
PROUD: PaRallel OUtlier Detection for streams
Theodoros Toliopoulos, Christos Bellas, Anastasios Gounaris,

Apostolos Papadopoulos
Aristotle University of Thessaloniki, Greece

(tatoliop,chribell,gounaria,papadopo)@csd.auth.gr

ABSTRACT
We introduce PROUD, standing for PaRallel OUtlier Detec-
tion for streams, which is an extensible engine for continuous
multi-parameter parallel distance-based outlier (or anomaly)
detection tailored to big data streams. PROUD is built on top
of Flink. It defines a simple API for data ingestion. It supports
a variety of parallel techniques, including novel ones, for
continuous outlier detection that can be easily configured. In
addition, it graphically reports metrics of interest and stores
main results into a permanent store to enable future analysis.
It can be easily extended to support additional techniques.
Finally, it is publicly provided in open-source.

CCS CONCEPTS
• Information systems→Data streammining; •Com-

putingmethodologies→Anomaly detection;Massively
parallel algorithms.
ACM Reference Format:
Theodoros Toliopoulos, Christos Bellas, Anastasios Gounaris, Apos-
tolos Papadopoulos . 2020. PROUD: PaRallel OUtlier Detection for
streams. In Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’20), June 14–19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 4 pages. https://doi.
org/10.1145/3318464.3384688

1 INTRODUCTION
Distance-based outliers [9] are defined as the objects that
do not have more than k neighbors within a distance up to
R (according to a specified distance metric). This definition
has been useful and valid in several application domains
[11]. In a streaming setting, instead of having a static set of
objects, distance-based outlier detection is performed every
time the contents of a window change due to window sliding.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384688

The sizeW of a window and the size S of the slide can be
expressed in number of objects or in time units [15]. In a
single-parameter setting, the user specifies a single pair of R
and k values, whileW and S are fixed. In multi-parameter
queries, the user can ask for multiple combinations of R, k ,
W and S values.

Although there are tools and implementations of the main
state-of-the-art algorithms for non-parallel streaming out-
lier detection [8, 15], there is no open-source engine for
massively parallel platforms. This work fills this gap. More
specifically, we introduce PROUD, standing for PaRallel OUt-
lier Detection for streams, which is an extensible engine
built on top of Flink that supports a variety of parallel tech-
niques, including novel ones, for continuous distance-based
outlier-detection. It comes with a user friendly interface
for configuration, it graphically reports metrics of inter-
est and stores main results into a permanent store to en-
able future analysis. Additionally, PROUD can be easily ex-
tended to support additional partitioning and outlier de-
tection techniques. It can be downloaded in open source
from https://github.com/tatoliop/PROUD-PaRallel-OUtlier-
Detection-for-streams.

2 SYSTEM DESCRIPTION
PROUD’s core functionality regarding continuous anom-
aly detection is implemented in Flink [1], but the engine
also leverages two additional state-of-the-art open source
frameworks for big data processing, namely Kafka [2] and
InfluxDB [6] (see Fig. 1). The former is used for handling
the input streams, while InfluxDB stores the results of the
outlier detection task and performance-related metadata. In
a nutshell, PROUD is a high-throughput distributed outlier
detection engine that supports distance-based outlier detec-
tion algorithms and different partitioning techniques, while
providing custom metrics for each individual task of the en-
gine. Below, we briefly describe its main functionality, the
algorithms already implemented and the extensibility points.

Figure 1: PROUD’s architecture

https://doi.org/10.1145/3318464.3384688
https://doi.org/10.1145/3318464.3384688
https://doi.org/10.1145/3318464.3384688
https://github.com/tatoliop/PROUD-PaRallel-OUtlier-Detection-for-streams
https://github.com/tatoliop/PROUD-PaRallel-OUtlier-Detection-for-streams

2.1 Main Functionality
There are four main processing phases after reading input
data from a stream handler, such as Kafka brokers:

1. Data Transformation. Input data are continuously
read from a stream handling platform and transformed
into the reference data model of PROUD.

2. Data Partitioning. A user-defined partitioning tech-
nique is applied to split the data points into separate
logical partitions according to their values, while ar-
ranging them into sliding time windows based on their
timestamps.

3. Outlier Detection. For each logical partition, the se-
lected distance-based outlier detection algorithm runs
to process the local data points and output the result-
ing outliers; the algorithms are implemented in such a
manner that neither false positives nor false negatives
are produced despite processing each logical partition
independently in parallel.

4. Storage and Reporting. The results from all of the
partitions are transferred to a data sink for storage,
reporting and/or further processing

More specifically, in the initial stage, the engine reads the
input stream and transforms it into a reference data model
containing three items: (i) the value read in the form of a list
of real numbers, (ii) the timestamp of arrival and (iii) an id.
Due to the distributed nature of Flink, the data ingestion and
transformation is performed bymultiple partitions in parallel
to attain scalability. The reference data model is independent
of the outlier detection algorithm being used and can be
extended with additional auxiliary fields according to each
algorithm’s requirements.
Following the data transformation, the partitioning tech-

nique is responsible for assigning each data point to a specific
logical partition for the actual outlier detection processing.
Currently, there are two main options offered to users: (i) a
grid-based one that assumes a euclidean space split into grid
cells according to the parameters provided by the user; and
(ii) a tree-based ones that can be applied to arbitrary metric
spaces and relies on the provision of a sample to construct
the partitioning tree. The implementation rationale is the
same as in [14]. Both partitioning techniques allow for lim-
ited overlaps between the datasets in the logical partitions
with a view to enabling each partition to be processed inde-
pendently and produce exact results, as explained in [14] and
other similar works. Both these options are value-based ones,
i.e., the partition assignment depends on the list of values so
that, in principle, points close to each other are assigned to
the same partition. PROUD includes also a naive processing
partitioning and processing approach for baseline purposes,
according to which each point is replicated to all partitions.

After each point is assigned to a partition, it is further
transformed into a different data class, based on the outlier
detection algorithm. Also, depending on the time of their
arrival, the points are arranged into a sliding time-based
window. The window size and slide size are also provided
by the user that starts the outlier detection job. Next the
outlier detection part comes into the foreground as soon as
the window slides. The detection algorithm that is chosen
by the user works independently on each partition’s data.
There is no communication between each partition and the
algorithm needs only the partition’s own data points in order
to process them correctly and output the exact local outliers.
Each outlier detection algorithm has a distinct state class
that is used to store data points and their meta-data for each
window. Whenever the window slides, the new data points
are inserted into the state to be processed by the algorithm
and the expired data points are removed from the state. We
briefly mention the algorithms currently implemented in the
following section.
The final step of the engine is to output the resulting

outliers of each logical partition into a data sink. The lo-
cal outliers of each partition are grouped together for the
complete result. The outlier detection engine supports both
single-query and multi-query distance-based outlier detec-
tion algorithms. If, during the initialization phase, the user
has chosen more than one queries, the resulting outliers of
each logical partition are also grouped by the query they re-
fer to. Finally, Flink supports custom performance metrics at
multiple levels of granularity from the job itself to a specific
task. The PROUD engine also encapsulates three custommet-
rics for an outlier detection task running on each logical par-
tition. These metrics measure the number of window slides,
the total processing time and the average processing time
for each logical partition; they are reported on the Flink’s UI
and can also be forwarded to a selected reporter/storage.

2.2 Algorithms Supported
At themoment ofwriting, PROUD encapsulates a re-engineer-
ing of the state-of-the art set of algorithms, and two novel
techniques, as specified below.

Single-parameter techniques. These fall into three cat-
egories: (i) PROUD provides a re-engineered version of all
algorithms presented in [13], which is the first work on mas-
sively parallel streaming distance-based outlier detection.
(ii) According to the experimental survey, in [15], the best
performing technique was the one in [10] followed by [7].
The parallel flavor of the former, which leverages the no-
tion of micro-clusters, is already described in [13]; PROUD
also encapsulates a parallel flavor of the notion of window
slicing from [7], an initial version of which is mentioned in
[14]. (iii) Recently, [16] has been proposed for non-parallel

distance-based oulier detection; PROUD includes a novel
advanced algorithm that combines the key elements of [10]
and [16] in a parallel manner. Briefly, the novel technique,
before dissolving a micro-cluster due to point lifetime ex-
piration, which is an expensive process, checks whether a
similar cluster could be created due to the arrival of new
objects. Multi-parameter techniques. These techniques
consist of the re-engineering of the set of solutions described
in [12] to fit into the PROUD engine. Details are omitted due
to lack of space.
2.3 Extensibility Points
The PROUD engine is designed in order to be easily extended
in many ways ranging from the data transfer frameworks
to the outlier detection algorithms, partitioning techniques
and custom metrics.
(1) The core of the engine are the distance-based outlier

detection algorithms. Section 2.2 provides information about
the implemented algorithms that are already available for
usage. Inserting new algorithms that work alongside the
already existing ones is easy through creating a class that
incorporates the algorithm. This new class extends Flink’s
base ProcessWindowFunction class, and there is no need for
further dependencies between algorithms and partitioning
techniques. Furthermore each algorithm to be implemented
can have its own state, internal variables and data model. If
a specific data model is needed, e.g., for custom meta-data,
the Data_basis class can be extended without affecting the
input stream or the partitioning techniques.
(2) New partitioning techniques and custom metrics can

also be implemented. The new partitioning techniques are
independent classes that do not need to extend any Flink
or engine-specific classes. Their only restriction is to ingest
the reference data model and output the data point along
with the partitions that it needs to be transferred to, i.e.,
to conform to a simple API. Furthermore, due to Flink’s
features, one can implement any number of different custom
metrics. E.g., a new custom metric can be inserted during
the partitioning task to measure the replication rate.

(3) Finally, one of the extensibility features that the engine
provides through the Flink framework are the data sources
and sinks. The Flink community provides libraries for many
different data transfer and storage frameworks and changing
the source or the sink that the engine uses is easy. Even in the
cases where an official library is not available, the user can
extend the RichParallelSourceFunction class in order to
ingest data in a distributed manner from a custom source.
This also holds true for data sinks.

3 DEMO DESCRIPTION
During the demonstration of the engine, a complete work-
flow of outlier detection setup, running and reporting will

Figure 2: Sceenshots of the UI (top) and InfluxDB out-
lier info (bottom)

be provided. The setup is performed in 4 steps. Step 1: to
emulate a real stream, a custom generator that works in
Flink is implemented and supports the generation of two
different streams based on real-world datasets: Stock and
TAO. The datasets are generated by emulating a bell distri-
bution within the same range of values as in the original
datasets. The rate at which data points are created is approxi-
mately 1 data point per millisecond. The generated stream is
transferred through Kafka to the main PROUD engine. Step
2: Through a user interface implemented in Javascript, the
user can choose the parameter space (e.g. single-parameter
or multi-parameter). Based on the previous results, a list of
appropriate algorithms are present for the user to choose.
Step 3: The user configures the partitioning technique. Step
4: The user inputs the parameters for the job (e.g. window
size and queries). Figure 2(top) shows the UI.

While the job is processing the data points, three custom
measurements are reported regarding outlier detection: the
number of window slides, the total processing time of the out-
lier detection task and the average processing time for each
partition. These measurements along with Flink’s default
metrics, such as the heap memory used per taskmanager and
the CPU time used by the JVM, are reported both to Flink’s
UI and stored to InfluxDB as time series. For better visualiza-
tion, the open-source analytics and monitoring framework
Grafana [5] is chosen. In the demonstration, Grafana is setup
to present the latest results from the outlier detection algo-
rithm as well as the average processing time of the task (see
Figure 3). Another part of the demonstration includes the
storage of the engine’s results (see Figure 2(bottom)), which
allows for arbitrary further analysis.

Figure 3: Grafana scheenshot showing the number of outliers (top), the number of slides per partition (bottom
left) and the processing time per partition (bottom right).

Deploying PROUD and reproducing the demo. The
complete demo platform and scenario is available for repro-
duction through Docker containers and a Docker-compose
file [4]. The Docker-compose file sets up all framework com-
ponents as well as the dependencies between them. The
user, through a bash script, with just one command can di-
rectly build the source code, build the Flink image with the
compiled jar file and start up all services including Flink, In-
fluxDB, Grafana, Kafka and Zookeeper[3], which is required
by Kafka. Afterwords, another command connects directly
to the Flink container in order to start the local server with
the user interface. After the outlier detection job has started
through the UI the results become visible from Grafana’s UI.
As a final note, the Docker-compose file is set to run on a
single multi-core machine for the purposes of the demonstra-
tion; minimal changes are needed to transfer it to a cluster
using either the Docker Swarm service or Kubernetes.

Summary. This work presents PROUD, an extensible
framework for parallel streaming distance-based outlier de-
tection in Flink. PROUD already includes novel techniques
that have not appeared in the literature yet along with pub-
lished state-of-the-art. It can be extended in several ways;
here we mention three of them: (i) insert support for other
types of data than numeric, for which distance metrics exist,
e.g., strings; (ii) make PROUD partitioning adaptive; and (iii)
insert techniques tailored for high dimensions and support
also density-based and/or approximate outlier detection.

Acknowledgement. This research work has been supported
by the European Commission under the Horizon 2020 Pro-
gramme, through funding of the RAINBOW project (Grant
871403).

REFERENCES
[1] [n.d.]. Apache Flink. https://flink.apache.org/.
[2] [n.d.]. Apache Kafka. https://kafka.apache.org/.
[3] [n.d.]. Apache Zookeeper. https://zookeeper.apache.org/.
[4] [n.d.]. Docker. https://www.docker.com/.
[5] [n.d.]. Grafana. https://grafana.com/.
[6] [n.d.]. InfluxDB. https://www.influxdata.com/.
[7] Lei Cao, Di Yang, Qingyang Wang, Yanwei Yu, Jiayuan Wang, and

Elke A Rundensteiner. 2014. Scalable distance-based outlier detection
over high-volume data streams. In ICDE. 76–87.

[8] Dimitrios Georgiadis, Maria Kontaki, Anastasios Gounaris, Aposto-
los N. Papadopoulos, Kostas Tsichlas, and Yannis Manolopoulos. 2013.
Continuous outlier detection in data streams: an extensible framework
and state-of-the-art algorithms. In SIGMOD. 1061–1064.

[9] Edwin M. Knorr, Raymond T. Ng, and Vladimir Tucakov. 2000.
Distance-based Outliers: Algorithms and Applications. The VLDB
Journal 8, 3-4 (2000).

[10] Maria Kontaki, Anastasios Gounaris, Apostolos N Papadopoulos,
Kostas Tsichlas, and Yannis Manolopoulos. 2016. Efficient and flexible
algorithms for monitoring distance-based outliers over data streams.
Information systems 55 (2016), 37–53.

[11] Sharmila Subramaniam, Themis Palpanas, Dimitris Papadopoulos,
Vana Kalogeraki, and Dimitrios Gunopulos. 2006. Online Outlier
Detection in Sensor Data Using Non-Parametric Models.. In VLDB.
187–198.

[12] Theodoros Toliopoulos and Anastasios Gounaris. 2019. Multi-
parameter streaming outlier detection. InWI. 208–216.

[13] Theodoros Toliopoulos, Anastasios Gounaris, Kostas Tsichlas, Apos-
tolos Papadopoulos, and Sandra Sampaio. 2018. Parallel Continuous
Outlier Mining in Streaming Data. In DSAA. IEEE, 227–236.

[14] Theodoros Toliopoulos, Anastasios Gounaris, Kostas Tsichlas, Apos-
tolos Papadopoulos, and Sandra Sampaio. 2019. Continuous Outlier
Mining of Streaming Data in Flink. CoRR abs/1902.07901 (2019).

[15] Luan Tran, Liyue Fan, and Cyrus Shahabi. 2016. Distance-based outlier
detection in data streams. PVLDB 9, 12 (2016), 1089–1100.

[16] Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. 2019. NETS: Extremely
Fast Outlier Detection from a Data Stream via Set-Based Processing.
PVLDB 12, 11 (2019), 1303–1315.

https://flink.apache.org/
https://kafka.apache.org/
https://zookeeper.apache.org/
https://www.docker.com/
https://grafana.com/
https://www.influxdata.com/

	Abstract
	1 Introduction
	2 System description
	2.1 Main Functionality
	2.2 Algorithms Supported
	2.3 Extensibility Points

	3 Demo description
	References

