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Abstract. Predictive maintenance has evolved from a vision to reality
for several industries. Notwithstanding, there is not yet a clear view on
the behavior of the algorithmic tools proposed. The aim of this work
is to fill this gap and perform an insightful comparison and sensitivity
analysis of the main representatives for event-based predictive mainte-
nance, which typically rely on pattern mining and machine learning. We
provide a publicly available environment to compare techniques and we
perform extensive experiments. The results of our work show that fine
tuning is required and judicious feature generation and selection are two
important aspects in efficiently predicting faults.
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1 Introduction

The key goal of Industry 4.0 is towards personalized products, zero defects and
breakdowns along with lot size one. Not surprisingly, it has altered the daily
operation of factories, something that is commonly referred to as the fourth
industrial revolution [1].

Smart factories come with several features. Their cornerstone is data col-
lection and analysis to be employed at different levels and for complementary
objectives: from reducing operation expenses and equipment downtime through
predictive maintenance (PdM) to the support of new business models and after-
sales services. In this work, we focus on PdM, which involves continuous sensor-
based inspection managed by both reliability engineers and data scientists; the
latter are called to effectively apply proactive analytics.

According to a recent survey of 268 companies in Belgium, Germany and
the Netherlands3, PdM has departed from its early infancy and hype stages and
has been transformed into a powerful widely-spread technology that is capable
of yielding “tremenous” benefits. The above findings are supported by other

3 https://www.pwc.nl/nl/assets/documents/pwc-predictive-maintenance-beyond-the-
hype-40.pdf
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surveys as well. For example, another survey predicts 11% growth in industry
due to AI-based applications, with PdM being the key one.4. Overall, the market
for PdM applications “is poised to grow from 2.2B in 2017 to 10.9B US dollars
by 2022, a 39% annual growth rate.5 In addition, PdM is supported by and has
attracted great interest from numerous big IT vendors, such as SAP, Siemens
and Microsoft.

Broadly, PdM can be either model-driven or data-driven. In the former case,
the maintenance prediction is based on expert knowledge captured in the form
of mathematical equations or rules derived by experts. In practice, such an ap-
proach is applicable to small-scale static systems only, as reported in [14]. In
the latter case, events or logs are subject to intensive processing in order to au-
tomatically derive patterns of machine failure and then leverage such patterns
in order to plan or advise on maintenance actions in a timely manner before
a failure occurs but not much earlier, e.g., [10,14,6]. Event- or log-based PdM
solutions rely on applied data mining concepts, and more specifically on pattern
mining, feature selection and machine learning [2]. The main assumption is that
equipment failures are preceded by patterns, the early detection of which can
be leveraged by sophisticated PdM techniques. The solutions can be regarded
as application independent higher-level methodologies consisting of a series of
techniques, as explained hereafter.

The contribution of this work is threefold: (i) to decompose state-of-the-art
data-driven PdM methodologies into their main building blocks; (ii) to develop
a tool that can simulate realistic settings, where the relevant events are a small
minority in all reported events (as, for instance, typically occurs in aviation in-
dustry [10]), in order to assess the behavior of each methodology in a repeatable,
controllable and configurable manner; and (iii) to compare existing methodolo-
gies and perform insightful sensitivity analysis regarding the main parameters
of each methodology under investigation.

The remainder of this paper is structured as follows. In the next section,
we provide a concise overview of data-driven predictive maintenance. Section
3 elaborates on the main methodologies and the techniques they employ. In
Sections 4 and 5, we describe the setting emulating a real industrial environment
and we conduct our thorough experiments. We conclude in Section 6.

2 Related Work

Data-driven techniques, where the data refer to past events, commonly in the
form of log entries, are widely used in PdM. One such approach applied to avia-
tion industry is presented in [10], where past events (i.e. post-flight logs) are used
to predict a specific target event (i.e., fault). The proposed approach penalizes
rare (more rare than the target event) and frequent events (implicitly perform-
ing feature selection) and amplifies the strength of the events closer to the target

4 https://www.elektroniknet.de/international/ai-achieves-over-11-percent-growth-in-
industry-158062.html

5 https://iot-analytics.com/top-20-companies-enabling-predictive-maintenance/



Efficiency assessment of event-based predictive maintenance in Industry 4.0 3

event, using a Multi-Instance Learning (MIL) technique. Such preprocessed log
data form the training set, which is then fed into a regression analysis algorithm
for the prediction of the target event. In our work, we further elaborate on this
approach as a key representative of the state-of-the-art; further technical details
are provided in Section 3.2.

Another event-based approach is presented in [13], where historical and ser-
vice data from a ticketing system are combined with domain knowledge to train a
binary classifier for the prediction of a failure. As in the previous work, a feature
selection [4] and an event amplification technique (i.e. MIL) is used to enhance
the effectiveness of the SVM-based classifier. In [10] evidence is provided that
the work in [13] is less suitable in a real-world scenario with a sparse feature set
and rare interesting targeted events. Event-based analysis, based on event and
failure logs, is also performed in [14], where it is assumed that the system is ca-
pable of generating exceptions and error log entries that are inherently relevant
to significant failures. This work relies on pattern extraction and similarity be-
tween patterns preceding a failure, while emphasis is posed on feature selection.
We further discuss this technique in Section 3.3.

The work in [15] proposes a correlation-driven approach between different
sensor signals and fault events to guide the PdM process. This approach tries
to identify correlations between detected anomalies in different sensor signals,
which are mapped to specific faults. Here, we focus on log event processing.

Predicting a fault in the equipment is in-directly similar to estimating its
Remaining Useful Lifetime (RUL). The authors in [9] propose a RUL estima-
tion approach based on vibration analysis. Their approach uses domain experts
knowledge for the creation of a training set of health ranking of specific equip-
ment, which is used by a regression analysis approach for the estimation of RUL
of other equipment. A more general and domain-agnostic approach for the esti-
mation of the RUL is proposed in [8]. Data-driven PdM is also related to online
frequent episodes mining; research works [3] and [12] propose techniques in this
topic. A good overview of the the data-driven PdM is presented in [11].

3 Details of the state-of-the-art event-based PdM
methodologies

Life data analysis is a traditional process in the industry, which provides impor-
tant estimates about product life characteristics, such as reliability or probability
of failure at a specific time, the mean life and the failure rate of the product and
other useful statistical results. Fitting a statistical distribution (most commonly
the Weibull distribution) to life data from a representative sample of the prod-
ucts population, the process attempts to make predictions about the life of all
the products in the population. The effectiveness of the life data analysis, is
affected by the volume of the gathered life data for the product, the selected
lifetime distribution to fit the data and model the life of the product, and the
estimated parameters that will fit the distribution to the data. Although use-
ful to some degree, the life data analysis is attempting to use a single number
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Algorithm 1 Sequential pattern mining for PdM

procedure Pattern Extraction
nof ← number of failures
min support← α · nof, 0 < α ≤ 1
constraints← set constraints on the pattern period and the gap between events
Extract frequent sequential patterns given min support and constraints
Keep only the partners ending in the target event E1E2E3 . . . EnX
Result← ∅
for each subset S of E1E2E3 . . . En do

if support(S) ≤ (1 + ε) · support(E1E2E3 . . . EnX), ε ≥ 0 then
Result← Result

⋃
S

procedure Pattern Usage
Continuously check whether any pattern in Result applies

(e.g. Mean Time to Failure (MTTF)) to describe an entire lifetime distribution,
which can be misleading and may lead to poor business decisions especially when
a non-exponential lifetime distribution appears in reality. To overcome this pit-
fall, more versatile and powerful data-driven techniques, which are able to adapt
in dynamic environments, are progressively adopted.

3.1 Sequential pattern mining

A data-driven technique with a wide range of applications is the sequential pat-
tern mining (SPM). SPM consists of discovering useful patterns in the data, such
as frequent itemsets, associations, sequential rules, or periodic patterns. In PdM,
SPM can provide useful information about associations between fault events as
a sequence of minor faults or other events can potentially lead to a major failure.
Traditionally, SPM does not integrate the notion of time between the provided
associations [14]. However, there are research works like [7] that allow the spec-
ification of time constraints for the identification of the patterns, or works like
[3] and [12] that provide solutions for an extension of SPM for online processing
of temporal data sequences6.The combination of such techniques with Complex-
event processing (CEP) can predict failures in a variety of complex systems,
such as the ones encountered in the industry. In this work, we will examine the
prediction efficiency of a system that uses SPM with time constraints between
events. An outline is presented in Algorithm 1, where the main input parameters
consist of the constraints on the pattern period and the gap between events, the
α parameter, which sets the support threshold in relation to the occurrence of
faults in the training set, and ε, which keeps patterns not generating many false
alarms.

6 Open-source implementations are provided in libraries such as [5].
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3.2 Event-driven machine learning for PdM focusing on log
preprocessing

An advanced data-driven predictive maintenance approach is presented in [10].
The objective of this research work is to develop an alerting system that provides
early notifications to aviation engineers for upcoming aircraft failures, providing
the needed time for the maintenance actions. The aviation is a well-documented
field, as all the maintenance and flight data are systematically logged. Hence,
event-based techniques can leverage this special characteristic and provide effec-
tive predictive solutions. The main challenge is to cope with the large set of log
entries that are essentially irrelevant to the main failures.

In [10], the emphasis is placed on log preprocessing; therefore, we will refer
to this methodology as LPPdM . The post flight logs are partitioned in ranges
defined by the occurrences of the fault that PdM targets. These ranges are further
partitioned into time-segments, which may correspond to a day or to a single
usage of the equipment. The idea is that the segments that are closer to the end
of the range may contain fault events that are potentially indicative of the main
event. The goal is to learn a function that quantifies the risk of the targeted
failure occurring in the near future, given the events that precede it. Hence, a
sigmoid function is proposed, which maps higher values to the segments that are
closer to the target event. The steepness and shift of the sigmoid function are
configured to better map the expectation of the time before the target event at
which correlated events will start occurring. The segmented data in combination
with the risk quantification values are fed into a Random Forests algorithm as
a training set to form a regression problem, which is based on the minimization
of the mean squared error.

In order to increase the effectiveness of the approach standard preprocess-
ing techniques are applied: (1) Rare events (more rare than the target event),
are considered as extremely rare, hence they are removed to reduce the dimen-
sionality of the data. (2) Multiple occurrences of the same event in the same
segment can either be noise or may not provide useful information. Hence, mul-
tiple occurrences are shrank into a single one. (3) Most frequent events usually
do not contain significant information since they correspond to issues of minor
importance. A tf-idf (term-frequency - inverted document frequency) or a sim-
ple threshold-based approach can be used to remove most frequent events. (4)
Events of minor importance occur and appear in every segment until their un-
derlying cause is treated by the technical experts. Hence, the first occurrence of
events that occur in consecutive segments is maintained. (5) A statistical fea-
ture selection technique, based on the distance of the fault events with the target
event is applied, to filter out fault events, which are far from the target event.
Finally, to deal with the imbalance of the labels (given that the target event is
rare) and as several events appear shortly before the occurrence of the target
event, but only a small subset of them is related to the target event, the authors
use Multiple Instance Learning (MIL) bagging the events. A single bag contains
fault events of a single day. Using MIL, the data closer to the target event (a
threshold is specified), are over-sampled.
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aspect LPPdM [10] FSPdM [14]

event aggregation period between targeted
failures

fixed period

ML technique random forests random forests, XGBoost

features event type occurrence event type frequencies, statistics, rel-
evant event combinations and simi-
larities to failure patterns

feature selection implicit or explicit
through Wiebull distribu-
tion fitting

explicit through ReliefF/InfoGain

rare event pruning explicit implicit through pattern mining

risk quantification sigmoid function binary

Table 1. Main differences between the techniques in [10] and [14]

3.3 Event-driven machine learning focusing on feature selection

The PdM approach proposed in [14], although it is evaluated over a use case
of automated teller machines (ATMs), is general enough to be applied on any
industrial scenario, where error and failure logs are available. It follows a similar
rationale as [10], but implicitly assumes that the log types recorded are more
commonly related to the targeted failure (e.g., generated from software excep-
tions) and puts more emphasis on feature generation and selection. We will refer
to this approach as FSPdM . Its main drawback is that it cannot scale in the
number of event types that are present in the logs.

The authors propose a configurable approach for the creation of the training
and testing datasets and the formation of a binary classification problem. More
specifically, the dataset is divided into partitions (named Observation Windows
(OW)) and each OW is further divided into daily segments. Every OW, is fol-
lowed by a Prediction Window (PW) (i.e. partition with daily segments), in
which a fault is predicted to take place. The range from the beginning of each
OW up to the end of the related PW defines a training or testing instance. The
labelling of an instance (i.e. classes: likely to fail, or not to fail) depends on the
existence of a ticket report inside the PW (i.e. if there is a ticket in the PW, the
instance is considered positive (i.e. likely to fail)).

Each created instance is comprised by five feature categories. (1) Basic Fea-
tures: A frequency vector for each error type inside an OW . (2) Advanced Statis-
tical Features: A vector of statistics like, minimum, maximum and mean distance
of an error type inside the OW , from the beginning of the corresponding PW
and mean and standard deviation of the distance between instances of the same
error type inside the OW , for each error type. (3) Pattern-based Features: A
binary vector of error type patterns, which is created based on a confidence
threshold on the relative frequency of each pattern in all the OWs. The initial
set of patterns is created based on the power set (excluding the null set) of the
error types inside each OW . (4) Failure Similarity Features: The Jaccard simi-
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larity of two consecutive failures (tickets) of the same type, computed based on
the error types of each corresponding OW . (5) Profile-based Features: Consider
equipment specific features, like the model and the installation date of a ATM
machine.

The research work examines the predictive effectiveness of the five feature
types and their combinations, four feature ranking algorithms (i.e. InfoGain,
GainRatio, ReliefF, SymmetricalUncert) and four prediction algorithms (i.e.
XGBoost, Random Forests, Ada Boost M1 and LibSVM). Based on the eval-
uation, the usage of all the statistical features, the ReliefF and InfoGain feature
ranking algorithms and the XGBoost and Random Forest prediction algorithms
produced the higher performance. Table 1 summarizes the main differences be-
tween the two methodologies.

4 Event Dataset Generation

To enable a fair, repeatable, extensible and realistic experimentation of event-
based PdM approaches, we develop a configurable generator, in line with the
environments in works such as [10,14]. An outline of the generator is presented
in Algorithm 2. The generator is publicly available 7. The parameters are sum-
marized in Table 2.

Algorithm 2 Events Dataset Generator

1: procedure EventsGeneration
2: ft← number of fault event types
3: dataset size← str + ste (str, ste ← training/testing set size)
4: day events map← ∅
5: p← number of points to generate (can be set to a large integer)
6: for each event from 1 to ft do
7: Ŵdist ← Random Weibull Dist(p)
8: day ← 0
9: for each p of Ŵdist do

10: day ← day + p
11: day events map[day]← day events map[day]

⋃
[event]

12: if day ≥ dataset size then
13: break
14: day events map← add pattern(day events map)
15: day events map← remove target events(day events map)
16: return day events map

17:
18: procedure Random Weibull Dist(p)
19: s← random(0, 20)
20: mdbe← max distance between events
21: Wdist ←Weibull(shape = s, points = p)
22: Ŵdist ← normalize(Wdist, [0,mdbe])
23: return ˆWdist

7 http://interlab.csd.auth.gr/anaskos/ebp_icdm.git

http://interlab.csd.auth.gr/anaskos/ebp_icdm.git
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24:
25: procedure Add Pattern(day events map)
26: pl← pattern length
27: mint,maxt ← min/max distance of the pattern from the target event
28: minp,maxp ← min/max distance between pattern events
29: minf ,maxf ← min/max forms of each pattern event
30: s← shuffle the order of the events of the pattern
31: pattern events← get pattern events(ft, pl)
32: pforms ← generate pattern forms(pattern events,minf ,maxf )
33: for each day of day events map do
34: if target event ∈ day then
35: ptdist ← random(mint,maxt)
36: pforms ← shuffle(pforms, s)
37: if 0 ≤ day ≤ str then
38: pforms ← partial pattern(pforms)

39: for each pe of pforms do
40: pedist ← random(minp,maxp)
41: pday ← day − ptdist − (peindex ∗ pedist), 0 ≤ peindex ≤ pl
42: day events map[pday]← day events map[pday]

⋃
[pe]

43: return day events map

44: procedure Partial Pattern(pforms)
45: pc← pattern clarity
46: pps← partial pattern size (percentage of the original pattern size)
47: pforms ← mapping of each pattern event to more event types
48: if random.uniform() < (1− pc) then
49: return pforms ∗ pps
50: else
51: return pforms

52:
53: procedure Remove Target Events(day events map)
54: for each day of day events map do
55: if target event ∈ day ∧ ¬partial pattern then
56: if random.uniform() < (1− pc) then
57: day events map[pday]← day events map[pday]− [target event]

58: return day events map

The dataset produced by the generator is an array of sets of event log identi-
fiers; the identifiers range from 1 to ft, where ft is the size of the event dictionary,
and are going to be referred as events for the rest of the paper. An event might
indicate a specific maintenance process that has taken place or a specific fault.
The array size is str+ste, where str and ste are the number of the daily segments
of the training and test sets, respectively.

In lines 6-13, for each event type, a random normalized Weibull distribution is
produced (lines 7,18-23). Then, we choose random points from this distribution.
Each point is used to compute, the daily segment where the event of the specific
type is going to be placed. This is the main extensibility point of our generator;
although the Weibull distribution is widely used to map early-life, random or
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Parameter Description

ft number of different event/fault types

str size of training dataset (in days)

ste size of testing dataset (in days)

pl pattern length

mint/maxt min./max. distance (in days) of the last pattern event from the target event

minp/maxp min./max. distance (in days) between pattern events

minf/maxf min./max. pattern event forms

pc pattern clarity

pps the percentage of the missing events in the distorted patterns
Table 2. Main dataset generator parameters.

wear-out failures and produce life-usage statistics, someone can implement her
own event occurrence distribution function.

Then, to test the accuracy of the PdM techniques, specific patterns of events
of length pl from the ft dictionary that precede the target event are infused
(lines 14,25-43). The goal of the PdM techniques is to effectively discover and
learn such patterns, so that they can predict the target events. Furthermore, the
clarity of the pattern is distorted in order to emulate the real world cases, where
the preceding indications of a prominent failure are not always exactly the same
or clear (lines 38,44-51). More specifically, a clarity percentage (pc) is specified
along with a partial pattern size (pps), where the former defines the percentage
of partial patterns (i.e. pattern instances that are missing some of the events
of the original pattern), while the latter defines the percentage of the missing
events. For example, pc = 0.9 and pps = 0.5, means that 10% of the pattern
instances (i.e. 1−pc) are going to include only the half (i.e. 1−pps) of the events
of the original pattern. pc also defines the percentage of the full patterns (i.e.
patterns that include all the events) that are not followed by a target event (i.e.
the target events that follow these patterns are removed from the dataset). E.g.
pc = 0.9 specifies that 10% of the 90% of the target event instances are going to
be removed (lines 15,53-58).

To better map real world cases, the patterns are not deterministic, but each
of the pl elements is linked to minf −maxf specific events (lines 29,32). This
corresponds to the situation, where there are families of faults (event types)
that might precede the target event. In addition, the distances of the pattern
and the target event and between pattern events are also configurable (lines
27,32,35,41). All these are taken into account when generating the preceding
pattern through the generate pattern forms function. Finally, the order of the
events of the pattern can also be shuffled (line 36), to allow for higher flexibility
of the supported scenarios.



10 A. Naskos and A. Gounaris

Dataset ft shuffle pl minf maxf str ste mint maxt minp maxp pc pps

DS1
150 no

6 1 3
1094 730 1 5 1 2 90% 50%

DS2 4 3 4

DS3
1500

same as DS1
DS4
DS5

150 yes
same as DS2

DS6
Table 3. Dataset generator parameters. DS1 to DS5 contain approx. 50 target events,
whereas DS6 contains 25 target events.

5 Experiments

The experimental section comprises three parts: (i) dataset description, (ii) com-
parison of the approaches in Section 3, and (iii) sensitivity analysis. For the SPM
approach, we are experimenting with two different implementations: with and
without the pre-processing and over-sampling specified in Section 3.2.

5.1 Datasets

Table 3 presents the parametrization used for the generation of six synthetic
datasets that are used for the evaluation of the PdM approaches. All the datasets
are separated into training and testing sets of sizes 3 and 2 years, respectively.
The distance of the pattern from the target event ranges from 1 to 5 days, while
the distance between the events of the pattern ranges from 1 to 2 days. The
pattern clarity is set to 90%, while the partial patterns include only the half of
the events of the full pattern (i.e. pps = 50%). The number of target events is
set to ≈ 50, as such, with the specified pc value, there are approximately 5 cases
of partial patterns and 5 cases of patterns that are not followed by target events
out of the 30 cases of target events that correspond to the training set.

There are two main datasets, namely, DS1 and DS2 and four datasets (DS3-
6) that are slightly altered versions of the former ones. More specifically, DS3 is
the same as DS1 and DS4 the same with DS2, with the difference that 10X more
event types are used (i.e. 1500 instead of 150). DS5 is the same as DS2 with the
difference that the sequence of the events of the pattern is shuffled. Finally, DS6
is the same as DS5 with the difference that there are fewer target events (i.e.
≈ 25 instead of ≈ 50), making the training process more challenging.

In the experiments, ten instances of each dataset are produced. The presented
results are the average values out of ten executions. For the reproduction of the
results, all the necessary code is provided 8. For the evaluation of the efficiency of
predictions, we have specified a range of days before the target event in which the
prediction should be made. Predictions that are inside this range are considered
as true positives and are counted once. Too early predictions occurring before

8 http://interlab.csd.auth.gr/anaskos/ebp_icdm.git

http://interlab.csd.auth.gr/anaskos/ebp_icdm.git
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PdM
DS1 DS3 DS2 DS4

P R F1 P R F1 P R F1 P R F1

LPPdM 0.54 0.99 0.70 0.77 0.93 0.83 0.55 0.69 0.60 0.68 0.25 0.31

FSPdM 0.83 0.85 0.84 0.78 0.88 0.82 0.63 0.88 0.73 0.70 0.74 0.71

SPM 0.51 1.00 0.66 0.55 0.87 0.66 0.36 0.88 0.50 0.22 0.46 0.29

SPMLPPdM 0.22 0.30 0.26 0.34 0.99 0.49 0.39 0.80 0.50 0.16 0.98 0.27
Table 4. PdM approaches comparison of the best achieved results for DS1-DS3 and
DS2-DS4 (P: precision, R: recall).

PdM
DS2 DS5 DS6

P R F1 P R F1 P R F1

LPPdM 0.55 0.69 0.60 0.56 0.65 0.59 0.28 0.75 0.40

FSPdM 0.63 0.88 0.73 0.66 0.69 0.68 0.48 0.30 0.35

SPM 0.36 0.88 0.50 0.00 0.00 0.00 0.43 0.40 0.37

SPMLPPdM 0.39 0.80 0.50 0.40 0.66 0.49 0.18 0.86 0.29
Table 5. PdM approaches comparison of the best achieved results for DS2-DS5-DS6
(P: precision, R: recall).

the range trigger unnecessary maintenance actions, which result in time and
monetary loses and are counted as false positives. If no prediction is made before
a target event or the prediction is delayed, the case is considered a false negative.
For DS1,3 the range is set to [1,30] and for DS2,4,5,6 to [1,22]. It is straight-
forward to adapt the techniques and experiments for ranges not starting from
1 day, which correspond to a buffer window between the prediction and the
predicted fault (details are omitted due to lack of space).

5.2 Comparison

Here, we present only the best achieved result of each approach after exper-
imenting with different parameterizations using DS1 and DS2; we re-use the
best performing parameters in DS3-5. Extra parameters were tested for DS6.
The sensitivity analysis is deferred to the next subsection. The best performing
results in terms of the F1-score are summarized in Tables 4 and 5.

Regarding the first dataset, the FSPdM approach achieved the best F1-score
(i.e. 0.84), followed by the LPPdM and SPM approaches (i.e. 0.7 and 0.66,
respectively). Interestingly, combining the preprocessing of LPPdM with SPM
degraded the performance, since less rules were generated. The increase in the
number of fault types from 150 to 1500 in DS3, not only did not cause any
negative effects in the results, but in some cases there were increases in the
F1-score as in the LPPdM (0.83 best score) and SPMLPPdM

(0.49) approaches.
This is due to the fact that LPPdM inherently targets sparse sets, where most of
the event types are non-related to the target event. In DS2, where the pattern
length is lower (i.e. 4) and there are more alternative event types for each pattern
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element, FSPdM is still the best performing technique but with lower F1-scores.
The increase of the number of the event types in DS4 had negative impact on all
the approaches, which is largely attributed to the sensitivity of the LPPdM -based
techniques to their parameters.

In the next set of experiments, summarized in Table 5, we examine the effect
of the shuffling of the order of the events of the pattern and the combination
of the shuffling with the reduction in the target event instances. Table 5 also
contains the DS2 scores for comparison. Regarding DS5, FSPdM achieved the
best F1-score (i.e. 0.68), followed by the LPPdM approach (i.e. 0.59). SPM
was not able to produce any rule that lead to the target event. However, the
application of the MIL oversampling helped SPMLPPdM

approach to achieve a
good F1-score (i.e. 0.49). In DS6, the parametrization of the approaches was re-
evaluated. FSPdM and SPMLPPdM

approaches achieved higher recall, while the
LPPdM and SPM achieved higher precision. This led to very similar F1-scores,
with LPPdM achieving the best one (i.e. 0.4).

The key observation is that, in general, the FSPdM approach, which employs
more statistical features coupled with feature selection, pays off in practice.
Overall, FSPdM and LPPdM approaches achieved the best score in all the cases
compared to the SPM implementations. FSPdM seems to be more robust than
the LPPdM approach, as it achieved better or almost the same score in all the
cases, where the parametrization kept the same (i.e. DS1-DS3 and DS2-DS4,5).
The preprocessing and the MIL process applied on the SPMLPPdM

help the
latter to achieve better results in some cases than the SPM approach, however
in all the cases the results from both the implementations were inferior to the
other two more advanced approaches.

5.3 Sensitivity Analysis

This section focuses on the sensitivity analysis of the LPPdM and FSPdM ap-
proaches using DS2. The number of possible combinations is apparently exhaus-
tive, thus we focus on the most important parameters.

Regarding the LPPdM approach, a key issue is to understand the impact
of the parameters of the underlying sigmoid function, as defined in Figure 1(a).
Adjusting the shift (or midpoint) parameter m, the steepness s and the threshold
leads to different trade-offs between precision and recall.

The first experiment, presented in Figure 1(b), considers the shift of the
sigmoid function, which in our case is defined as the distance of the middle
point of the sigmoid function from the target event. As shown, higher shift values
increase the recall of the approach lowering its precision, while lower values have
the opposite effect.

The next experiment, presented in Figure 1(c), examines the effect of the
steepness parameter for three different parameter values (i.e. 0.5 (green square,
0.7 (red circle) and 0.9 (blue triangle))). As it is depicted in the figure, setting
the lower of the three value (i.e. 0.5), the recall of the approach is negatively
affected as more events obtain closer values from the sigmoid function. The two
higher values achieve similar results.



Efficiency assessment of event-based predictive maintenance in Industry 4.0 13

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
(x

)

Sigmoid Function: F(x) =

1

es⋅(100−m−x)

x

s=0.1

m=40

s=0.9

m=40

s=0.9

m=70

(steepness (s), shift (m))

(a) Sigmoid Function

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

f=0.1
f=0.2
f=0.3
f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

(shift of the sigmoid function)

shift_9
shift_11
shift_13

LPPdM Sensitivity Analysis

(b) Shift of Sigmoid Function

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

f=0.1
f=0.2
f=0.3
f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

(steepness of the sigmoid function)

steepn_0.5
steepn_0.7
steepn_0.9

LPPdM Sensitivity Analysis

(c) Steepness of Sigmoid Function
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(d) Threshold on Sigmoid Function
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Fig. 1. Sensitivity analysis of the LPPdM PdM approach.

For the threshold impact on the prediction efficiency (Figure 1(d)), we have
examined three parameters (0.6 , 0.7, and 0.8) keeping the steepness high. The
threshold parameter, as shown in the figure, highly affects the recall of the ap-
proach (i.e. lower values increase the recall score) and more slightly the precision
(i.e. higher threshold values lead to higher precision).

In the last experiment regarding LPPdM , we examine the effect of the appli-
cation of the preprocessing and the MIL process on the approach efficiency (Fig-
ure 1(e)). Four cases are depicted: (i) preprocessing and MIL enabled setting the
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Fig. 2. Impact of OW slide in FSPdM

threshold parameter to 0.4 (green square P&M thr 0.4 ), (ii) preprocessing and
MIL enabled setting the threshold parameter to 0.7 (red circle P&M thr 0.7 ),
(iii) disabled preprocessing and MIL with threshold parameter equal to 0.4 (blue
triangle thr 0.4 ) and (iv) disabled preprocessing and MIL with threshold equal
to 0.7 (yellow diamond thr 0.7 ). There are two cases, one with preprocessing
and MIL enabled and one with both disabled, which both achieved similarly
high F1-scores (i.e. P&M thr 0.7 (F1=0.6), thr 0.4 (F1=0.62)). This might be
erroneously interpreted as that there is no point in applying the expensive tasks
of preprocessing and MIL; however, if we consider the other two cases, we ob-
serve that applying the preprocessing and MIL process provides more robust
behavior, as for the same change in the threshold, the F1-score is drastically
reduced in the case without preprocessing and MIL.

FSSPM is more robust to its parameters. We have experimented with dif-
ferent segmentation and OW size values, but these parameters seemed to play a
small role. An important parameter is the slide of the window, which defines the
OW movement. Setting the slide lower than the OW size causes over-sampling.
As it is shown in Figure 2, the lowest possible value of the slide (i.e. 1 (green
square)) has negative impact on the precision of the approach. Setting the slide
size equal to the half of the OW size (red circle) achieves better results than
setting it to the size to the OW (blue triangle).

6 Conclusion

In this work, we targeted event-based predictive maintenance. We presented
the main state-of-the-art approaches to date, we developed a publicly available,
extensible comparison framework and we conducted repeatable experiments. The
main lessons learnt are twofold: first, employing statistical features on the logged
events coupled with feature selection is the best performing technique in our
experiments, and second, when using regression, parameter tuning is a key issue
in achieving configurable trade-offs between precision and recall.

Our work can be extended in several ways. Combining feature expansion,
feature selection and log preprocessing is a promising avenue. Also, more thor-
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ough experiments need to be conducted. However, we believe that an important
issue is to transfer the event-based techniques to a setting where the input data
is raw time series signals from Industry 4.0 sensors.
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