
Developing a real-time traffic reporting and
forecasting back-end system

Theodoros Toliopoulos1, Nikodimos Nikolaidis1, Anna-Valentini Michailidou1,
Andreas Seitaridis1, Anastasios Gounaris1, Nick Bassiliades1,

Apostolos Georgiadis2, and Fotis Liotopoulos2

1 Aristotle University of Thessaloniki, Thessaloniki, Greece
{tatoliop,nikniknik,annavalen,sgandreas,gounaria,nbassili}@csd.auth.gr

2 Sboing, Thessaloniki, Greece
{tolis,liotop}@sboing.net

Abstract. This work describes the architecture of the back-end engine
of a real-time traffic data processing and satellite navigation system. The
role of the engine is to process real-time feedback, such as speed and
travel time, provided by in-vehicle devices and derive real-time reports
and traffic predictions through leveraging historical data as well. We
present the main building blocks and the versatile set of data sources
and processing platforms that need to be combined together to form
a working and scalable solution. We also present performance results
focusing on meeting system requirements keeping the need for computing
resources low.The lessons and results presented are of value to additional
real-time applications that rely on both recent and historical data.

1 Introduction

Geographical Information Systems and, more broadly, the development of appli-
cations based on or including geo-spatial data is a mature and hot area with sev-
eral tools, both commercial and open-source, e.g., ArcGIS, PostGIS, GeoSpark
[12] and so on.In general, these tools and frameworks are distinguished accord-
ing to the queries they support [8] and the quality of maps they utilize. For the
latter, popular alternatives include Google Maps and OpenStreetMap3, which
can be considered as data-as-a-service. At the same time, urban trips is a big
source of data. Developing a system that can process real-time traffic data in
order to report and forecast current traffic conditions combines all the elements
mentioned above, e.g., modern GIS applications built on top of detailed world
maps leveraging real-time big data sources, stores and processing platforms.

The aim of this work is to present architectural details regarding a novel back-
end system developed on behalf of Sboing4. Sboing is an SME that implements
innovative mobile technologies for the collection, processing and exploitation of
location and mobility-based data. It offers an app, called UltiNavi, that can be
3 https://www.openstreetmap.org
4 www.sboing.net

https://www.openstreetmap.org
www.sboing.net


2 T. Toliopoulos et al.

installed on in-vehicle consoles and smartphones. Through this app, Internet-
connected users share their location information in real-time and contribute to
the collection of real-time traffic data. More specifically, Sboing collaborates with
academia in order to extend their system with a view to (i) continuously receive
feedback regarding traffic conditions from end users and process it on the fly; and
(ii) provide real-time and accurate travel time forecasts to users without relying
on any other type of sensors to receive data apart from the data reported by the
users. In order to achieve these goals, the back-end system needs to be extended
to fulfill the following requirements:

R1: provide real-time information about traffic conditions. This boils down to
be capable of (i) providing speed and travel time conditions per road segment
for the last few minutes and (ii) being capable to report incidents upon the
receipt (and validation) of such a feedback.

R2: provide estimates for future traffic conditions. This is important in order to
provide accurate estimates regarding predicted travel times, which typically
refer to the next couple of hours and are computed using both current and
historical data.

R3: manage historical information to train the prediction models needed by R2.
This implies the need to store past information at several levels of granularity.

R4: scalability. Traffic forecasting can be inherently parallelised in a geo-distributed
manner, i.e., each region to be served by a separate cluster of servers. There-
fore, the challenge is not that much in the volume of data to be produced
but in the velocity of new update streams to be produced by the system and
the need to store historical data.

R5: fault-tolerance. Any modules to be included in the back-end need to be
capable of tolerating failures.

There are several other tools that provide this type of information; e.g.,
Google Maps, Waze 5 and TomTom6. However none of these tools that are
being developed by big companies have published information about their back-
end processing engine. By contrast, we both explain architectural details and
employ publicly available open-source tools, so that third parties can rebuild
our solution with reasonable effort.

Background. Effective forecasting of traffic can lead to accurate travel time
prediction. Due to its practical applications, short-term traffic forecasting is a
hot research field with many research works being published. Vlahogianni et. al
[11] reviewed the challenges of such forecasting. These challenges refer to mak-
ing the prediction responsive and adaptive to events (such as, weather incidents
or accidents), identifying traffic patterns, selecting the best fitting model and
method for predicting traffic and dealing with noisy or missing data. To forecast
traffic, data can be collected in two manners, namely either through GPS sys-
tems deployed on vehicles or using vehicle detector sensors. The most common

5 https://www.waze.com
6 https://www.tomtom.com/automotive/products-services/real-time-maps/

https://www.waze.com
https://www.tomtom.com/automotive/products-services/real-time-maps/


Developing a real-time traffic reporting and forecasting back-end system 3

data features used in traffic prediction models are speed and travel time of ve-
hicles along with the vehicle volume per time unit and occupancy of the roads.
Djuric et al.[1] analysed travel speed data from sensors capturing the volume
and occupancy every 30 sec. and advocated combining multiple predictors Gao
et al.[2] also used data from sensors but the main unit was vehicles per hour.
Traffic may also be affected from other incidents and conditions that need to be
taken into consideration during prediction. E.g., an accident may lead to traffic
congestion that cannot be predicted in advance. Also, weather conditions play a
key role. Qiao et al. [9] presented a data classification approach, where the data
categories include information like wind speed, visibility, type of day, incident
etc., all of which can affect the traffic. Li et al.[6] conclude that a model that
includes historical travel time data, speed data, the days of the week, 5-min
cumulative rainfall data and time encoded as either AM or PM can lead to an
accurate prediction. Based on the above proposals, we also consider the presence
of an incident, rain or snow, the visibility, the wind speed and the temperature.

It is important to note that forecasting can be more accurate when there are
historical traffic data available [6]. The drawback is that this information can be
very expensive to store due to its large size. Thus, suitable storage technologies
must be used. In this work, we resort to a scalable data warehousing solution.

Contributions and Structure. This work makes the following contributions in
relation to the requirements and the setting already described: (i) It presents
an end-to-end solution for supporting real-time traffic reporting and forecasting
as far as the back-end system engine is concerned. The architecture consists of
several modules and integrates different tools and data stores. (ii) It discusses
several alternatives regarding design choices in a manner that lessons can be
transferred to other similar settings. (iii) It includes indicative performance re-
sults that provide strong insights into the performance of each individual module
in the architecture so that design choices can be evaluated, the efficiency in which
requirements are met can be assessed, and bottlenecks can be identified.

From a system’s point of view, the novelty of our work lies in (i) presenting
a non-intuitive non-monolithic architecture encompassing three different data
store types and two different stream processing platforms with complementary
roles in order to meet the requirements; (ii) to the best of our knowledge, it is the
first work that compares the two specific main alternatives regarding back-end
analytics databases examined; and (iii) the results presented are meaningful for
software architects in different domains with similar requirements.

The remainder of this paper is structured as follows. Sec. 2 presents the
overall architecture. In the next section, we discuss the pre-processing of source
data. In Sec. 4 we describe the underlying data warehouse and the queries that
run over it. Indicative experiments are in Sec. 5. We conclude in Sec. 6.

2 System Architecture

The raw data are transmitted from the users through user devices, such as
GPS tracking devices and mobile navigation apps in a continuous stream. Every
device periodically sends its current condition in a specific time interval; if there



4 T. Toliopoulos et al.

Fig. 1. The diagram of the advocated architecture

is no internet connectivity, the device may optionally send all the gathered data
when connectivity is restored for historic analysis. The data sent through the
messaging system contain information about the latitude and longitude of the
device along with the timestamp that the measurements were taken and the
speed of the user. Additional metadata about the position of the user such as
elevation, course, road/segment id and direction are transmitted as well. I.e., the
device has the capability to automatically map co-ordinates to road segments
ids; explaining the details about how clients are developed are out of the scope of
this paper.Finally, tailored techniques for encryption and anonymization along
with customized maps based on OpenStreetMap ones that allow for efficient road
segment matching have been developed; these issues are not further analyzed in
this work. The connection between the user devices and the back-end pipeline
is materialized through the use of the MQTTprotocol.

The main responsibility of the back-end pipeline is to receive the raw data,
clean and process them, derive statistics for the last 5 minute tumbling window,
and finally store the results in persistent storage for querying. This splits the
pipeline into two conceptual parts. The first one handles the data cleaning and
processing. The second part consists of the persistent data storage system and
the querying engine. The main challenge regarding the first part of the solution
is to handle a continuous intense data stream. This implies that the constituent
modules need to share the following main characteristics: to be capable of fast
continuous processing (to support R1 and R2 in Section 1) and to be scalable
(which relates to R4) and fault tolerant (which relates to R5).

The streaming component comprises three main pieces of software, namely
a streaming engine, a module to transfer results to persistent storage and a
main memory database to support extremely fast access to intermediate results.
The streaming engine handles the cleaning, transformation and processing of
the raw data. It is implemented using the Apache Flink framework. Flink is an
open-source distributed continuous stream processing framework that provides
real-time processing with fault-tole-rant mechanisms called checkpoints. As such,
R5 is supported by default. Flink can also easily scale up when the need arises
to meet R4. As shown later, it can support efficiently R1 and R2. The second
module that handles the transfer of the processed data to the persistent storage
is built using Apache Kafka. Kafka is the most popular open-source stream-



Developing a real-time traffic reporting and forecasting back-end system 5

ing platform that handles data in real-time and stores them in a fault-tolerant
durable way. Kafka uses topics to which other systems can publish data and/or
subscribe to get access to those data. Kafka inherently meets R5 and does not
become a bottleneck. Finally, the first part of the pipeline contains the main-
memory database Redis. This is due to the need for querying the latest time
window of the stream (R1). Flink and Kafka can run on a small cluster serving
a region or a complete country. Redis is a distributed database; in our solution it
stores as many entries as the number of the road segments, which is in the order
of millions that can very easily fit into the main memory of a single machine.
Therefore, it need not be parallelized across all cluster nodes.

The second part of the pipeline is responsible for storing the processed data
in a fault-tolerant way (which relates to R5) while supporting queries about the
saved data at arbitrary levels of granularity regarding time periods, e.g., average
speeds for the last day, for the last month, for all Tuesdays in a year, and so on,
to support R2 and R3. For this reason, an OLAP (online analytical processing)
data warehouse solution is required, which is tailored to supporting aggregate
building and processing through operators such as drill-down and roll-up. To also
meet the scalability requirement (R4), two alternatives have been investigated.
The first is Apache Kylin and the second is Apache Druid. Both these systems
are distributed warehouses that can ingest continuous streaming data. They also
support high-availability and fault-tolerance. The main difference between the
two systems is that Druid supports continuous ingestion of data, whilst Kylin
needs to re-build the cube based on the new data at time intervals set by the
user. To the best of our knowledge, no comparison of these two options in real
applications, either in academic publications or in unofficial technical reports
exists, and this work, apart from presenting a whole back-end system, fills this
gap. Finally, Apache Spark is the engine that is used for query processing as an
alternative to standalone Java programs. Fig. 1 presents the complete back-end
architecture. are reported by the monitoring devices.

3 The stream processing component

The stream processing module. The data coming from the user devices create a
continuous stream that goes through the MQTT brokers. The size of the data
can quickly grow up in size due to the nature of the sources. For example, 800K of
vehicles in a metropolitan area equipped with thick clients reporting once every
10 secs, still generate 80K new sets of measurements per sec, which amounts
to approximately 7 billion measurements per day. Overall, the pre-processing
module needs to be able to handle an intense continuous stream without delays.
Flink provides low-latency, high-throughput and fault-tolerance via checkpoints.
It incorporates the exactly-once semantics, which means that, even in the case
of node failures, each data point will be processed only once. In addition, scaling
up can easily be completed through adding more worker machines (nodes).

In order to get the data that come from the user devices, Flink needs to
connect with all of the MQTT brokers, which can adapt their number according
to the current workload. Loss of information is not acceptable; this implies that



6 T. Toliopoulos et al.

Flink must dynamically connect to all new brokers without suspending data
processing. Each Flink machine has a list of all available MQTT brokers along
with their IP addresses. Each machine is responsible for one of those brokers in
order to ingest its data. This implies that the solution needs to have at least the
same number of Flink machines as the MQTT brokers. All of the Flink nodes that
do not get matched with a broker remain available and keep checking the pool
of brokers for updates. Note that all of the Flink nodes keep working on the data
processing even if they do not get connected with a MQTT broker. When a new
broker is inserted in the pool, one of the available nodes initiates the connection
in order to start the ingestion. This process does not slow down or stop the job
even if there are no available nodes. Flink can increase or decrease the number
of its worker nodes without shutting down due to its built-in mechanisms.

After Flink starts ingesting the stream, it creates a tumbling (i.e., a non-
overlapping) moving time window to process the data points. The measurements
are aggregated according to the road segment they refer to. The size of the tum-
bling window is set to 5 minutes, since it is considered that the traffic conditions
in the last 5 minutes are adequate for real-time reporting, and the traffic volume
in each road segment in the last 5 minutes is high enough to allow for dependable
statistics. The data points that fall into the window’s time range are cleaned and
several statistics, such as median speed, quartiles and travel time are computed.
The results of every window are further sent downstream the pipeline to Kafka.
In parallel, the data from the most recent time window are also saved to Redis
overwriting the previous window. Continuously reporting real-time changes is
plausible, but it is rather distracting than informative.

Flink can also be used for more complex processing that involves data streams.
One such example is continuous outlier detection on the streaming data from
clients. Detecting an outlier can either indicate an anomaly in a certain road
segment, i.e. an accident, or simply noisy data, i.e. a faulty device or a stopped
vehicle. Especially in traffic forecasting, quickly detecting an accident can result
in a decrease of congestion in the specific road.

Weather data acquisition. In order to provide the user with more information
about the road conditions as well as make more precise predictions of the future
traffic and trip times, we gather weather data by using weather APIs. No more
drtails are provided fue to space constraints.

The stream controller and temporary storage modules. As depicted in the
overall architecture, the processed data are forwarded to Apache Kafka. Kafka
is one of the most popular distributed streaming platforms and is used in many
commercial pipelines. It can easily handle data on a big scale and it is capable
of scaling out by adding extra brokers; therefore it is suitable for meeting the
R4 requirement. It uses the notion of topics to transfer data between systems
or applications in a fault-tolerant way; thus it also satisfies R5. Topics have a
partitioning and replication parameter. The first one is used in order to partition
the workload of the brokers for the specific topic whilst the second one is used
to provide the fault-tolerant guarantees. An additional useful feature is that
it provides a retention policy for temporarily saving the transferred data for



Developing a real-time traffic reporting and forecasting back-end system 7

a chosen time period before permanently deleting them. We will explain later
how we can leverage this feature to avoid system instability. In our work, Kafka
is used as the intermediate between the stream processing framework and the
data warehouse. In our case, apart from receiving the output of Flink, it is also
used for alerts received, such as an accident detection, by passing them through
specific topics.

The final module in this part of the pipeline is Redis. One of the data ware-
house alternatives used in this work is Apache Kylin. Kylin does not have the
capability to ingest a stream continuously and convert it into a cube but it needs
to update the cube periodically (according to a user-defined time interval) with
the new data of the stream. This means that by relying to a data warehouse,
such as Kylin solely, R1 cannot be satisfied despite the fact that Flink can pro-
duce statistics for the most recent time window very efficiently. Redis solves this
problem by saving the latest processed data from Flink. Druid does not have
the limitations of Kylin, but still, imposes an unnecessary overhead to produce
statistics almost immediately after the finish of each 5-minute window. Overall,
the statistics aggregated by Flink are passed on both to Kafka for permanent
storage and to Redis for live traffic conditions update. In addition, as explained
in the next section, Redis holds the predicted travel time for each segment id,
and, when combined with Kylin, it may need to store the two last 5-minute sets
of statistics.

Redis is a main-memory data structure store that can quickly save and re-
trieve data with a key-value format. It is fault-tolerant and can also scale up
by adding more machines; i.e., it is suitable for meeting R1, R4 and R5. More
specifically, each road segment forms a key and the statistics needed for real-time
reporting (typically, mean speed) is stored as a value. Predicted travel times are
stored in a similar manner. Remember that apart being in main-memory, the
table size is inherently small, in the order of hundreds of MBs, even if a complete
big country such as France is served. For this reason, the Redis table need not
be parallelised.

4 Data Storage and Querying
Here, we describe the OLAP solutions and the type of queries over such solutions
and Redis to support R1, R2, and R3 in a scalable manner.

Scalable OLAP. OLAP techniques form the main data management solution
to aggregate data for analysis and offer statistics across multiple dimensions and
at different levels of granularity. From a physical design point of view, they are
classified as ROLAP (relational OLAP), MOLAP (Multidimensional OLAP) and
HOLAP (hybrid OLAP) [3]. Scalable OLAP solutions are offered by the Apache
Kylin engine. An alternative is to leverage the Druid analytics database. We
have explored both solutions.

Kylin is deployed on top of a Hadoop cluster and goes beyond simple Hive,
which is the main data warehousing solution offered by Apache. Hive allows
for better scalability but does not support fast response time of aggregation
queries efficiently [3]. To mitigate this limitation, Kylin encapsulates the HBase



8 T. Toliopoulos et al.

NoSQL solution to materialize the underlying data cube according to the MO-
LAP paradigm. The overall result is a HOLAP solution, which can answer very
quickly statistics that have been pre-computed, but relies on more traditional
database technology to answer queries not covered by the materialized cube.

The important design steps are the definition of dimensions and measures
(along with the appropriate aggregate functions). For the measures, we consider
all Flink output, which is stored in Kafka, using several aggregation functions.
For the dimensions, we employ two hierarchies, namely the map one consisting of
road segments and roads, and the time one at the following levels of granularity:
5 minutes window, hour, day, week, month, quarter, year. Note that the time
hierarchy is partially ordered, given that aggregating the values of weeks cannot
produce the statistics per month. Overall, precomputed aggregates grouped by
time or complete roads or individual road segments or combinations of road and
time are available through Kylin. The cube, as defined above, does not consider
external condition metadata (i.e., weather information and accidents). There
are two options in order to include them, either to add metadata conditions as
dimensions or to consider them as another type of measure. Both options suffer
from severe drawbacks. Thus, we have opted to employ a third type of storage
apart from Kylin and Redis, namely HBase. HBase is already used internally by
Kylin; here we explain how we employ it directly. More specifically, we store all
external condition metadata in a single column family in a HBase table. The key
is a road and hour pair, i.e., weather conditions for a specific region are mapped
to a set of roads (rather than road segments) and are updated every hour.

An alternative to Kylin is Druid. Druid can connect to Kafka and may be
used to replace even Flink aggregation preprocessing to automatically summarize
data splitting them in 5-minute windows. In our solution, we keep using Flink
for preprocessing (since this can also be enhanced with outlier detection) and
we test Druid as an alternative to Kylin only. Contrary to Kylin, Druid has no
HOLAP features and does not explicitly precompute aggregate statistics across
dimensions (which relates to the issue of cuboid materialization selection [4]).
However, it is more tailored to a real-time environment from an engineering point
of view. Druid data store engine is columnar-based coupled with bitmap indices
on the base cuboid, which is physically partitioned across the time dimension.

Query Processing. Supporting the real-time reports according to R1 relies
on accessing the Redis database. R2 and R3 involve forecasts, and in order
to forecast traffic an appropriate model needs to be implemented. This model
acquires two main types of data; real-time statistics of the last 5 minutes and
historical ones. The model analyses data like travel time, mean speed etc. by
assigning a weight to each of the two types mentioned above. The model can
also incorporate information for weather or any occurred incidents.

Regarding real-time querying, the results include information for the last
5 minutes for all the road segments and are stored in a Redis database. We
can retrieve them through Spark using Scala and Jedis, a Java-Redis library.
In order to use this information, that is in JSON string format, there is a need
to transform it to a Spark datatype, for example DataSet. Overall, as will be



Developing a real-time traffic reporting and forecasting back-end system 9

shown in the next section, this is a simple process and can be implemented very
efficiently thanks to Redis, whereas solely relying on Kylin or Druid would be
problematic. Historical data can grow very large in space as they can contain
information about traffic from over a year ago and still be useful for forecasting.
Thus, historical querying is submitted to Kylin or Druid. To meet R2 and R3,
we need to train a model and then apply it every 5 minutes. Developing and
discussing accurate prediction models for traffic is out of the scope of this work.
In general, both sophisticated and simpler models are efficient in several workload
forecasting problems with small differences in their performance, e.g., [5] But, as
explained in the beginning, the important issue in vehicle traffic forecasting is
to take seasonality and past conditions into account. Without loss of generality,
an example function we try to build adheres to a generic template:

X̃i,t = wi,1 ∗Xi,t−1 + wi,2 ∗Xi,t−2 + wi,3 ∗ (Xi,t−1week+1 −Xi,t−1week), (1)

where X̃i,t is the next 5-minute metric, either expected speed or travel time
of the ith segment at time slot t, that we want to predict based on the values
of the last two 5-minute windows and the difference in the values exactly 1
week ago. 1 week corresponds to 2016 5-minute windows. Using Spark jobs,
we periodically retrain the model, which boils down to computing the weights
wi,1, wi,2 and wi,3. To provide the training data, we need to retrieve the non-
aggregated base cube contents. We can train coarser models that are shared
between road segments or train a different model for each segment. Obviously,
the latter leads to more accurate predictions. In the next section, we provide
detailed evaluation results regarding the times to retrieve cube contents. Here,
using the same setting as in Section 5, we give summary information about
model building times for Eq. (1): a Spark job that retrieves the historical data
of a specific segment from the last month, transforms the data to a set of tuples
with 5 fields: (Xi,t, Xi,t−1, Xi,t−2, Xi,t−1week+1, Xi,t−1week) and applies linear
regression takes approximately 3 minutes. Different models for multiple segments
can be computed in parallel at no expense on the running time. If the last 6
months are considered in training, the training takes 17 minutes. The coefficients
are cached; Redis can be used to this end. Upon the completion of each 5-
minute window, based on the precomputed co-efficients, predicted statistics are
computed for each road segment for the next time window.

5 Performance Evaluation
Experimental setting. All of our experiments, unless explicitly stated, are per-
formed on two clusters, the technical characteristics of which are presented in
Table 1. The first cluster, denoted as Cluster A, is deployed in private premises
and comprises 4 different machines both in CPU and RAM resources while the
second one, denoted as Cluster B, has two identical powerful machines, rented
from an established cloud provider. Both clusters are small in size and are meant
to serve a limited geographic region, since it is expected each important munic-
ipality or region to have its own small cluster.



10 T. Toliopoulos et al.

CPU Cores/Threads RAM Storage
Cluster A

Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz 6/12 64G SSD
Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz 4/8 32G SSD

AMD FX(tm)-9370 8/8 32G SSD
Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz 8/16 64G SSD

Cluster B
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz 6/12 64G 2 SSD & 2 HDD
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz 6/12 64G 2 SSD & 2 HDD

Table 1. Cluster information

40 400 4000 40000 80000
Input tuples/sec

0

20

40

60

80

100

120

CP
U 

ut
iliz

at
io

n 
(%

)

Cluster A
Cluster B

40 400 4000 40000 80000
Input tuples/sec

0

2

4

6

8

RA
M

 (G
B)

Cluster A
Cluster B

40 400 4000 40000 80000
Input tuples/sec

0

20

40

60

80

100

120

140

160

St
re

ss
 ti

m
e 

(s
ec

)

Cluster A
Cluster B

Fig. 2. Flink’s average CPU utilization per YARN node (left), memory consumption
(middle) and stress time (right) during stream data processing

For storage, both clusters run HDFS. In the second cluster that has both SSD
and HDD storage types, the first one is used for persistent storage of the data
warehouses’ cubes while the HDD are used for temporary data with the help
of HDFS’s Heterogeneous Storage. The input stream is artificially generated in
order to be continuous and intense reaching up to 80000 raw data tuples per
second and 10 million total road segments, e.g., serving 800K vehicles reporting
once every 10 secs simultaneously in a region larger than half of Greece. This
yields a stream of 288 million MQTT messages per hour.

Stream processing experiments The objective of this experiment is to reveal
the resources Flink consumes for the data processing step while meeting the
real-time requirement R1 and the scalability requirement R4. The processing
job is tested on both clusters using the YARN cluster-mode. For Cluster A, the
YARN configuration comprises 4 nodes with 1 core and 8GB RAM per node.
The job’s total parallelism level is 4. For Cluster B, YARN uses 2 nodes with 2
cores and 16GB RAM per node with a total parallelism level of 4. Note that we
aim not to occupy the full cluster resources, so that the components downstream
run efficiently as well.

In the experiments, we keep the total road segments to 10 millions, while
increasing the input rate of the stream starting from 40 tuples per second (so that
each Flink node is allocated on average 10 records in Cluster A) and reaching up
to 80000 tuples (i.e., 20000 per Flink node in Cluster A) per second. The reason
for the constant number of road segments is to show the scalability of Flink
in accordance to the R4 requirement regarding the volume of data produced
per time unit keeping the underlying maps at the appropriate level for real
world applications. For stress test purposes, the number of distinct devices that
send data is also set to 1000 and kept as a constant. This means that each
device sends multiple raw tuples, and thus the process is more intense due to
the computation of the travel time for each device (i.e., if the same traffic is



Developing a real-time traffic reporting and forecasting back-end system 11

11961 117306 1019822 5104372 5193785
Input tuples

0

2

4

6

8

10

Bu
ild

 ti
m

e 
(m

in
)

Cluster A
Cluster B

35891 352351 3061194 17313069 21470478
Input tuples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Bu
ild

 ti
m

e 
(m

in
)

Cluster A
Cluster B

71793 704997 6122839 36718257 48856673
Input tuples

0

5

10

15

20

25

30

Bu
ild

 ti
m

e 
(m

in
)

Cluster A
Cluster B

Fig. 3. Kylin’s average cube build time after ingesting 1 (left), 3 (middle) and 6 (right)
5-minute windows

shared across 100K devices, then the computation would be less intensive). The
process window is always a 5 minute tumbling one. This implies that the Flink
job gathers data during the 5 minutes of the window while computing temporary
meta-data. When the window’s time-life reaches its end point, Flink completes
the computations and outputs the final processed data that are sent through the
pipeline to Kafka and Redis. The time between the window termination and the
output of the statistics of the last segment is referred to as Flink stress time.

Figure 2 shows the results of the Flink process job on both clusters by varying
the input stream rate. The measurements are the average of 5 runs. The left plot
shows the average CPU utilization per YARN node for each cluster during the
whole 5-minute tumbling window. Note that the 100% mark means that the job
takes over a whole CPU thread. From this experiment, we can safely assume
that Flink’s CPU consumption scales up in a sublinear manner, but the current
allocation of resources for Cluster B seems to suffer from resource contention for
the highest workload. 120% utilization for Cluster B means that on average, 1.2
cores are fully utilized out of the 2 cores available, but the utilization increase
compared to 40K tuples per second is 2.5X. In Cluster A, increasing the workload
by three orders of magnitude results in a 5-fold increase in Flink demand for CPU
resources. Cluster B exhibits lower utilization if we consider that each machine
allocates two threads to Flink instead of one, up to 10000 records/sec per Flink
node. Overall, the main conclusion is that Flink is lightweight and the example
allocation of resources to Flink (a portion of the complete cluster capacity) is
adequate to manage the workload.

The middle plot shows the average memory used by each machine during
the 5-minute tumbling window. In the first cluster, even though the input tuples
per second are increased 2 thousand-fold, the memory is increased by approx-
imately 2.5 times only. Cluster B consumes up to 9GB of memory taking into
account each machine has to process twice the amount of data compared to the
physical machines in Cluster A. This further supports the conclusion that the
homogeneous cluster exhibits better resource utilization than the heterogeneous,
but both clusters can handle the workload.

Finally, the right plot deals with meeting R1 and shows the average stress
time for the cluster upon the completion of the 5-minute window. As mentioned
above, Flink computes meta-data and temporary data during the whole window
in order to start building up to the final aggregations needed for the process.
When the window expires after it has ingested all the data tuples that belong



12 T. Toliopoulos et al.

to the specified time period, the computations are increased in order to combine
temporary meta-data and complete any aggregations needed in order to output
the results. The stress time presented in the figure shows the running time of
this process for each cluster in order to output the complete final results for a
window to Kafka and Redis. As the rate of the input data increases, so does the
stress time due to the increased number of complex computations. In cluster A,
the stress time starts from 3 seconds for the lowest input rate and reaches up
to 155 seconds during the maximum rate. On the other hand, the homogeneous
cluster exhibits even better results, and its stress time duration does not exceed
80 secs even for the highest workload. This means that after 80 secs, the complete
statistics of the last 5-minutes are available to Redis even for the last segment;
since the whole process is incremental, many thousand segments have updated
5-minutes statistics even a few seconds after the window slide. After the results
are in Redis, they can be immediately pushed or queried to update online maps.

The process stage ends when the results are passed to Kafka and Redis. Due
to Kafka’s distributed nature and the fact that each Kafka broker is on the
same machine as each Flink node, the data transfer between the two systems
is negligible. On the other hand, Redis is used on a single machine as a cen-
tralized main-memory store according to the discussion previously. This incurs
some overhead when transferring data from a remote machine, which is already
included in the stress times presented.

Persistent storage experiments. Persistent storage is the key component of
the whole architecture. We have experimented with Kylin 2.6.1 and Druid 0.15.1.
We used the output of the previous experiments to test the ingestion rate of both
warehouses that indirectly affects the efficiency regarding R2 and R3. The total
number of distinct road segments is kept at 10 million. Since Druid supports
continuous ingestion while Kylin needs to update the cube at user-defined inter-
vals, the two solutions are not directly comparable and thus their experimental
settings differ. Nevertheless, the results are sufficient to provide strong insights
in the advantages and drawbacks of each solution.

The following experiments present the total time that Kylin needs in order
to update the cube at 3 different time intervals, namely every 5, 15 and 30
minutes. The first interval (5-minutes) means that Kylin rebuilds the cube after
every window output from Flink, while 15 and 30 minute intervals imply that
the cube is updated after 3 and 6 window outputs from Flink, respectively. As
more windows are accumulated in Kafka before rebuilding, more data need to
be processed by Kylin’s cube building tool and incorporated into the cube itself.
Based on the previous experiments, different input tuple rates in Flink provide
a different number of processed output rows, which in turn are ingested into
Kylin. For example, at the lowest rate of 40 tuples/sec arriving to Flink, on av-
erage 11961, 35891 and 71793 road segments are updated in 1,3 and 6 windows,
respectively. On the contrary, at the highest rate of 80K tuples/sec, the amount
of updated segments is 5.19M, 21.47M and 48.86M, respectively. 5.19M implies
that more than half of the map is updated every 5 minutes. Fig. 3 shows the
results for the two clusters employed. An initial observation is that the homoge-



Developing a real-time traffic reporting and forecasting back-end system 13

11961 117306 1019822 5104372 5193785
Input tuples

0

2

4

6

8

10
In

ge
st

io
n 

tim
e 

(m
in

)

1 task slot
2 task slots
4 task slots

11961 117306 1019822 5104372 5193785
Input tuples

0

2

4

6

8

10

In
ge

st
io

n 
tim

e 
(m

in
)

1 task slot
2 task slots

Fig. 4. Druid’s average ingestion time in minutes for cluster A (left) and B (right)

neous cluster (Cluster B) consistently outperforms the heterogeneous one. This
provides evidence that Kylin is sensitive to heterogeneity. The left plot from
Figure 3 shows the build times when the input tuples vary from approximately
11K to 5M. all referring to the same 5-minute window. The two rightmost pairs
of bars are similar because the number of updated segments does not differ sig-
nificantly. The main observation is twofold. First, when the input data increases
in size, the build time increases as well but in a sublinear manner. Second, for
more than 5M segment to be inserted in the cube (corresponding to more than
40K tuples/sec from client devices), the cube build time is close to 6 minutes for
Cluster B, and even higher for Cluster A. In other words, in this case, Kylin takes
6 minutes to update the cube according to the preprocessed statistics from a 5-
minute window. This in turn creates a bottleneck and instability in the system,
since Kafka keeps accumulating statistics from Flink at a higher rate that Kylin
can consume them. The middle and right plot have similar results regarding the
scalability. While the input data increases in size, the time needed to update
the cube is also increased but in a sublinear manner. Regarding the time Kylin
takes to consume the results from 3 5-minute windows, from the middle plot,
we can observe that Cluster A suffers from instability when the client devices
send more than 40K tuples/sec, whereas Cluster B suffer from instability when
the device rate is 80K tuples/sec. In the right figure, which corresponds to the
statistics in the last 30 minutes split in 5-minute slots, Kylin does not create a
bottleneck using either Cluster A or Cluster B.

What is the impact of the above observations regarding the efficiency in
supporting R2?The main answer is that we cannot rely on Kylin to retrieve the
statistics of the penultimate 5-minute window. But to support real-time forecasts
based on the already devised prediction models, such as the one in Eq. (1), Redis
should store statistics from the two last 5-minute windows rather than the last
one only. Otherwise, R2 cannot be met efficiently, or requires more computing
resources than the ones employed in these experiments.

Unlike Kylin, Druid can continuously ingest streams and provides access to
the latest data rows. To assess Druid’s efficiency and compare against Kylin in
a meaningful manner, we proceed to slight changes in the experimental setting.
More specifically, we test Druid with exactly the same input rows that Kylin has



14 T. Toliopoulos et al.

Rows Retrieval (sec) Transformation (sec)
1 0.012 3.3
10 0.013 3.35
100 0.016 3.39
1000 0.052 3.45
20000 0.78 4.27
Table 2. Querying times to Redis using Spark

been tested in the left plot of Figure 3. Also, Druid can have a different number
of ingestion task slots with each one being on a different cluster machine. We
experimented with the task slot number in order to detect the difference when
choosing different levels of parallelism in each cluster. Figure 4 presents the
results of the experiments. As expected the ingestion time increases as the input
data size is increased in both clusters. But even for the bigger inputs, Druid can
perform the ingestion before the statistics of the new 5-minute window become
available in Kafka. In any case, Druid still needs Redis for efficiently supporting
R1; otherwise the real-time traffic from the last 5-minutes would be available
only after 2-3 minutes rather than a few seconds.

Another important remark is the difference in the ingestion time when the
task slot number changes. In the homogeneous cluster, when the number of
tasks increases, the ingestion time decreases. There are exceptions of this in the
heterogeneous cluster. As the left plot shows, when the input stream is small in
size, the difference between the task slots is negligible, whilst, in some cases, when
the task slots increase, the ingestion time increases as well. This is due to the fact
that each machine is different and the size is small, which incurs communication
and computation overheads that, along with imbalance, outweigh parallelism
benefits. Also, when using 1 slot in Cluster A for high client device data rates,
there is severe resource contention.

Query experiments. In the following experiments, Spark is used as a stan-
dalone engine on a single machine outside the cluster where the warehouses and
Redis are installed. Testing the scalability of Spark on more machines is out of
our scope. Also, the warehouse contents refer to more than 1 year of data in an
area consisting of 20K segments (overall more than 2 billions of entries).

Table 2 presents the results of the experiments when Spark pulls data from
Redis. Because Redis returns data in Json format, Spark needs to transform
them into a dataframe in order to process them and return its results. The
second column represents the time that Spark needed to fetch data from the
cluster machine in seconds, whilst the third column displays the time needed
to transform from Json to a dataframe. The results show that fetching data is
very fast and even if Spark is used in the front-end to create new maps ready
to be asked by clients (R1), the whole process is ready a few seconds after the
5-minute window terminates. Also, fetching the results to update the predicted
speed/travel times per segment (R2) every five minutes, takes only a few seconds.

For the data warehouses, two different queries were used. The first one, called
Aggregation Query, asks for the aggregated minimum speed of X road segments
over a time period Y returning X rows of data. The second one, called Stress



Developing a real-time traffic reporting and forecasting back-end system 15

Query, asks for the speed of all of the rows of X road segments over a time period
Y and may be used for more elaborate prediction models. The objective is to
show that such queries take up to a few seconds and thus are appropriate to up-
date segment information every 5 minutes; this is confirmed by our experiments
even for the most intensive queries.

No exact numbers are provided due to space constraints. In summary, for
the Aggregation Query Druid times seem constant regardless of the number of
groups and the number of values that need to be aggregated. On the other hand,
Kylin takes more time when the query needs to aggregate values over increased
numbers of segments, while the aggregation cost does not seem to be increasing
when the number of rows for each road segment increases due to a larger time
window benefiting from pre-computations. Finally, the Java standalone program
is significant faster for retrieval; however Spark can be easier parallelised and
perform sophisticated computations after the retrieval to fulfill R2 and R3.

Regarding the Stress Query, the results are mixed. In most of the cases, Druid
has the slowest retrieval times whilst the Java program has the fastest. Druid’s
retrieval performance is greatly affected by the number of rows that it returns.
Kylin is also affected but less.

End-to-end performance. Previously, we investigated the performance of indi-
viduals components in a manner that no end-to-end processing evaluation results
are explicitly presented. However, in fact, the time taken by the streaming pro-
cessing engine, which ouputs its temporary results into both Redis and Kafka, as
shown in Figure 2(right), is totally hidden by the time taken to build the Kylin
cube (see Figure 3) or ingest data into Druid (see Figure 4). The times to query
Redis and the persistent storage for each window update are also fully hidden.

6 Lessons Learned and Conclusions
The main lessons learned can be summarized as follows: (1) To support our
requirements, we need two big-data processing platform instantiations, one for
streaming data and one for batch analytics, that should not interfere with each
other in order not to compromise real-time requirements. In our system, we have
chosen to employ Flink and Spark, respectively, instead of two instances of either
Flink or Spark. (2) We require three types of storage: a main-memory storage for
quick access to recently produced results, a persistent data warehousing storage
supporting aggregates at arbitrary granularity of grouping (e.g., per road, per
weekday, per week, and so on), and a scalable key-value store. We have chosen
Redis, Kylin or Druid, and HBase, respectively. (3) Kafka can act as an efficient
interface between the stream processing and permanent storage. In addition,
Flink is the main option for the stream processing platform. (4) Redis, used as
a cache with advanced querying capabilities, is a key component to meet real-
time constraints. Solely relying on back-end analytics platforms such as Kylin or
Druid, can compromise real-time requirements. (5) Druid is more effective than
Kylin regarding ingestion. However, this comes at the expense of less aggregates
being pre-computed. (6) Using HBase for metadata not changing frequently and
shared across multiple segments can reduce the cube size significantly; otherwise
cube size may become an issue.



16 T. Toliopoulos et al.

Developing a back-end system for real-time navigation systems involves sev-
eral research issues. In our context, we have focused on three areas: outlier detec-
tion, quality assessment and geo-distributed analytics. No details are presented
due to lack of space, but the relevant publications include [10,7].

Conclusions. Our work is on developing a back-end engine capable of sup-
porting online applications that rely on both real-time sensor measurement and
combinations with historical data. This gives rise to several requirements that
can be addressed by a non-monolithic modular architecture, which encapsulates
several platforms and data store types. We have shown how to efficiently inte-
grate Flink, Spark, Kafka, Kylin (or Druid), Hbase and Redis to yield a working
and scalable solution. The lessons learned are explicitly summarized and are of
value to third parties with similar system requirements for real-time applications.

Acknowledgements. This research has been co-financed by the European
Union and Greek national funds through the Operational Program Competitive-
ness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE
- INNOVATE (project code:T1EDK-01944).

References

1. Djuric, N., Radosavljevic, V., Coric, V., Vucetic, S.: Travel speed forecasting by
means of continuous conditional random fields (2011)

2. Gao, Y., Sun, S., Shi, D.: Network-scale traffic modeling and forecasting with
graphical lasso. In: Advances in Neural Networks – ISNN 2011. pp. 151–158 (2011)

3. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edition.
Morgan Kaufmann (2011)

4. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. In: Proc. of the 1996 ACM SIGMOD. pp. 205–216 (1996)

5. Kim, I.K., Wang, W., Qi, Y., Humphrey, M.: Empirical evaluation of workload
forecasting techniques for predictive cloud resource scaling. In: 9th IEEE Int. Conf.
on Cloud Computing, CLOUD. pp. 1–10 (2016)

6. Li, C.S., Chen, M.C.: Identifying important variables for predicting travel time of
freeway with non-recurrent congestion with neural networks. Neural Computing
and Applications 23 (11 2013)

7. Michailidou, A., Gounaris, A.: Bi-objective traffic optimization in geo-distributed
data flows. Big Data Research 16, 36–48 (2019)

8. Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial
analytics systems? PVLDB 11(11), 1661–1673 (2018)

9. Qiao, W., Haghani, A., Hamedi, M.: Short-term travel time prediction considering
the effects of weather. Transportation Research Record: Journal of the Transporta-
tion Research Board 2308, 61–72 (12 2012)

10. Toliopoulos, T., Gounaris, A., Tsichlas, K., Papadopoulos, A., Sampaio, S.: Parallel
continuous outlier mining in streaming data. In: 5th IEEE International Conference
on Data Science and Advanced Analytics, DSAA. pp. 227–236 (2018)

11. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting:
Where we are and where we’re going. Transportation Research Part C: Emerg-
ing Technologies 43, 3 – 19 (2014)

12. Yu, J., Wu, J., Sarwat, M.: Geospark: a cluster computing framework for processing
large-scale spatial data. In: Proc. of the 23rd SIGSPATIAL. pp. 70:1–70:4 (2015)


	Developing a real-time traffic reporting and forecasting back-end system

