27 1.22 1.4 - 1.26
DBLP-200K 2.15 1.91 1.56 - - 1.88
DBLP-300K 1.7 2.65 2.25 1.05 - 1.91
DBLP-1M 1.14 - - - - 1.14
ENRON 1.39 1.12 1.07 1.38 1.08 1.21
KOSARAK 1.3 1.66 1.92 2.26 2.35 1.9
LVJ 1.18 1.36 1.51 1.27 - 1.33
ORKUT 2.84 2.79 2.85 3.05 2 2.71
TWITTER - - - - 1.11 1.11
Overall 1.6 1.82 1.77 1.74 1.81

join times reported thus far, in all techniques apart from
SKJ, include indexing. On the other hand, SKJ’s index-
ing can be deemed as a cost that can be easily amortized
when multiple similarity queries are submitted on the same
dataset.

4.3. Performance analysis
We proceed to the performance analysis and compar-

ison between our hybrid solutions and discuss how each
one can be used. Furthermore, we highlight the memory
cost of the queue technique, especially for datasets with
large number of different elements. Finally, we discuss the
necessity of choosing a good splitting point and emphasize
its impact on the overall performance for the dichotomy
technique.

Table 9: Join times for the increased datasets (in seconds).
Threshold τn

0.7 0.8 0.9

BM
S-

25

CPU 7387.55 2875.11 1247.35
GPU 705.65 420.69 255.16
CPU-GPU 4752.49 1686.74 725.56
SKJ 1825.30 561.79 146.16
Queue 416.25 201.20 91.10
Dichotomy 832.26 514.00 293.94

EN
RO

N
-2

5

CPU 2176.58 265.70 16.63
GPU 1115.32 471.59 37.74
CPU-GPU 1688.64 224.80 20.30
SKJ 955.03 138.91 31.32
Queue 405.58 94.87 21.20
Dichotomy 293.28 91.11 11.73

LV
J-

5

CPU 328.44 55.25 9.12
GPU 527.75 307.2 133.93
CPU-GPU 252.86 45.69 8.85
SKJ 140.11 39.63 15.62
Queue N/A N/A N/A
Dichotomy 152.71 24.68 3.81

Table 10: Speedups for the increased datasets.
Threshold τn Overall0.7 0.8 0.9

BMS-25 1.69 2.09 1.6 1.79
ENRON-25 3.25 1.52 1.41 2.06
LVJ-5 - 1.6 2.32 1.94
Overall 1.77 1.74 1.81

4.3.1. Queue vs Dichotomy
In order to compare our hybrid techniques, we measure

the gap factor, i.e. the gap between the fastest and the

9

Table 11: Join time for the synthetic datasets (in seconds).
Threshold τn

0.7 0.8 0.9

5M
-5

0K
-5

CPU 25.77 20.19 1.10
GPU 110.39 77.38 33.08
CPU-GPU 20.17 4.25 0.97
SKJ 11.64 4.07 1.20
Queue 19.47 7.47 2.76
Dichotomy 14.86 3.32 0.7

5M
-5

0K
-2

5

CPU 517.40 123.19 15.37
GPU 1115.32 471.59 37.74
CPU-GPU 399.64 93.27 12.40
SKJ 133.78 31.87 5.65
Queue 164.93 77.29 22.81
Dichotomy 192.77 75.10 11.52

5M
-5

00
K

-5

CPU 8.04 2.30 0.58
GPU 112.53 79.19 34.31
CPU-GPU 6.46 2.00 0.63
SKJ 5.16 2.00 1.09
Queue 15.87 7.72 2.87
Dichotomy 4.96 1.40 0.25

5M
-5

00
K

-2
5 CPU 71.54 20.13 4.87

GPU 255.58 172.18 83.06
CPU-GPU 57.97 16.29 4.30
SKJ 31.40 10.78 4.50
Queue 90.30 46.70 15.16
Dichotomy 40.48 11.07 2.76

Threshold τn
0.7 0.8 0.9

10
M

-5
0K

-5

CPU 104.98 18.47 3.37
GPU 446.68 308.60 128.90
CPU-GPU 82.28 15.00 3.18
SKJ 46.21 14.89 3.11
Queue 74.19 26.28 8.92
Dichotomy 60.55 10.46 1.92

10
M

-5
0K

-2
5 CPU 2137.76 511.87 55.63

GPU 1163.30 744.10 338.31
CPU-GPU 1620.20 370.30 43.67
SKJ 574.88 132.23 16.88
Queue 659.10 300.57 83.84
Dichotomy 820.61 335.10 44.17

10
M

-5
00

K
-5

CPU 30.26 6.95 1.40
GPU 444.42 321.22 133.07
CPU-GPU 24.29 5.70 1.54
SKJ 16.61 5.55 2.20
Queue 56.68 26.64 8.75
Dichotomy 18.22 4.21 0.69

10
M

-5
00

K
-2

5 CPU 285.25 71.06 13.40
GPU 1019.61 685.91 328.83
CPU-GPU 226.80 56.11 11.31
SKJ 107.05 33.25 9.96
Queue 352.05 177.90 53.98
Dichotomy 174.68 42.72 8.54

Threshold τn
0.7 0.8 0.9

20
M

-5
0K

-5

CPU 422.20 66.17 11.83
GPU 1793.57 1238.00 512.68
CPU-GPU 346.82 54.31 10.56
SKJ 199.36 60.15 9.08
Queue 284.10 97.01 31.23
Dichotomy 254.44 36.26 6.30

20
M

-5
0K

-2
5 CPU 9145.80 2168.53 206.27

GPU 4653.30 2976.64 1348.73
CPU-GPU 6577.16 1563.72 161.67
SKJ 2417.44 585.28 64.83
Queue 2617.97 1185.89 318.88
Dichotomy 3508.65 1459.78 99.45

20
M

-5
00

K
-5

CPU 114.66 22.11 3.87
GPU 1783.23 1257.41 528.55
CPU-GPU 90.35 17.73 3.72
SKJ 60.07 18.48 4.89
Queue 213.35 95.68 29.29
Dichotomy 61.82 10.65 1.67

20
M

-5
00

K
-2

5 CPU 1226.02 266.27 39.43
GPU 4087.97 2746.53 1312.94
CPU-GPU 878.88 202.19 32.50
SKJ 390.52 112.68 23.83
Queue 1393.08 692.26 200.71
Dichotomy 715.30 132.66 19.44

Table 12: Speedups for the synthetic datasets.
Threshold τn Overall0.7 0.8 0.9

5M-50K-5 - 1.22 1.38 1.3
5M-50K-25 - - - -
5M-500K-5 1.04 1.42 2.32 1.59
5M-500K-25 - - 1.55 1.55
10M-50K-5 - 1.42 1.61 1.52
10M-50K-25 - - - -
10M-500K-5 - 1.31 2.02 1.67
10M-500K-25 - - 1.16 1.16
20M-50K-5 - 1.49 1.44 1.46
20M-50K-25 - - - -
20M-500K-5 - 1.43 2.32 1.87
20M-500K-25 - - 1.22 1.22
Overall 1.04 1.42 1.66

slowest technique per dataset and threshold between our
two hybrid proposals. As shown in Table 13, there is a
large variation in the gap factor, especially in very large
thresholds, where we measure a gap factor of up to 22.86
for the AOL dataset at τn = 0.9 with dichotomy being
faster than queue. As the threshold value τn decreases,
the variation in the gap factor decreases as well.

In general, queue is inferior to dichotomy. However,
there are certain cases, such as BMS, KOSARAK and
BMS-25 in which queue is faster. For these datasets, the
respective indices can be characterized as lightweight both
(i) vertically, i.e. the number of inverted lists is relatively
small due to the small number of different elements, and
(ii) horizontally, i.e. the average length of an inverted list
is small because of the small average set size. When this
is the case, the hybrid queue technique performs better

0

50

100

150 AOL

Queue
Dichotomy

0.0

2.5

5.0

7.5

10.0
BMS

0.0

2.5

5.0

7.5

10.0
DBLP-200K

0

5

10

15
DBLP-300K

0.0

2.5

5.0

7.5

10.0
ENRON

0

10

20
KOSARAK

0.50.60.70.80.9
0

20

40

60

80
LVJ

0.50.60.70.80.9
0

50

100 ORKUT

Threshold

T
im

e
 (

s
e
c
s
)

Figure 9: Comparison between the two work allocation strategies for
the original datasets.

than the dichotomy technique. On the contrary, the di-
chotomy technique performs better in the AOL, ENRON,
LVJ and ORKUT for the original datasets, in ENRON-25
for the increased datasets and in the majority of the syn-
thetic datasets compared to the hybrid queue technique.
All of these datasets, share the common feature of having
larger indices.

10

0.70.80.9
0

200

400

600

800

1000

BMS-25

Queue
Dichotomy

0.70.80.9
0

100

200

300

400

500

ENRON-25

Threshold

T
im

e
 (

s
e
c
s
)

Figure 10: Comparison between the two work allocation strategies
for the increased datasets.

0

5

10

15

20
5M-50K-5

Queue
Dichotomy
SKJ

0

200

400

600

800 10M-50K-25

0.70.80.9
0

50

100

150

200

250
20M-500K-5

0.70.80.9
0

100

200

300

400
10-500K-25

Threshold

T
im

e
 (

s
e
c
s
)

Figure 11: Comparison between the two work allocation strategies
for the synthetic datasets.

Table 13: Gap factor per dataset and threshold.

Dataset Threshold
0.5 0.6 0.7 0.8 0.9

AOL 1.14 1.32 4.85 8.41 22.86
BMS 1.42 1.53 1.53 1.74 2.02
DBLP-200K 1.21 1.18 1.00 1.24 3.27
DBLP-300K 1.25 1.29 1.10 1.06 2.46
DBLP-1M 1.61 1.07 1.06 1.13 1.00
ENRON 2.44 1.78 1.45 1.48 1.84
KOSARAK 2.02 1.62 1.85 2.07 2.11
LVJ 1.32 1.23 1.79 2.70 3.41
ORKUT 3.54 3.09 3.04 3.78 5.13
TWITTER 1.04 1.02 1.00 1.10 1.12
BMS-25 - - 1.99 2.55 3.22
ENRON-25 - - 1.38 1.04 1.80
LVJ-5 - - - - -
5M-50K-5 - - 1.31 2.25 3.94
5M-50K-25 - - 1.16 1.02 1.98
5M-500K-5 - - 3.19 5.51 11.48
5M-500K-25 - - 2.23 4.21 5.49
10M-50K-5 - - 1.22 2.51 4.64
10M-50K-25 - - 1.24 1.11 1.98
10M-500K-5 - - 3.11 6.32 12.68
10M-500K-25 - - 2.02 4.16 6.32
20M-50K-5 - - 1.11 2.67 4.95
20M-50K-25 - - 1.34 1.23 3.20
20M-500K-5 - - 3.45 8.98 17.53
20M-500K-25 - - 1.94 5.21 10.32

Further, in most cases, having larger indices favors the
CPU prefix filtering, especially for high and very high
thresholds. For such thresholds, it is beneficial to dele-

0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

BMS-25

Standalone Index
Queue Index

0.7 0.8 0.9
0

1

2

3

4

ENRON-25

0.7 0.8 0.9
0

10

20

30

40

50
LVJ-5

Threshold

M
e
m

o
ry

 (
G

B
)

Figure 12: Index memory cost for the increased datasets with n =
10000.

gate most of the workload to the CPU and leave a smaller
portion for the GPU; this can be enforced in dichotomy
more efficiently. We analyze further the dichotomy work-
load split in Section 4.3.3.

However, the correct interpretation of the gap factor
needs to take into account the absolute runtimes as pre-
sented in Tables 7, 9, 11 and Figures 9, 10, 11. More
specifically, lower gap factors in lower thresholds may cor-
respond to more significant runtime difference. For exam-
ple, on the right plot in Figure 10, the runtime difference
for threshold 0.7 is apparent while the gap factor is 1.38;
by contrast, for threshold 0.9, the runtime difference is
negligible although the gap factor is 1.8.

Additionally, for completeness, we note that both hy-
brid techniques perform better whenever the prefix fil-
ter is effective. When the bitmap filter is the most effi-
cient and the dataset cardinality is relatively small, such
as in DBLP-200K and DBLP-300K, employing either di-
chotomy or queue, using the bitmap filter for the GPU and
the prefix for the CPU, seems superior. However, for larger
datasets, such as DBLP-1M and TWITTER, standalone
GPU bitmap performs better than any hybrid solution for
not high thresholds, e.g., equal to or lower than 0.8. This
also relates to the discussion in Section 4.3.3.

Finally, depending on the dataset and query character-
istics, the impact of occupancy and global memory access
efficiency may largely differ among winning cases; details
are provided along with the source code.

4.3.2. Queue memory cost
For the queue technique to work properly, the com-

plete index must be constructed in advance at block level.
This approach leads to many small indices; in particular,
as many as the number of blocks, so that both the CPU
and GPU can run the join operation seamlessly without
any end waiting for the other. However, this also implies
an increase in the memory space required to store these
indices, as for each index, the boundaries of the corre-
sponding inverted lists must be specified. Otherwise, in
a single standalone index scenario, for each index probe,
several binary searches would be needed in order to de-
termine the start and end of an inverted list. This would
result in an extra overhead cost, especially in the parallel
environment of the GPU.

In Figure 12, we compare the total memory required
to store the complete standalone index with the corre-

11

0.50.60.70.80.9
0

10

20

30

40

BMS

20%
30%
40%
50%
60%
70%
80%

0.50.60.70.80.9
0

50

100

150
LVJ

0.50.60.70.80.9
0

10

20

30

40

50

60

ORKUT

Threshold

T
im

e
 (

s
e
c
s
)

Figure 13: Comparison of different dichotomy splitting points.

sponding one required to store all the small indices for
the queue technique. Although for all three datasets the
number of blocks is in the order of thousands, specifically
for the BMS-25 dataset, there is a small difference in the
required memory for both scenarios. This is due to the
small number of different elements (1657). However, for
ENRON-25 and LVJ-5, the respective numbers of different
elements are in the order of millions which leads to a sharp
increase in the required memory space for the queue tech-
nique. Furthermore, the required memory space for the
LVJ-5 dataset exceeds the available memory of our setup
and as a result we cannot run the queue technique for this
particular dataset.

4.3.3. Dichotomy splitting point
The main goal of the hybrid dichotomy technique is the

proper workload split among the CPU and GPU in order
to achieve the best possible execution overlap. However,
the selection of a good splitting point is not straightfor-
ward and, in this work, its automated decision mechanism
is left as future work. For each of our experiments, we
ran the dichotomy technique by varying the splitting point
within the range [0.2,0.8] and reported the lowest timings
in Tables 7,9 and 11. We have already mentioned that if
we had a mechanism to judiciously select the optimal split-
ting point in the range of [0,1] then the queue technique
would always run slower than dichotomy; moreover, di-
chotomy would also always dominate the other standalone
techniques.

In Figure 13, we present the runtime difference over
varying dichotomy splitting points for the BMS, LVJ and
ORKUT datasets. The splitting point percentage denotes
the amount of workload assigned to the CPU. For the BMS
and LVJ datasets, the runtime difference becomes more
evident for τn < 0.7 where filtering gradually becomes in-
effective. As a result, the best performing splitting point
for both datasets in lower thresholds is at 40% for the
CPU and 60% for the GPU. This behavior is aligned with
the findings of [11], summarized in Table 4. However, this
is not the case for the ORKUT dataset where, even for
higher threshold values, there is more significant relative
difference between the various splitting points. Neverthe-
less, for this dataset, the absolute runtime differences are
less significant. Also, for this dataset, it is more beneficial
to allocate more work to the CPU due to the effectiveness
of the prefix filter, something already discussed above.

Table 14: Hyset comparison against multi-threaded CPU alterna-
tives. Runtimes are in seconds.

Dataset τn Multi-CPU Fier et al. [17] Hyset Speedup

DBLP-1M
0.7 1623.39 5285.66 33.44 48.54
0.8 426.38 1308.79 17.13 24.89
0.9 54.98 98.88 6.91 7.95

KOSARAK
0.7 15.65 24.81 1.74 8.99
0.8 15.08 19.82 1.16 13.00
0.9 14.75 19.36 0.95 15.52

ORKUT
0.7 31.72 33.71 6.87 4.61
0.8 14.9 17.68 3.18 4.68
0.9 8.28 7.86 1.61 4.88

TWITTER
0.7 2208.75 6103.53 64.04 34.49
0.8 111.298 1248.98 37.96 2.93
0.9 74.03 89.18 8.55 8.65

BMS-25
0.7 - 7859.95 416.25 18.88
0.8 - 2234.39 201.2 11.10
0.9 - 722.33 91.1 7.92

ENRON-25
0.7 - 3172.74 293.28 10.81
0.8 - 269.47 91.11 2.95
0.9 51.24 21.08 11.73 1.79

LVJ-5
0.7 - 257.40 152.71 1.68
0.8 - 50.98 24.68 2.06
0.9 - 12.42 3.81 3.26

4.4. Comparison against parallel CPU-based approaches
Over the past years, there have been attempts to em-

ploy parallelism for the set similarity join problem via the
MapReduce paradigm. In [10], Fier et al. evaluate the
state-of-the-art MapReduce techniques for set similarity.
As their main result, they highlight the poor performance
of MapReduce over a single node solution and also point
out its incapability to scale for larger data volumes. More
recently, in [17], Fier at al. introduced a multi-threaded
CPU framework for the same problem. We note that none
of these works are GPU-aware. For completeness, we also
implement our own multi-threaded CPU version and we di-
rectly experiment with the state-of-the-art proposal found
in [17].

Our own multi-threaded implementation is denoted as
Multi-CPU. Each time reported for the Multi-CPU is the
best among multiple configurations of the two CPU-based
algorithms AllPairs and PPJoin. We split the input dataset
into p partitions equal to the number of threads launched
and assign an equal number of joins to each thread along
with the corresponding portion of the inverted index. This
results in higher memory requirements since each thread
has its own index. Also, in [17], Fier et al. introduce a
more optimized multi-threaded CPU implementation for
set similarity join and they claim that they achieve a 2−
10X speedup over single threaded CPU solutions. We com-
pare our hybrid framework with their solution for four orig-
inal datasets and all the increased datasets for threshold
values τn ≥ 0.7. We report our runtimes in Table 14. As it
can be seen, there is not a single case where either our own
Multi-CPU or the work of Fier et al. [17] is superior to our
hybrid framework. In contrast, we observe that our hybrid
framework achieves a 10.75X speedup on average against
multi-threaded CPU alternatives. The highest speedups
reported for DBLP-1M for τn ∈ [0.7−0.8] and TWITTER

12

for τn = 0.7 are due to the bitmap filter which is more
suitable for the GPU. Thus, employing the GPU via our
hybrid techniques seems more beneficial in every case. We
also note the inability to launch our multi-threaded CPU
implementation for the majority of increased datasets due
to memory constraints. We also experimented with [10],
and without presenting exact numbers due to space con-
straints, the speedups were between 91.89X and 520X in
selected experiments.

The main conclusion of these experiments is that our
hybrid solution cannot be outperformed by multi-threaded
CPU implementations; however, as discussed next, devis-
ing efficient solutions within our hybrid context that are
capable of benefiting from the multi-threaded CPU tech-
niques is one of the identified open issues.

5. Discussion

Exact set similarity join is a notoriously expensive op-
eration, for which several techniques and algorithms have
been proposed. In a single machine setup, the most promi-
nent solutions incorporate the use of a GPU as previously
shown in [11]. To this end, we use the findings of [11]
as baseline, and develop a hybrid framework that utilizes
both the CPU and GPU to tackle the problem. Below, we
provide key insights and discuss some generic observations
in line with recent progress in GPU analytics and data
management found in literature:

• Although our hybrid framework achieves speedup in
the majority of cases, we highlight that the hetero-
geneity in existing filters hinders the possibility for
even larger speedups. Moreover, the prefix filter-
ing dependence on an index structure makes it more
CPU-oriented. There are certain cases, especially
for lightweight indices as shown in our queue tech-
nique, in which the GPU can contribute significantly
to prefix filtering. On the contrary, bitmap filtering
favors the parallel environment of the GPU exclu-
sively, since it allows a more uniform memory access
and compute utilization. As a result, when bitmap
filtering is the most effective, involving the CPU does
not seem beneficial in most cases.

• We identify our work as a step towards a globally
dominant solution. In particular, based on our evalu-
ation, we show that the dichotomy technique lays the
foundation for a good workload allocation between
the CPU and GPU. Nevertheless, our work has given
rise to a new important research issue, namely the
development of an automated way to select a good
splitting point, alongside a cost model to select the
appropriate CPU and GPU technique per scenario.
Such a solution should also be able to benefit from
CPU multi-thread execution, in line with the work
in [17].

• Unlike other parallel paradigms such as MapReduce,
for which the initial results are not so encourag-
ing [10], the use of multiple GPUs seems to be the
most promising approach for scalability provided that
new faster interconnects, such as NVLink 2.0 [18, 19]
are employed. This also benefits the use case of co-
operative CPU-GPU techniques, since the GPU can
access the main memory very fast and with low cost.
In addition, execution could scale both vertically, i.e.
within a single machine similarly to the work pre-
sented in [20], and horizontally in a distributed set-
ting. Our hybrid techniques are orthogonal to the
hardware improvements. Nevertheless, all of these
remarks underline the necessity of developing novel
techniques and algorithms.

• Recently, the work in [21], without investigating set
similarity joins explicitly, argues that advanced data
analytics should run on CPU only unless the ini-
tial data is already stored in GPU’s global mem-
ory. Our work provides counter-evidence regarding
this. Despite any overheads incurred by the CPU-
GPU interconnects, careful crafting of CPU-GPU co-
processing schemes for advanced data analytics may
lead to speedups of factors 3.25X, as reported in our
experiments, even when the data initially resides on
the CPU side. As previously, hardware advances re-
garding NVLink 2.0 may have a big positive impact
on the efficiency of hybrid techniques.

6. Related work

Exact Set Similarity Join. There is a substantial body of
literature for exact set similarity join. In [9], Mann et al.
provide a comprehensive survey on set similarity join for
prefix filter based techniques. Recently, Wang et al. [13]
propose the SKJ algorithm which is built on top of the
prefix filter and encapsulates two skipping techniques to
further improve set similarity join. In [22], Deng et al.
introduce the SizeAware algorithm which divides the in-
put collection to small and large sets, and process them
separately. We consider our dichotomy work allocation
strategy close to the core concept of the SizeAware algo-
rithm. For the distributed setting, Fier et al. [10] con-
duct an experimental survey for set similarity joins on
the MapReduce framework and highlight the inability of
the evaluated algorithms to scale. More recently, Yang et
al. [23] devise a length-based distribution framework for
set similarity join on top of the Apache Storm platform.
As a result, they avoid pitfalls of previous prefix-based dis-
tributed techniques and show promising improvement on
runtimes. For the GPGPU paradigm, the authors of [11]
present an evaluation of the GPU-enabled techniques. We
use the work of [9] and [11] as a baseline for the devel-
opment of our hybrid framework and improve upon their
findings.

13

Approximate Set Similarity Join. Most of the techniques
proposed for approximate set similarity joins resort to data
reduction to speedup the join process. In [24], the authors
employ the parallel-friendly MinHash algorithm to esti-
mate the Jaccard similarity of two sets. Their solution
is space-efficient since they only store set signatures in-
stead of whole sets to perform the similarity join. In [25],
Li et al. reduces the preprocessing time from the origi-
nal MinHash by using one permutation hashing. Further-
more, Ji et al. [26] introduce Min-Max hash and reduce the
hashing time by half. Recently, Wang et al. [27] propose
MaxLogHash to accurately estimate similarities in stream-
ing sets. The main limitations of the above techniques is
that they are inherently limited to Jaccard similarity only.
In this work, we do not deal with approximate solutions
for the set similarity join problem.

7. Conclusion

In this work, we introduce a novel hybrid framework,
which encapsulates state-of-the-art CPU and GPU-enabled
solutions for the exact set similarity join problem with
a view to deriving a higher-level technique that manages
to execute fast regardless of changes in the dataset and
query characteristics. Through extensive evaluation and
performance analysis, we show speedups of up to 3.25x
over standalone solutions, and we manage to overcome the
main problem of the GPU-enabled set similarity joins thus
far, namely that different techniques are dominant under
different conditions. We also show that we outperform
multi-threaded solutions.

Acknowledgments. The research work was supported
by the Hellenic Foundation for Research and Innovation
(HFRI) under the HFRI PhD Fellowship grant (Fellow-
ship Number: 1154). In addition, the authors gratefully
acknowledge the support of NVIDIA, United States Cor-
poration through the donation of the GPU use through
the GPU Grant Program.

References

[1] E. Spertus, M. Sahami, O. Buyukkokten, Evaluating similarity
measures: a large-scale study in the orkut social network, in:
Proc. SIGKDD, 2005.

[2] S. Chaudhuri, V. Ganti, R. Kaushik, A primitive operator for
similarity joins in data cleaning, in: Proc. ICDE, 2006.

[3] N. Augsten, M. H. Böhlen, Similarity joins in relational
database systems, Synthesis Lectures on Data Management
5 (5) (2013) 1–124.

[4] R. J. Bayardo, Y. Ma, R. Srikant, Scaling up all pairs similarity
search, in: Proc. of the 16th international conference on World
Wide Web, 2007, pp. 131–140.

[5] C. Xiao, W. Wang, X. Lin, J. X. Yu, G. Wang, Efficient simi-
larity joins for near-duplicate detection, ACM Transactions on
Database Systems (TODS) 36 (3) (2011) 1–41.

[6] P. Bouros, S. Ge, N. Mamoulis, Spatio-textual similarity joins,
Proc. of the VLDB Endowment 6 (1) (2012) 1–12.

[7] J. Wang, G. Li, J. Feng, Can we beat the prefix filtering? an
adaptive framework for similarity join and search, in: Proc.
of the 2012 ACM SIGMOD Int.Conference on Management of
Data, 2012, pp. 85–96.

[8] D. Deng, G. Li, H. Wen, J. Feng, An efficient partition based
method for exact set similarity joins, Proceedings of the VLDB
Endowment 9 (4) (2015) 360–371.

[9] W. Mann, N. Augsten, P. Bouros, An empirical evaluation of
set similarity join techniques, Proceedings of the VLDB Endow-
ment 9 (9) (2016) 636–647.

[10] F. Fier, N. Augsten, P. Bouros, U. Leser, J.-C. Freytag, Set sim-
ilarity joins on mapreduce: an experimental survey, Proceedings
of the VLDB Endowment 11 (10) (2018) 1110–1122.

[11] C. Bellas, A. Gounaris, An empirical evaluation of exact set
similarity join techniques using gpus, Information Systems 89
(2020) 101485.

[12] E. F. Sandes, G. L. Teodoro, A. C. Melo, Bitmap filter: Speed-
ing up exact set similarity joins with bitwise operations, Infor-
mation Systems 88 (2020) 101449.

[13] X. Wang, L. Qin, X. Lin, Y. Zhang, L. Chang, Leveraging set
relations in exact set similarity join, Proceedings of the VLDB
Endowment (2017).

[14] C. Bellas, A. Gounaris, Exact set similarity joins for large
datasets in the gpgpu paradigm, in: Proc. of the 15th Inter-
national Workshop on Data Management on New Hardware,
DaMoN’19, ACM, New York, NY, USA, 2019, pp. 5:1–5:10.

[15] R. D. Quirino, S. Ribeiro-Junior, L. A. Ribeiro, W. S. Martins,
Efficient filter-based algorithms for exact set similarity join on
gpus, in: International Conference on Enterprise Information
Systems, Springer, 2017, pp. 74–95.

[16] R. Vernica, M. J. Carey, C. Li, Efficient parallel set-similarity
joins using mapreduce, in: SIGMOD Conference, 2010, pp. 495–
506.

[17] F. Fier, T. Wang, E. Zhu, J.-C. Freytag, Parallelizing filter-
verification based exact set similarity joins on multicores, in:
International Conference on Similarity Search and Applications,
Springer, 2020, pp. 62–75.

[18] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, K. J.
Barker, Evaluating modern gpu interconnect: Pcie, nvlink, nv-
sli, nvswitch and gpudirect, IEEE Transactions on Parallel and
Distributed Systems 31 (1) (2019) 94–110.

[19] C. Lutz, S. Breß, S. Zeuch, T. Rabl, V. Markl, Pump up the
volume: Processing large data on gpus with fast interconnects,
in: Proc. of the 2020 ACM SIGMOD International Conference
on Management of Data, 2020, pp. 1633–1649.

[20] X. Xie, W. Tan, L. L. Fong, Y. Liang, Cumf sgd: Parallelized
stochastic gradient descent for matrix factorization on gpus,
in: Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing, 2017, pp. 79–
92.

[21] A. Shanbhag, S. Madden, X. Yu, A study of the fundamental
performance characteristics of gpus and cpus for database ana-
lytics, in: Proceedings of the 2020 ACM SIGMOD international
conference on Management of data, 2020, pp. 1617–1632.

[22] D. Deng, Y. Tao, G. Li, Overlap set similarity joins with the-
oretical guarantees, in: Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 905–920.

[23] J. Yang, W. Zhang, X. Wang, Y. Zhang, X. Lin, Distributed
streaming set similarity join, in: 2020 IEEE 36th International
Conference on Data Engineering (ICDE), IEEE, 2020, pp. 565–
576.

[24] M. S. Cruz, Y. Kozawa, T. Amagasa, H. Kitagawa, Gpu accel-
eration of set similarity joins, in: International Conference on
Database and Expert Systems Applications, Springer, 2015, pp.
384–398.

[25] P. Li, A. Owen, C.-H. Zhang, One permutation hashing, in:
Advances in Neural Information Processing Systems, 2012, pp.
3113–3121.

[26] J. Ji, J. Li, S. Yan, Q. Tian, B. Zhang, Min-max hash for jaccard
similarity, in: 2013 IEEE 13th International Conference on Data
Mining, IEEE, 2013, pp. 301–309.

[27] P. Wang, Y. Qi, Y. Zhang, Q. Zhai, C. Wang, J. C. Lui,
X. Guan, A memory-efficient sketch method for estimating high
similarities in streaming sets, in: ACM SIGKDD, 2019, pp. 25–
33.

14

