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Abstract Workflow technology is rapidly evolving and,

rather than being limited to modeling the control flow

in business processes, is becoming a key mechanism to

perform advanced data management, such as big data

analytics. This survey focuses on data-centric work-

flows (or workflows for data analytics or data flows),

where a key aspect is data passing through and getting

manipulated by a sequence of steps. The large volume

and variety of data, the complexity of operations per-

formed, and the long time such workflows take to com-

pute give rise to the need for optimization. In general,

data-centric workflow optimization is a technology in

evolution. This survey focuses on techniques applicable

to workflows comprising arbitrary types of data manip-

ulation steps and semantic inter-dependencies between

such steps. Further, it serves a twofold purpose. Firstly,

to present the main dimensions of the relevant opti-

mization problems and the types of optimizations that

occur before flow execution. Secondly, to provide a con-

cise overview of the existing approaches with a view to

highlighting key observations and areas deserving more

attention from the community.
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1 Introduction

Workflows aim to model and execute real-world inter-

twined or interconnected processes, named as tasks or

activities. While this is still the case, workflows play an

increasingly significant role in processing very large vol-

umes of data, possibly under highly demanding require-

ments. Scientific workflow systems tailored to data- in-

tensive e-science applications have been around since

the last decade, e.g., [27,29]. This trend is nowadays

complemented by the evolution of workflow technology

to serve (big) data analysis, in settings such as busi-

ness intelligence, e.g., [20], and business process man-

agement, e.g., [11]. Additionally, massively parallel en-

gines, such as Spark, are becoming increasingly popular

for designing and executing workflows.

Broadly, there are two big workflow categories, name-

ly control-centric and data-centric. A workflow is com-

monly represented as a directed graph, where each task

corresponds to a node in the graph and the edges rep-

resent the control flow or the data flow, respectively.

The control-centric workflows are most often encoun-

tered in business process management [16] and they

emphasize the passing of control across tasks and gate-

way semantics, such as branching execution, iterations,

and so on; transmitting and sharing data across tasks

is a second class citizen. In control-centric workflows,

only a subset of the graph nodes correspond to activi-

ties, while the remainder denote events and gateways,

as in the BPMN standard. In data-centric workflows

(or workflows for data analytics or simply data flows1),

the graph is typically acyclic (directed acyclic graph -

DAG). The nodes of the DAG represent solely actions

related to the manipulation, transformation, access and

1 Hereafter, these three terms will be used interchangeably;
the terms workflow and flow will be used interchangeably, too.
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storage of data, e.g., as in [28,74,91,114] and in pop-

ular data flow systems, such as Pentaho Data Integra-
tion (Kettle) and Spark. The tokens passing through

the tasks correspond to processed data. The control is

modeled implicitly assuming that each task may start

executing when the entire or part of the input becomes

available. This survey considers data-centric flows ex-

clusively.

Executing data-centric flows efficiently is a far from

trivial issue. Even in the most widely used data flow

tools, flows are commonly designed manually. Problems

in the optimality of those designs stem from the com-

plexity of such flows and the fact that in some applica-

tions, flow designers might not be systems experts [2]

and consequently, they tend to design with only seman-

tic correctness in mind. In addition, executing flows in a

dynamic environment may entail that an optimized de-

sign in the past may behave suboptimally in the future

due to changing conditions [39,94].

The issues above call for a paradigm shift in the

way data flow management systems are engineered and

more specifically, there is a growing demand for auto-

mated optimization of flows. An analogy with database

query processing, where declarative statements, e.g., in

SQL, are automatically parsed, optimized, and then

passed on to the execution engine is drawn. But data

flow optimization is more complex, because tasks need

not belong to a predefined set of algebraic operators

with clear semantics and there may be arbitrary de-

pendencies among their execution order. In addition,

in data flows there may be optimization criteria apart

from performance, such as reliability and freshness de-

pending on business objectives and execution environ-

ments [90]. This survey covers optimization techniques2

applicable to data flows, including database query opti-

mization techniques that consider arbitrary plan oper-

ators, e.g., user-defined functions (UDFs), and depen-

dencies between them. To the contrary, we do not aim

to cover techniques that perform optimizations consid-

ering solely specific types of tasks, such as filters, joins

and so on; the techniques covered in this survey do not

necessarily rely on any type of algebraic task modeling.

The contribution of this survey is the provision of

a taxonomy of data flow optimization techniques that

refer to the flow plan generation layer. In addition, a

concise overview of the existing approaches with a view

to (i) explaining the technical details and the distinct

features of each approach in a way that facilitates re-

sult synthesis; and (ii) highlighting strengths and weak-

nesses, and areas deserving more attention from the

community is provided.

2 The terms technique, proposal, and work will be used in-
terchangeably.

The main findings are that on the one hand, big ad-

vances have been made and most of the aspects of data
flow optimization have started to be investigated. On

the other hand, data flow optimization is rather a tech-

nology in evolution. Contrary to query optimization,

research so far seems to be less systematic and mainly

consists of ad-hoc techniques, the combination of which

is unclear.

The structure of the rest of this article is as follows.

The next section describes the survey methodology and

provides details about the exact context considered.

Section 3 presents a taxonomy of existing optimizations

that take place before the flow enactment. Section 4 de-

scribes the state-of-the-art techniques grouped by the

main optimization mechanism they employ. Section 5

presents the ways in which optimization proposals for

data-centric workflows have been evaluated. Section 6

highlights our findings. Section 7 touches upon tangen-

tial flow optimization-related techniques that have re-
cently been developed along with scheduling optimiza-

tions taking place during flow execution. Section 8 re-

views surveys that have been conducted in related areas

and finally, Section 9 concludes the paper.

2 Survey Methodology

We first detail our context with regards to the architec-

ture of a Workflow Management System (WfMS). Then

we explain the methodology for choosing the techniques

included in the survey and their dimensions, on which

we focus. Finally, we summarize the survey contribu-

tions.

2.1 Our Context within WfMSs

The life cycle of a workflow can be regarded as an it-

eration of four phases, which cover every stage from

the workflow modeling until its output analysis [71].

The four phases are composition, deployment, execu-

tion, and analysis [71]. The type of workflow optimiza-

tion, on which this work focuses, is part of the de-

ployment phase where the concrete executable workflow

plan is constructed defining execution details, such as

the engine that will execute each task. Additionally, Liu

et al. [71] introduce a functional architecture for each

data-centric Workflow Management System (WfMS),

which consists of five layers: i) presentation, which com-

prises the user interface; ii) user services, such as the

workflow monitoring and data provision components;

iii) workflow execution plan (WEP) generation, where

the workflow plan is optimized, e.g., through workflow

refactoring and parallelization, and the details needed
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by the execution engine are defined; iv)WEP execution,

which deals with the scheduling and execution of the
(possibly optimized) workflow, but also considers fault-

tolerance issues, and finally, v) the infrastructure layer,

which provides the interface between the workflow ex-

ecution engine and the underlying physical resources.

According to the above architecture, one of the roles

of a WfMS is to compile and optimize the workflow ex-

ecution plans just before the workflow execution. Opti-

mization of data flows, as conceived in this work, forms

an essential part of the WEP generation layer and not

of the execution layer. Although there might be op-

timizations in the WEP execution layer as well, e.g.,

while scheduling the WEP, these are out of our scope.

More specifically, the mapping of flow tasks to concrete

processing nodes during execution, e.g, task X of the

flow should run on processing node Y , is traditionally

considered to be a scheduling activity that is part of

WEP execution layer rather than the WEP generation
one, on which we focus. Finally, we use the terms task

and activity interchangeably, both referring to entities

that are not yet instantiated, activated or executed.

2.2 Techniques Covered

The main part of this survey covers all the data flow

optimization techniques that meet the following criteria

to the best of authors’ knowledge:

– They refer to the WEP generation layer in the ar-

chitecture described above, that is the focus is on

the optimizations performed before execution rather

than during execution.

– They refer to techniques that are applicable to any

type of tasks rather than being tailored to specific

types, such as filters and joins, or to an algebraic

modeling of tasks.

– The partial ordering of the flow tasks is subject

to dependency (or, else precedence) constraints be-

tween tasks, as is the generic case for example of

scientific and data analysis flows; these constraints

denote whether a specific task must precede another

task or not in the flow plan.

We surveyed all types of venues where relevant tech-

niques are published. Most of the covered works come

from the broader data management and e-science com-

munity, but there are proposals from other areas, such

as algorithms. We also include techniques that were pro-

posed without generic data flows in mind, but meet our

criteria and thus are applicable to generic data flows.

An example is the proposal for queries over Web Ser-

vices (WSs) in [95]. The main keywords we searched

for are: “workflow optimization”, “flow optimization”,

“query optimization AND constraints”, and “query op-

timization AND UDF”, while we applied snowballing
in both directions [110] using both the reference list of

and the citations to a paper.

2.3 Technique Dimensions Considered

We assume that the user initially defines the flow either

at a high-level non-executable form or in an executable

form that is not optimized. The role of the optimiza-

tions considered is to transform the initial flow into an

optimized ready-to-be executed one.3 Analogously to

query optimization, it is convenient to distinguish be-

tween high-level and low-level flow details. The former

capture essential flow parts, such as the final task se-

quencing, at a higher level than that of complete exe-

cution details, whereas the latter include all the infor-

mation needed for execution. In order to drive the op-

timization, a set of metadata is assumed to be in place.

This metadata can be statistics, e.g., cost per task in-

vocation and size of task output per input data item,

information about the dependency constraints between

tasks, that is a partial order of tasks, which must be al-

ways preserved to ensure semantic correctness, or other

types of information as explained in this survey.

To characterize optimizations that take place be-

fore the flow execution (or enactment), we pose a set of

complementary questions when examining each existing

proposal aiming at shedding light onto and covering all

the main aspects of interest:

1. What is the effect on the execution plan?, which

aims to identify the type of incurred enhancements
to the initial flow plan.

2. Why?, which asks for the objectives of the optimiza-

tion.
3. How?, which aims to clarify the type of the solution.

4. When?, to distinguish between cases where theWEP

generation phase takes place strictly before theWEP

execution one, and where these phases are inter-

leaved.

5. Where the flow is executed?, which refers to the ex-

ecution environment.

6. What are the requirements?, which refers to the in-

put flow metadata in order to apply the optimiza-

tion.

3 Through considering optimizations starting from a valid
initial flow, we exclude from our survey the big area of an-
swering queries in the presence of limited access patterns, in
which, the main aim is to construct such an initial plan [69,
79] through selecting an appropriate subset of tasks from a
given task pool; however, we have considered works from data
integration that optimize the plan after it has been devised,
such as [111] or [34], which is subsumed by [60].
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7. In which application domain?, which refers to the

domain for which the technique initially targets.

We regard each of the above questions as a different

dimension. As such, we derive seven dimensions: (i) the

Mechanisms referring to the process through which an

initial flow is transformed into an optimized one; (ii) the

Objectives that capture the one or more criteria of the

optimization process; (iii) the Solution Types defining

whether an optimization solution is accurate or approx-

imate with respect to the underlying formulation of the

optimization problem; (iv) the Adaptivity during the

flow execution; (v) the Execution Environment of the

flow and its distribution; (vi) the Metadata necessary

to apply the optimization technique; and finally, (vii)

the Application Domain, for which each optimization

technique is initially proposed.

3 Taxonomy of Existing Solutions

Based on the dimensions identified above, we build a

taxonomy of existing solutions. More specifically, for

each dimension, we gather the values encountered in

the techniques covered hereby. In other words, the tax-

onomy is driven by the current state-of-the-art and aims

to provide a bird’s eye view of today’s data flow opti-

mization techniques. The taxonomy is presented in Fig-

ure 1 and analyzed below, followed by a discussion of

the main techniques proposed to date in the next sec-

tion. In the figure, each dimension (in light blue) can

take one or more values. Single-value and multi-value

dimensions are shown as yellow and green rectangles,

respectively.

3.1 Flow Optimization Mechanisms

A data flow is typically represented as a directed acyclic

graph (DAG) that is defined as G = (V,E), where V

denotes the nodes of the graph corresponding to a set

of tasks and E represents a set of pair of nodes, where

each pair denotes the data flow between the tasks. If

a task outputs data that cannot be directly consumed

by a subsequent task, then data transformation needs

to take place through a third task; no data transforma-

tion takes place through an edge. Each graph element,

either a vertex or an edge, is associated with proper-

ties, such as how exactly is implemented, for which ex-

ecution engine, and under which configuration. Data

flow optimization is a multi-dimensional problem and

its multiple dimensions are broadly divided according

to the two flow specification levels. Consequently, we

identify the optimization of the high-level (or logical)

flow plan and the low-level (or physical) flow plan, and

each type of optimization mechanism can affect the set
of V or E of the workflow graph and their properties.

The logical flow optimization types are largely based

on workflow structure reformations, while preserving

any dependency constraints between tasks; structure

reformations are reflected as modifications in V and E.

The output of the optimized flow needs to be semanti-

cally equivalent as the output of the initial flow, which

practically means that two flows receive the same in-

put data and produce the same output data without

considering the way this result was produced. Given

that data manipulation takes place only in the context

of tasks, logical flow optimization is task-oriented. The

logical optimization types are characterized as follows

(summarized also in Figure 2):

– Task Ordering, where we change the sequence of the

tasks by applying a set of partial (re)orderings.

– Task Introduction, where new tasks are introduced

in the data flow plan in order, for example, to min-

imize the data to be processed and thus, the overall

execution cost.
– Task Removal, which can be deemed as the opposite

of task introduction. A task can be safely removed

from the flow, if it does not actually contribute to

its result dataset.

– Task Merge is the optimization action of grouping

flow tasks into a single task without changing the

semantics, for example, to minimize the overall flow

execution cost or to mitigate the overhead of enact-

ing multiple tasks.

– Task Decomposition, where a set of grouped tasks is

splitted to more than one flow tasks with less com-

plex functionality for generating more optimal sub-

tasks. This is the opposite operation of merge action

and may provide more optimization opportunities,

as discussed in [47,91], because of the potential in-

crease in the number of valid (re)orderings.

At the low level, a wide range of implementation

aspects need to be specified so that the flow can be

later executed (see also Figure 3):.

– Task Implementation Selection, which is one of the

most significant lower-level problems in flow opti-

mization. This optimization type includes the selec-

tion of the exact, logically equivalent, task imple-

mentation for each task that will satisfy the defined

optimization objectives [91]. A well-known counter-

part in database optimization is choosing the ex-

act join algorithm (e.g., hash-join, sort-merge-join,

nested loops).

– Execution Engine Selection, where we have to decide

the type of processing engine to execute each task.
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Fig. 1 A taxonomy of data-centric flow optimization for each of the identified dimensions.

Fig. 2 Schematic representation of high-level flow optimizations.

The need for such optimization stems from the avail-

ability of multiple options in modern data-intensive

flows [63,92]. Common choices, nowadays, include

DBMSs, massively parallel engines, such as Hadoop

clusters, apart from the execution engines that are

bundled with data flow management systems.

– Execution Engine Configuration, where we decide on

configuration details of the execution environment,

such as the bandwidth, CPU, memory to be reserved

during execution or the number of cores allocated

[94].

The fact that the optimization types are task-oriented

must not lead to a misinterpretation that they are un-

suitable for data flows. Again, we draw an analogy with

query optimization, where the main techniques, e.g.,

dynamic programming for join ordering, filter push down,

and so on are operator-oriented; nevertheless such an

approach has be proven sufficient for making query plans

capable of processing terabytes of data.

3.2 Optimization Objectives

An optimization problem can be defined as either single

or multiple objective one depending on the number of

criteria that considers. The optimization objectives that

are typically presented in the state-of-the-art include

the following: performance, reliability, availability, and

monetary cost. The latter is important when the flow is
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Fig. 3 Schematic representation of low-level flow optimizations.

executed on resources provided at a price, as in public

clouds. Other quality metrics can be applied as well

(denoted as other QoS in Figure 1).

The first two objectives require further elaboration.

Performance can be defined in several forms, depend-

ing, for example, on whether the target is the mini-

mization of the response time, or the resource consump-

tion. The formal definitions of the performance objec-

tive in data flows that have appeared in the literature

are presented in the next section. Analogously, reliabil-

ity may appear in several forms. In our context, relia-

bility reflects how much confidence we have in a data

flow execution plan to complete successfully. However,

in data flow optimization proposals, we have also en-

countered the following two reliability aspects playing

the role of optimization objectives: trustworthiness of

a flow (Trust), which is typically based on the trust-

worthiness of the individual tasks and avoidance of dis-

honest providers, that is providers with bad reputation;

and Fault Tolerance, which allows the execution of the

flow to proceed even in the case of failures.

3.3 Optimization Solution Types

The optimization techniques that have been proposed

constitute accurate, approximate or heuristic solutions.

Such solutions make sense only when considered in par-

allel with the complexity of the exact problem they aim

to solve. Unfortunately, a big set of the problems in flow

optimization are intractable. For such problems, in the

case of accurate solutions, a scalable technique cannot

be provided. In the case of approximate optimization

solutions, we typically tackle intractable problems in

a scalable way while being able to provide guarantees

on the approximation bound. Finally, in the last cate-

gory, we exploit knowledge about the specific problem

characteristics and propose algorithms that are fast and

exhibit good behavior in test cases, without examining

the deviation of the solution from the optimal in a for-

mal manner.

3.4 Adaptivity of Data-Centric Flow

Data flow adaptivity refers to the ability of technique

to reoptimize the data flow plan during the execution

phase. So, we characterize the optimization techniques

as either static, where once the flow execution plan is

derived it is executed in its entirety, or dynamic, where

the flow execution plan may be revised on the fly.

3.5 Execution Environment

The techniques that are proposed for data flow opti-

mization problem differ significantly according to the
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execution environment assumed. The execution envi-

ronment is defined by the type of resources that exe-
cute the flow tasks. Specifically, in a centralized execu-

tion environment, all the tasks of a flow are executed by

a single-node execution engine. Additionally, in a par-

allel execution environment, the tasks are executed in

parallel by an engine on top of a homogeneous cluster,

while in a distributed execution environment, the tasks

are executed by remote and potentially heterogeneous

execution engines, which are interconnected through or-

dinary network. Typically, optimizations on the logical

level are agnostic to the execution environment, con-

trary to the physical optimization ones.

3.6 Metadata

The set of metadata includes the information needed to

apply the optimizations and as such, can be regarded

as existential pre-conditions that should hold. The most

basic input requirement of the optimization solutions is

an initial set V of tasks. However, additional metadata

with regards to the flow graph are typically required as

well. These metadata are both qualitative and quantita-

tive (statistical), as discussed below. Qualitative meta-

data include:

– Dependencies, which explicitly refer to the definition

of which vertices in the graph should always precede

other vertices. Typically, the definition of dependen-

cies comes in the form of an auxiliary graph.

– Task schemata, which refer to the definition of schema

of the data input and/or output of each task. Note

that dependencies may be produced by task schemata

through simple processing [88], especially if they

contain information about which schema elements

are bound or free[58]. However, task schemata may

serve additional purposes than deriving dependen-

cies, e.g., to check whether a task contributes to the

final desired output of the flow.
– Task profile, which refers to information about the

execution logic of the task, that is the manner it

manipulates its input data; e.g, through analysis of

the commands implementing each task. If there is no

such metadata, the task is considered as a black-box.

Otherwise, information e.g., about which attributes

are read and which are written, can be extracted.

Quantitative metadata include:

– Vertex cost, which typically refers to the time cost,

but can also capture other types of costs, such as

monetary cost.

– Edge cost, which refers to the cost associated with

edges, such as data transmission cost between tasks.

– Selectivity, which is defined as the (average) ratio

of the output to the input data size of a task and
its knowledge is equivalent to estimating the data

sizes consumed and produced by each task; sizes are

typically measured either in bytes or in number of

records (cardinality).

– QoS properties, such as values denoting the task

availability, reliability, security, and so on.

– Engine details, which cover issues, such as memory

capacity, execution platform configurations, price of

cloud machines, and so on.

3.7 Application Domain

The final dimension across, which we classify existing

solutions, is the application domain assumed when each

technique is proposed. This dimension sheds light into

differentiating aspects of the techniques with regards

to the execution environment and the data types pro-

cessed that cannot be captured by the previous dimen-

sions. Note that the techniques may be applicable to

arbitrary data flows in additional application domains

than those initially targeted. In this dimension, we con-

sider two aspects: (i) domain of initial proposal, which

can be one of the following: ETL flows, data integra-

tion, Web Services (WSs) workflows, scientific work-

flows, MapReduce flows, business processes, database

queries or generic; (ii) online (e.g., real-time) vs. batch

processing. Generic domain proposals aim to a broader

coverage of data flow applications, but due to their

genericity, they make miss some optimization oppor-

tunities that a specific domain proposal could exploit.

Also, online applications require more sophisticated so-

lutions, since data is typically streaming and employ

additional optimization objectives, such as reliability

and acquiring responses under pressing deadlines.

4 Presentation of Existing Solutions

Here, we describe the main techniques grouped accord-

ing to the optimization mechanism. This type of presen-

tation facilitates result synthesis. Grouping by mecha-

nism makes it easier to reason as to whether different

techniques employing the same mechanism can be com-

bined or not, e.g., because the make incompatible as-

sumptions. Additionally, the solutions for each mecha-

nism are largely orthogonal to the solutions for another

mechanism, which means that, in principle, they can

be combined at least in a naive manner. Therefore, our

presentation approach provides more insights into how

the different solutions can be synthesized.
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Table 1 A summary of the main techniques for producing an optimized flow regarding the dimensions: mechanisms, objectives,
solution types, and metadata.

(Refs.,Year) Mechanisms Objectives Solution Types Metadata

([1],2008),
([48],2007)

Merge,
Engine Selection

Performance Heuristic
Task

Profile

([6],2012) Ordering
Performance (Bottleneck/

Critical Path)
Accurate (O(n6))

Dependencies,
Vertex Cost,
Selectivity

([15],2008)
extending [95]

Ordering,
Implementation Selection

Performance Heuristic

Dependencies,
Task Schemata,
Vertex Cost,
Selectivity

([21],1999) Ordering Performance(Sum Cost) Approximate
Vertex Cost,
Selectivity

([23],2009) Implementation Selection
Performance (Critical Path),

Monetary Cost,
Reliability

Heuristic
Vertex Cost,

QoS properties

([25],2014) Removal Performance Heuristic (O(n2)) Task Schemata

([26],2015) Engine Configuration Performance Heuristic Task profile

([30],2005) Removal Performance Heuristic
Dependencies,
Task Schemata

([31],2012) Ordering Performance (Throughput) Accurate (O(n3))
Dependencies,
Vertex Cost,
Selectivity

([40],1998) Ordering Performance(Sum Cost) Approximate
Vertex Cost,
Selectivity

([45],2015) Engine Configuration Performance Heuristic
Task Profile,

Engine Details

([46],2015)
extending [44]

Task Introduction
Engine Selection/

Configuration

Performance,
Monetary Cost,

Reliability(Fault Tolerance)
Accurate (exponential)

Vertex Cost,
Engine Details

([47],2012),
([82],2015)

Ordering,
Introduction/Removal,

Decomposition
Performance (Sum Cost) Accurate (exponential)

Task Schemata/Profile,
Vertex Cost,
Selectivity

([57],2011) Engine Configuration
Performance (Sum Cost),

Monetary Cost
Heuristic Vertex Cost

([60],2017),
([59],2014)

Ordering Performance (Sum Cost)
Accurate (exponential),

Approximate (O(n2))

Dependencies,
Vertex Cost,
Selectivity

([63],2014) Engine Selection Performance (Sum Cost) Heuristic (O(n))
Dependencies

Vertex/Edge Cost

([65],2010) Ordering Performance (Sum Cost) Approximate (O(n2))
Task Schemata,
Vertex Cost,
Selectivity

([67],2013)
Implementation Selection,

Engine Configuration
Performance, Other QoS Heuristic (O(n))

Vertex Cost,
QoS properties

([68],2008) Implementation Selection
Performance,
Availability,

Monetary Cost
Heuristic (O(n))

Vertex Cost,
QoS properties

([70],2012)
Merge,

Engine Configuration
Performance Heuristic

Vertex Cost,
Task Schemata,

Selectivity,
Engine Details

([72],2015) Engine Configuration Performance Heuristic
Vertex Cost,
Task Profile

([85],2014) Engine Configuration Performance Exhaustive
Vertex Cost,

Engine Details

([88],2005)
Ordering,

Merge
Performance (Sum Cost)

Accurate (exponential),

Heuristic (O(n2))

Vertex Cost,
Task Schemata

([91],2012),
([92],2013),
([94],2013)

Ordering,
Decomposition,

Engine/
Implementation Selection

Performance
(Constr. Sum Cost

Bottleneck),
Reliability (Fault Tolerance)

Accurate (exponential),

Heuristic (O(n2))

Task Schemata,
Vertex Cost

([93],2010)
extending [88]

Ordering,
Merge,

Introduction,
Implementation Selection,

Engine Configuration

Performance
(Constr. Sum Cost

Bottleneck),
Reliability (Fault Tolerance)

Heuristic (O(n2))
Task Schemata,

Vertex Cost

([95],2006) Ordering Performance (Bottleneck) Accurate (O(n5))
Dependencies,
Vertex Cost,
Selectivity

([96],2012) Implementation Selection
Performance,

Monetary Cost,
Reliability

Heuristic (O(n)) Vertex Cost

([100,99], 2011) Ordering Performance (Bottleneck) Heuristic (exponential)
Dependencies,

Vertex/Edge Cost,
Selectivity

([102],2007)
Implementation Selection,

Task Introduction
Performance (Sum Cost) Accurate (exponential) Vertex cost

([107],2007) Merge Performance Heuristic Task Profile

([108],2005) Implementation Selection
Performance,
Availability,

Reliability (Trust)
Heuristic (O(n))

Vertex Cost,
QoS properties

([111],1999) Ordering Performance (Sum Cost) Approximate (O(n2))
Task Schemata,

Vertex Cost

([113], 2015) Engine Selection
Performance,

Monetary Cost
Heuristic

Vertex Cost,
Engine details

The discussion is accompanied by a summary of

each proposal in Table 1 for the dimensions of mech-

anisms, objectives, solution types, and metadata, and

Table 2, for the adaptivity, execution environment, and

application domain dimensions. When an optimization

proposal comes in the form of an algorithm, we also

provide the time complexity with respect to the size of

the set of vertices |V | = n. However, the interpretation

of such complexities requires special attention, when

there are several other variables of the problem size, as

is common in techniques employing optimization mech-

anisms at the physical level; details are provided within

the main text. The first column of the table mentions

also the publication year of each proposal, in order to
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Table 2 A summary of the main techniques for producing an optimized flow regarding the dimensions: adaptivity, execution
environment, and application domain.

(Refs.,Year) Adaptivity Execution Environment
Application

Domain
Static Dynamic Centralized Parallel Distributed

([1],2008),
([48],2007)

⋆ - ⋆ - - ETL (Batch)

([6],2012) ⋆ - - ⋆ - Queries (Online)
([15],2008)

extending [95]
⋆ - - - ⋆ Web Services (Online)

([21],1999) ⋆ - ⋆ - - Queries (Batch)
([23],2009) ⋆ - - - ⋆ Web Services (Batch)

([25],2014) ⋆ - ⋆ - -
Scientific

Workflows (Batch)
([26],2015) ⋆ - - ⋆ - Generic

([30],2005) - ⋆ - ⋆ -
Scientific

Workflows (Batch)
([31],2012) ⋆ - - ⋆ - Queries (Online)
([40],1998) ⋆ - ⋆ - - Queries (Batch)
([45],2015) - ⋆ - ⋆ - Map Reduce (Batch)
([46],2015)

extending [44]
⋆ - - - ⋆ Scientific

Workflows (Batch)
([47],2012),
([82],2015)

⋆ - - ⋆ -
Scientific

Workflows (Batch)
([57],2011) ⋆ - - - ⋆ Scientific (Online)
([60],2017),
([59],2014)

⋆ - ⋆ - - Generic

([63],2014) ⋆ - - - ⋆ Generic
([65],2010) ⋆ - ⋆ - - ETL (Batch)
([67],2013) - ⋆ - - ⋆ Generic
([68],2008) ⋆ - - - ⋆ Web Services (Online)
([70],2012) ⋆ - - ⋆ - Map Reduce (Batch)
([72],2015) ⋆ - - ⋆ - ETL (Batch)
([85],2014) ⋆ - - ⋆ - MapReduce (Batch)
([88],2005) ⋆ - ⋆ - - ETL (Batch)
([91],2012),
([92],2013),
([94],2013)

⋆ - - - ⋆ ETL (Online)

([93],2010)
extending [88]

⋆ - - ⋆ - ETL (Online)

([95],2006) ⋆ - - - ⋆ Web Services (Online)
([96],2012) ⋆ - - - ⋆ Generic

([100,99], 2011) ⋆ - - - ⋆ Web Services (Online)
([102],2007) ⋆ - ⋆ - - ETL (Batch)

([107],2007) ⋆ - - ⋆ -
Business

Processes (Batch)
([108],2005) ⋆ - - - ⋆ Web Services (Online)

([111],1999) ⋆ - - - ⋆ Data
Integration (Online)

([113], 2015) ⋆ - - - ⋆ Generic

facilitate the understanding of the proposal’s setting

and the time evolution of flow optimization.

Finally, we use a simple running example to present

the application of the mechanisms. Specifically, as shown

in Figure 4, we consider a data flow that (i) retrieves

Twitter posts containing product tags (Tweets Input),

(ii) performs sentiment analysis (Sentiment Analysis),

(iii) filters out tweets according to the results of this

analysis (Filter1), (iv) extracts the product to which

the tweet refers to (Lookup ProductID), and (v) accesses

a static external data source with additional product in-

formation (Join with External Source) in order to pro-

duce a report (Report Output). In this simple example,

in any valid execution plan step (ii) should precede step

(iii) and step (iv) should precede step (v).

Fig. 4 A data flow processing Twitter posts.

4.1 Task Ordering

The goal of Task Ordering is typically specified as that

of optimizing an objective function, possibly under cer-

tain constraints. A common feature of all proposals is

that they assign a metric m(vi) to each vertex vi ∈
V, i = 1 . . . n. To date, task ordering techniques have

been employed to optimize performance. More specif-
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Table 3 A summary of the objective functions in task ordering.

Description Objective Functions Refs.
Sum cost min

∑
c(vi), where i = 1 . . . n [47,59,65,82,88,111]

Constrained sum cost min
∑

c(vi), where i = 1 . . . n and g(vi) < 0 [91–94]

Bottleneck cost
min max(c(vi)), where i = 1 . . . n [5,6,95]
min max(c(vi, eij)), where i = 1 . . . n [99,100]

Critical path cost min
∑

c(vi), where vi belongs to critical path [5,6]
Throughput max

∑
f(vi), where i = 1 . . . n [31]

ically, all aspects of performance that we introduced

previously have been investigated: the minimization of

the sum of execution costs of either all tasks (both un-

der and without constraints) or the tasks that belong

to the critical path, the minimization of the maximum

task cost, and the maximization of the throughput. Ta-

ble 3 summarizes the objective functions of these met-

rics that have been employed by approaches to task or-

dering in data flow optimization to date. Existing tech-

niques can be modeled at an abstract level uniformly as

follows. The metric m refers either to costs (denoted as
c(vi)) or to throughput values (denoted as f(vi)). Costs

are expressed in either time or abstract units, whereas

throughput is expressed as number of records (or tu-

ples) processed per time unit. A more generic modeling

assigns a cost to each vertex vi along with its outcoming

edges eij , j = 1 . . . n (denoted as c(vi, eij)).

These objective functions correspond to problems

with different algorithmic complexities. Specifically, the

problems that target the minimization of the sum of

the vertex cost are intractable [17]. Moreover, Burge

et al. [17] discuss that “it is unlikely that any polyno-

mial time algorithm can approximate the optimal plan

to within a factor of O(nθ)”, where θ is some positive

constant. The generic bottleneck minimization problem

is intractable as well [98]. However, the bottleneck min-

imization based only on vertex costs and the other two

objective functions can be optimally solved in polyno-

mial time [5,31,95].

Independently of the exact optimization objectives,

all the known optimization techniques in this category

assume the existence of dependency constraints between

the tasks either explicitly or implicity through the def-

inition of task schemata. For the cost or throughput

metadata, some techniques rely on the existence of lower-

level information, such as selectivity (see Section 4.1.5).

4.1.1 Techniques for Minimizing the Sum of Costs

Regarding the minimization of the sum of the vertex

costs (first row in Table 3), there have been proposed

both accurate and heuristic optimization solutions deal-

ing with this intractable problem; apparently the for-

mer are not scalable. An accurate task ordering opti-

mization solution is the application of the dynamic pro-

gramming; dynamic programming is extensively used in

query optimization [84] and such a technique has been

proposed for generic data flows in [59]. The rationale of

this algorithm is to calculate the cost of task subsets of

size n based on subsets of size n− 1. For each of these

subsets, we keep only the optimal solution that satisfies

the dependency constraints. This solution has exponen-

tial complexity even for simple linear non-distributed

flows (O(2n)) but, for small values of n, is applicable

and fast.

Another optimization technique is the exhaustive

production of all the topological sortings in a way that

each sorting is produced from the previous one with

the minimal amount of changes [103]; this approach

has been also employed to optimize flows in [60,59].

Despite having a worst case complexity of O(n!), it is

more scalable than dynamic programming solution, es-

pecially, for flows with many dependency constraints

between tasks.

Another exhaustive technique is to define the prob-

lem as a state space search one [88]. In such a space,

each possible task ordering is modeled as a distinct state

and all states are eventually visited. Similar to the opti-

mization proposals described previously, this technique

is not scalable either. Another form of task-reordering

is when a single input/output task is moved before or
after a multi-input or a multi-output task [88,93]. An

example case is when two copies of a proliferate sin-

gle input/ output task are originally placed in the two

inputs of a binary fork operation and after reordering,

are moved after the fork. In such a case, the two task

copies moved downstream are merged into a single one.

As another example, a single input/output task placed

after a multi-input task can be moved upstream; e.g.,

when a filter task placed after a binary fork is moved

upstream to both fork input branches (or to just one,

based on their predicates). This is similar to traditional

query optimization where a selective operation can be

moved before an expensive operation like a join.

The branch-and-bound task ordering technique is

similar to the dynamic programming one in that it

builds a complete flow by appending tasks to smaller

sub-flows. To this end, it examines only sub-flows in

terms of meeting the dependency constraints and ap-

plies a set of recursive calls until generating all the

promising data flow plans employing early pruning. Such
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an optimization technique has been applied in [47,82]

for executing parallel scientific workflows efficiently, as
part of a new optimization technique for the develop-

ment of a logical optimizer, which is integrated into

the Stratosphere system [8], the predecessor of Apache

Flink. An interesting feature of this approach is that

following common practice from database systems it

performs static task analysis (i.e., task profiling) in or-

der to yield statistics and fine-grained dependency con-

straints between tasks going further from the knowl-

edge that can be derived from simply examining the

task schemata.

For practical reasons, the four accurate techniques

described above are not a good fit for medium and

large flows, e.g., with over 15-20 tasks. In these cases,

the space of possible solutions is large and needs to

be pruned. Thus, heuristic algorithms have been pre-

sented to find near optimal solutions for larger data

flows. For example, Simitsis et al. [88] propose a tech-

nique of task ordering by allowing state transitions,

which corresponds to orderings that differ in the or-

dering of only two adjacent tasks. Such transitions are

equivalent to a heuristic, which swaps every pair of ad-

jacent tasks, if this change yields lower cost, always

preserving the defined dependency constraints, until no

further changes can be applied. This heuristic, initially

proposed for ETL flows, can be applied to parallel and

distributed execution environments with streaming or

batch input data. Interestingly, this technique is com-

bined with another set of heuristics using additional

optimization techniques, such as task merge. In gen-

eral, this heuristic is shown to be capable of yielding

significant improvements. Its complexity is O(n2), but

there can be no guarantee for how much its solutions

can deviate from the optimal one.

There is another family of techniques that minimiz-

ing the sum of the tasks by ordering the tasks based on

their rank value defined as 1−sel(vi)
c(vi)

, where sel(vi) is the

selectivity of vi. The first examples of these techniques

were initially proposed for optimizing queries contain-

ing UDFs, while dependency constraints between pairs

of a join and UDF are considered [21,40]. However, they

can be applied in data flows by considering flow tasks as

UDFs and performing straightforward extensions. For

example, an extended version of [21], also discussed in

[59], builds a flow incrementally in n steps instead of

starting from a complete flow and performing changes.

In each step, the next task to be appended is the one

with the maximum rank value, for which all the prereq-

uisite tasks have been already included. This results in

a greedy heuristic of O(n2) time complexity.

This heuristic has been extended by Kougka et al.

[60] with techniques that leverage the query optimiza-

Fig. 5 An example of optimized task ordering.

tion algorithm for join ordering by Krishnamurthy et

al. [64] with appropriate post-processing steps in or-

der to yield novel and more efficient task ordering al-

gorithms for data flows. In [65], a similar rationale is

followed with the difference that the execution plan is

built from the sink to source task. Both proposals build

linear plans, i.e., plans in the form of a chain with a sin-

gle source and a single sink. These proposals for generic

or traditional ETL data flows are essentially similar to

the Chain algorithm proposed by Yerneni et al. [111] for

choosing the order of accessing remote data sources in

online data integration scenarios. Interestingly, in [111],

it is explained that such techniques are n-competitive,

i.e., they can deviate from the optimal plan up to n

times.
The incurred performance improvements can be sig-

nificant. Consider the example in Figure 4, where let

the cost per single input tweet of the five steps be

1, 10, 1, 1, and 5 units, respectively. Let the selec-

tivities be 1, 1, 0.1, 1, and 0.15, respectively. Then

the average cost in Figure 4 for each initial tweet is

1+10+1+0.1+0.5=12.6, whereas the cost of the flow

in Figure 5 is 1+1+5+1.5+0.15=7.65. In general, for

ordering arbitrary flow tasks in order to minimize the

sum of the task costs, any of the above solutions can

be used. If the flow is small, exhaustive solutions are

applicable [61]; otherwise the techniques in [60] are the

ones that seem to be capable of yielding the best plans.
Finally, minimizing the sum of the tasks cost ap-

pears also in multi-criteria proposals that consider also

reliability, and more specifically fault tolerance [91,93].

These proposals employ a further constraint in the ob-

jective function denoted as function g() (see 2nd row in

Table 3). In these proposals, g() defines the number of

faults that can be tolerated in a specific time period.

The strategy for exploring the search space of differ-

ent orderings extends the techniques that proposed by

Simitsis et al. [88].

4.1.2 Techniques for Minimizing the Bottleneck Cost

Regarding the problem of minimizing the maximum

task cost (3rd row in Table 3), which acts as the perfor-

mance bottleneck, there is a Task Ordering mechanism
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initially proposed for the parallel execution of online

WSs represented as queries [95]. The rationale of this
technique is to push the selective flow tasks (i.e., those

with sel < 1) in an earlier stage of the execution plan in

order to prune the input dataset of each service. Based

on the selectivity values, there may be cases where the

output of a service may be dispatched to multiple other

services for executing in parallel or in a sequence hav-

ing time complexity in O(n5) in the worst case. The

problem is formulated in a way that it is tractable and

the solutions is accurate.

Another optimization technique that considers task

ordering mechanism for online queries over Web Ser-

vices appears in [99,100]. The formulation in these pro-

posals extends the one proposed by Srivastava et al.

[95] in that it considers also edge costs. This modifica-

tion renders the problem intractable [98]. The practi-

cal value is that edge costs naturally capture the data

transmission between tasks in a distributed setting. The
solution proposed by Tsamoura et al. [99,100] consists

of a branch-and-bound optimization approach with ad-

vanced heuristics for early pruning and despite of its

exponential complexity, it is shown that it can apply to

flows with hundreds of tasks, for reasonable probability

distributions of vertex and edge costs.
The techniques for minimizing the bottleneck cost

can be combined with those for the minimization of

the sum of the costs. More specifically, the pipelined

tasks can be grouped together and for the correspond-

ing sub-flow, the optimization can be performed accord-

ing to the bottleneck cost metric. Then, these groups

of tasks can be optimized considering the sum of their

costs. This essentially leads to a hybrid objective func-

tion that aims to minimize the sum of the costs for seg-

ments of pipelining operators, where each segment cost

is defined according to the bottleneck cost. A heuristic

combining the two metrics has appeared in [93].

4.1.3 Techniques for Optimizing the Critical Path

A technique that considers the critical path providing

an accurate solution has appeared in [6]. This work has

O(n6) time complexity and has been initially proposed

for online queries in parallel execution environments,

but is also applicable to data flows. The strong point

of this solution is that it can perform bi-objective opti-

mization combining the bottleneck and the critical path

criteria.

4.1.4 Techniques for Maximizing the Throughput

Reordering the filter operators of a workflow can be

used to find an optimal query execution plan that maxi-

mizes throughput leveraging pipelined parallelism. Such

a technique has been presented by Deshpande et al.

[31] considering queries with tree-shaped constraints for
parallel execution environment providing an accurate

solution that has O(n3) time complexity. In this pro-

posal, each task is assumed to be executed on a distinct

node, where each node has a certain throughput capac-

ity that should not be exceeded. The unique feature of

this proposal is that it produces a set of plans that need

to be executed concurrently in order to attain through-

put maximization. The drawback is that it cannot han-

dle arbitrary constraint graphs, which implies that its

applicability to generic data flows is limited.

4.1.5 Task Cost Models

Orthogonally to the objective functions in Table 3, dif-

ferent cost models can be employed to derive c(vi), the

cost of the ith task vi. The important issue is that a task

cost model can be used as a component in any cost-

based optimization technique, regardless of whether it

has been employed in the original work proposing that

technique. A common assumption is that c(vi) depends

on the volume of data processed by vi, but this feature

can be expressed in several ways:

– c(vi) =
∏|Tprec

i |
j=1 selj ∗ cpii : this cost model defines

the cost of the ith task as the product of i) the cost

per input data unit (cpii) and ii) the product of the

selectivities sel of preceding tasks; T prec
i is the set of

all the tasks between the data sources and vi. This

cost model is explicitly used in proposals such as

[60,58,59,65,111].

– c(vi) = rs(vi) : In this case, the cost model is defined

as the size of the results (rs) of vi; it is used in [111],

where each task is a remote database query.

– c(vi) = αi ·CPU(vi)+βi ·IO(vi)+γi ·Ship(vi): this
cost model is a weighted sum of the three main cost

components, namely the cpu, I/O, and data ship-

ping costs. Further, CPU(vi) can be elaborated and

specified as
∏|Tprec

i |
j=1 selj ∗ cpii (defined above) plus

a startup cost. I/O costs depends on the cost per

input data unit to access secondary storage. Data

communication cost Ship(vi) depends on the size of

the input of vi, which, as explained earlier, depends

also on previous tasks and the vertex selectivity seli.

α, β, and γ are the weights. Such an elaborate cost

model has been employed by Hueske et al. [47].
– c(vi) = proc(vi) + part(vi): This cost model is sug-

gested by Simitsis et al. [93]. It explicitly covers task

parallelization and splits the cost of a tasks into the

processing cost proc and the cost to partition and

merge data part. The former cost is divided into a

part that depends on input size and a fixed one. The
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proposal in [93] considers the tasks in the flow that

add recovery points or create replicas by providing
differently specific formulas for them.

4.1.6 Additional Remarks

Regarding the execution environment, since the task

(re-)ordering techniques refer to the logical WEP level,

they can be applied to both centralized and distributed

flow execution environments. However, in parallel and

distributed environments, the data communication cost

needs to be considered. The difference between these

environments with regards to the communication cost

is that in the latter, this cost depends both on the

sender and receiver task and as such, it needs to be

represented, not as a component of vertex cost but as

a property of edge cost.

Additionally, very few techniques, e.g. [88], explic-

itly consider reorderings between single input/output

and multiple-input or multiple-output tasks; however,

this type of optimization requires further investigation

in the context of complex flow optimization.
Finally, none of the proposed techniques for task

ordering technique discussed are adaptive ones, that is

they do not consider workflow re-optimization during

its execution phase. In general, adaptive flow optimiza-

tion is a subarea in its infancy. However, Böhm et al.

[13] has proposed solutions for choosing when to trig-

ger re-optimization, which, in principle, can be coupled

with any cost-based flow optimization technique.

4.2 Task Introduction

Task introduction has been proposed for three reasons.
Firstly, to achieve fault-tolerance through the in-

troduction of recovery points and replicator tasks in

online ETLs [93]. For recovery points, a new node stor-

ing the current flow state is inserted in the flow in or-

der to assist recovering from failures without needing

to recompute the flow from scratch. Adding a recov-

ery (to a specific point in the plan) depends on a cost

function that compares the projected recovery cost in

case of failure against the cost to maintain a recovery

point. Additionally, the replicator nodes produce copies

of specified sub-flows in order to tolerate local failures,

when no recovery points can be inserted, e.g., because

the associated overhead increases the execution time

above a threshold. In both cases of task introduction,

the semantics of the flow are immutable. The proposed

technique extends the state space search in [88] after

having pruned the state search space. The objective

function employed is the constrained sum cost one (2nd

row in Table 3), where the constraint is on the number

Fig. 6 Examples of Task Introduction techniques.

of places where a failure can occur. The cost model ex-

plicitly covers the recovery maintenance overhead (last

case in Sec. 4.1.5). The key idea behind the pruning of

search space is first to apply task reordering and then,

to detect all the promising places to add the recovery

points based on heuristic rules. An example of the tech-

nique is in Figure 6 and suppose that we examine the

introduction of up to two recovery points. The two pos-

sible places are just after the Sort and Join tasks, re-

spectively. Assume that the most beneficial place is the

first one, denoted as RP1. Also, given RP1, RP2 is dis-
carded because it incurs higher cost than re-executing

the Join task. Similarly to the recovery points above,

the technique proposed by Huang et al. [46] introduces

operations that copy intermediate data from transient

nodes to primary ones, using a cluster of machines con-

taining both transient and primary cloud machines; the

former can be reclaimed by the cloud provided at any

time, whereas the latter are allocated to flow execution

throughout its execution.

Secondly, task introduction has been employed by

Rheinländer et al. [82] to automatically insert explicit

filtering tasks, when the user has not initially intro-

duced them. This becomes plausible with a sophisti-

cated task profiling mechanism employed in that pro-

posal, which allows the system to detect that some data

are not actually needed. The goal is to optimize a sum

cost objective function, but the technique is orthogo-

nal to any objective function aiming at performance

improvement. For example, in Figure 6, we introduce

a filtering task if the final report needs only a subset

of the initial data, e.g., it refers to a specific range of

products.

Third, task introduction can be combined with Im-

plementation Selection (Section 4.6). An example ap-

pears in [102], where the purpose is to exploit the ben-

efit of processing sorted records. To this end, it ex-

plores the possibility of introducing new vertices, called

sorters, and then to choose task implementations that

assume sorted input; the overhead of the insertion of the

new tasks is outweighed by the benefits of sort-based

implementations. In Figure 6, we add such a sorter task

just before the Join if a sort-based join implementa-

tion and report output is preferred. Proactively order-

ing data to reduce the overall cost has been used in tra-
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Fig. 7 An example of the Task Removal technique.

ditional database query optimization [35] and it seems

to be profitable for ETL flows as well.

Finally, all these three techniques can be combined;

e.g., in the example all can apply simultaneously yield-

ing the complete plan in the figure.

4.3 Task Removal

A set of optimization proposals support the idea of re-

moving a task or a set of tasks from the workflow ex-

ecution plan without changing the semantics in order

to improve the performance; these proposals have been

proposed mostly for offline scientific workflows, where

it is common to reuse tasks or sub-flows from previous

workflows without necessarily examining whether all

tasks included are actually necessary or whether some

results are already present. Three techniques adopt this

rationale [25,30,82], which are discussed in turn.
The idea of Rheinländer et al. [82] is to remove a

task or multiple tasks until the workflow consists only

of tasks that are necessary for the production of the

desired output. This implies that the execution result

dataset remains the same regardless of the changes that

have been applied. It aims to protect users that have

carelessly copied data flow tasks from previous flows. In

Figure 7, we see that, initially, the example data flow

contains an Extract Dates task, which is not actually

necessary.

The heuristic of Deelman et al. [30] has been pro-

posed for a parallel execution environment and is one

of the few dynamic techniques allowing the reoptimiza-

tion of the workflow during the workflow execution. At

runtime, it checks whether any intermediate results al-

ready exist at some node, thus making part of the flow

obsolete. Both [82] and [30] are rule-based and do not

target an objective function directly.

Another approach for applying task removal opti-

mization mechanism is to detect the duplicate tasks,

i.e., tasks performing exactly the same operation and

keep only a single copy in the execution workflow plan

[25]. This might be caused by carelessly combining ex-

isting smaller flows from a repository, e.g., myExper-

iment4 A necessary condition in order to ensure that

4 www.myexperiment.org/ in bio-informatics.

there will be no precedence violations is that these tasks

must be dependency constraint free, which is checked
with the help of the task schemata. Such a heuristic has

O(n2) time complexity.

4.4 Task Merge

Task Merge has been also employed for improving the

performance of the workflow execution plan. The main

technique is to apply re-writing rules to merge tasks

with similar functions into one bigger task. There are

three techniques in this group, all tailored to a specific

setting. As such, it is unclear whether they can be com-

bined.

First, in [107], tasks that encapsulate invocations to

an underlying database are merged so that fewer (and

more complex) invocations take place. This rule-based

heuristic has been proposed for business processes, for

which it is common to access various data stores, and

such invocations incur a large time overhead.

Second, a related technique has been proposed for

SQL statements in commercial data integration prod-

ucts [1,48]. The rationale of this idea is to group the

SQL statements into a bigger query in order to push the

task functionalities to the best processing engine. Both

approaches presented in [1,48] derive the necessary in-

formation about the functionality of each task with the

help of task profiling and produce larger queries em-

ploying standard database technology. For example, in-

stead of processing a series of SQL queries to transform

data, it is preferable to create a single bigger query.

As previously, the proposed optimization is a heuristic

that does not target to optimize any objective function
explicitly. A generalization of this idea to languages be-

yond SQL is presented by Simitsis et al. [91,94] and a

programming language translator has been described

by Jovanovic et al. [53,54].
Third, Harold et al. [70] presents a heuristic non-

exhaustive solution for merging MapReduce jobs. Merg-

ing occurs at two levels: first MapReduce jobs are tried

to be transformed into Map-only jobs. Then, sharing

common Map or Reduce tasks is investigated. These

two aspects are examined with the help of a 2-phase

heuristic technique.

Finally, in the optimizations in [88,93], which rely

on a state space search as described previously, adja-

cent tasks that should not be separated may be grouped

together during optimization. The aim of this type of

merger is not to produce a flow execution plan with

fewer and more complex tasks (i.e., no actual task merge

optimization takes place), but to reduce the search space

so that the optimization is speeded-up; after optimiza-

tion, the merged tasks are split.
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4.5 Task Decomposition

An advanced optimization functionality is Task Decom-

position, according to which, the operations of a task
are split into more tasks, this results in a modification

of the set V of vertices. This mechanism has appeared

in [47,82] as a pre-processing step, before the task or-

dering takes place. Its advantage is that it opens-up

opportunities for ordering, i.e., it does not optimize an

objective function in its own but it enables more prof-

itable task orderings.

Task decomposition is also employed by Simitsis

et al. [91,92,94]. In these proposals, complex analysis

tasks, such as sentiment analysis presented in previ-

ous examples, can be split into a sequence of tasks at

a finer granularity, such as tokenization, and part-of-

speech tagging.

Note that both these techniques are tightly coupled

to the task implementation platform assumed.

4.6 Task Implementation Selection

A set of optimization techniques target the Implemen-

tation Selection mechanism. At a high level, the prob-

lem is that there exist multiple equivalent candidate

implementations for each task and we need to decide

which ones to employ in the execution plan. The issue

of whether the different implementations may produce

different results is orthogonal to this discussion as far as

all implementations are acceptable by the user, however

we mostly refer to settings where equivalence implies

also the production of the same result set. For example,

a task encapsulating a call to a remote WS, can contact

multiple equivalent WSs, or a task may be implemented

to run either in a single-threaded or in a multi-threaded

mode. These techniques typically require as input meta-

data the vertex costs of each task implementation al-

ternative. Suppose that, for each task, there are m al-

ternatives. This leads to a total of O(mn) of combina-

tions; thus a key challenge is to cope with the exponen-

tial search space. In general, the number of alternatives

for each task may be different and the total number

of combinations is the product of these numbers. For

example, in Figure 8, there are four and three alter-

natives (Impl1, ..., Impln) for the Sentiment Analysis

and Lookup Product tasks, respectively, corresponding

to twelve combinations.
It is important to note that, conceptually, the choice

of the implementation of each task is orthogonal to de-

cisions on task ordering and the rest of the high-level

optimization mechanisms. As such, the techniques in

this section can be combined with techniques from the

previous sections.

Fig. 8 An example where Task Implementation Selection is
applicable, where there are four equivalent ways to implement
sentiment analysis and three ways to extract product ids.

A brute force, and thus of exponential complexity

approach to finding the optimal physical implementa-

tion of each flow task before its execution has appeared

in [102]. This approach models the problem as a state

space search one and, although it assumes that the sum

cost objective function is to be optimized, it can sup-

port other objective functions too. An interesting fea-

ture of this solution is that it explicitly explores the

potential benefit from processing sorted data. Also, the

ordering and task introduction algorithm in [93] allows

for choosing parallel flavors of tasks. The parallel fla-

vors, apart from cloning the tasks as many times as

the degree of partitioned parallelism decided, explicitly

consider issues, such as splitting the input data, dis-

tributing them across all clones, and merging all their

outputs. These issues are reflected in an elaborate cost

function as mentioned previously, which is used to de-

cide whether parallelization is beneficial.

Additionally to the optimization techniques above,

there is a set of multi-objective optimization approaches

for Implementation Selection. These multi-objective he-

uristics, apart from the vertex cost, require further meta-

data that depend on the specified optimization objec-

tives. For example, several multi-objective optimization

approaches have been proposed for flows, where each

task is essentially an invocation to an online WS that

may not be always available; in such settings, the aim

of the optimizer is the selection of the best service for

each service type taking into account both performance

and availability metadata.

Three proposals that target this specific environ-

ment are [68,96,108]. To achieve scalability, each task

is checked in isolation, thus resulting in O(nm) time

complexity, but at the expense of finding local optimal

solutions only. Kyriazis et al. [68] consider availability,

performance, and cost for each task. As initial meta-

data, scalar values for each objective and for candidate

services are assumed to be in place. The main focus of

the proposed solution is (i) on normalizing and scaling
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the initial values for each of the objectives and (ii) on

devising an iterative improvement algorithm for mak-
ing the final decisions for each task. The multi-objective

function is either the optimization of a single criterion

under constraints on the others or the optimization of

all the objectives at the same time. However, in both

cases, no optimality guarantees (e.g., finding a Pareto

optimal solution) are provided.

The proposal in [108] is similar in not guarantee-

ing pareto optimal solutions. It considers performance,

availability, and reliability for each candidate WS, where

each criterion is weighted and contributes to a single

scalar value, according to which services are ordered.

The notion of reliability in this proposal is based on its

trustworthiness. [96] is another service selection pro-

posal that considers the three objectives, namely per-

formance, monetary cost, and reliability in terms of suc-

cessful execution. The service metadata are normalized

and the technique proposed employs a max-min heuris-

tic that aims to select a service based on its smallest

normalized value. An additional common feature of the

proposals in [68,96,108] is that no objective function is

explicitly targeted.

Another multi-objective optimization approach to

choosing the best implementation selection of each task

consists of linear complexity heuristics [67]. The main

value of those heuristics are that they are designed to

be applied on the fly, thus forming one of the few ex-

isting adaptive data flow optimization proposals. Ad-

ditionally, the technique proposed by Braga et al. [15]

extends the task ordering approach in [95] so that, for

each task, the most appropriate implementation is first

selected. None of these proposals employ a specific ob-

jective function as well. Finally, multi-objective WS se-

lection mechanism can be performed with the help of

ant colony optimization algorithms; an example of ap-

plying this optimization technique for selecting WS in-

stantiations between multiple candidates in a setting

where the workflows mainly consist of a series of re-

mote WS invocations appears in [23], which is further

extended by Tao et al. [97].

Based on the above descriptions, two main observa-

tions can be drawn regarding the majority of the tech-

niques. Firstly, they address a multi-objective problem.

Secondly, they are proposed for a WS application do-

main. The latter may imply that transferring the results

to data flows where tasks exchange big volumes of data

directly may not be straightforward. As a final note,

there are numerous proposals that perform task imple-

mentation selection considering specific types of tasks,

such as classification tasks in data mining data flows

(e.g., [73]), and file descriptors in ETLs (e.g., [80]). We

do not discuss in detail such techniques, because they

do not meet the criteria in Section 2.2; further, when

generalized to arbitrary tasks, they typically correspond
to non-interesting enumeration solutions.

4.7 Execution Engine Selection

The techniques in this category focus on choosing the

best execution engine for executing the data flow tasks

in distributed environments, where there are multiple

options. For example, assume that the sentiment anal-

ysis in our running example can take place on either a

DBMS server or a MapReduce cluster. As previously,

for the techniques using this mechanism, the vertex cost

of each task for each candidate execution engine is a

necessary piece of metadata for the optimization algo-

rithm. Also, corresponding techniques are orthogonal to

optimizations referring to the high-level execution plan

aspects.

For those tasks that can be executed by multiple

engines, an exhaustive solution can be adopted for op-

timally allocating the tasks of a flow to different execu-

tion engines in order to meet multiple objectives. The

drawback is that an exhaustive solution in general does

not scale for large number of flow tasks and execution

engines similarly to the case of task implementation

selection. To overcome this, a set of heuristics can be

used for pruning the search space [91,92,94]. This tech-

nique aims to improve not only the performance, but

also the reliability of ETL workflows in terms of fault

tolerance. Additionally, a multi-objective solution for

optimizing the monetary cost and the performance is

to check all the possible execution plans that satisfy

a specific time constraint; this approach cannot scale

for execution plans with high number of operators. The

objective functions are those mentioned in Section 4.1.

The same approach to deciding the execution engine,

can be used to choose the task implementation in [91,

92,94].

Anytime single-objective heuristics for choosing be-

tween multiple engine have been proposed Kougka et

al. [63]. Such heuristics take into account, apart from

vertex costs, the edge costs and constraints on the capa-

bility of an engine to execute certain tasks and are cou-

pled with a dynamic programming pseudo-polynomial

algorithm that can find optimal allocation for a specific

form of DAG shapes, namely linear ones. The objective

function is minimizing the sum of the costs for both

tasks and edges, extending the definition in Table 3:

min
∑

c(vi, eij), where i, j = 1 . . . n. An extension in

[36] explains how these techniques can be extended to

optimizing the degree of parallelism in Spark flows tak-

ing into account two criteria.
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A different approach to engine selection has appeared

in the commercial tools in [48,1]. There, the main op-
tion is ETL operators to execute on a specialized data

integration server, unless a heuristic decides to delegate

the execution of some of the tasks to the underlying

databases, after merging the tasks and reformulating

them as a single query.

Finally, the engine selection mechanism can be em-

ployed in combination with configuration of execution

engine parameters. An example technique is presented

by Huang et al. [44], where the initial optimization step

deals with the decision of the best type of execution

engine and then, the configuration parameters are de-

fined, as it is analyzed in Section 4.8. This technique

is extended by Huang et al. [46], which focuses on how

to decide on the usage of a specific type of cloud ma-

chines, namely spot instances. The problem of deciding

whether to employ spot instances in clouds is also con-

sidered by Zhou et al. [113].

4.8 Execution Engine Configuration

This type of flow optimization has recently received at-

tention due to the increasing number of parallel data

flow platforms, such as Hadoop and Spark. The Engine

Configuration mechanism can serve as a complemen-

tary component of an optimization technique that ap-

plies implementation or engine selection, and in general,

can be combined with the other optimization mecha-

nisms. For example, the rationale of the heuristic pre-

sented by Kumbhare et al. [67] (based on variable sized

bin packing) is also to decide the best implementation

for each task and then, dynamically configure the re-

sources, such as the number of CPU cores allocated, for

executing the tasks. A common feature of all the solu-

tions in this section is that they deal with parallelism,

but from different perspectives depending on the exact

execution environment.

A specific type of engine configuration, namely to

decide the degree of parallelism in MapReduce-like clus-

ters for each task and parameters, such as the number of

slots on each node, appears in [44]. The time complex-

ity of this optimization technique is exponential. This

is repeated for each different type of machines (i.e., dif-

ferent type of execution engine), assuming a context

where several heterogeneous clusters are at user’s dis-

posal. Both of these techniques have been proposed for

cloud environments and aim to optimize multiple opti-

mization criteria.

In general, execution engines come with a large num-

ber of configuration parameters and fine tuning them

is a challenging task. For example, MapReduce systems

may have more than one hundred configuration param-

eters. The proposal in [85] aims to provide a principle
approach to their configuration. Given the number of

MapReduce slots and hardware details, the proposed al-

gorithm initially checks all combinations of four key pa-

rameters, such as the number of map and reduce waves,

and whether to use compression or not. Then, the values

of a dozen other configuration parameters that have sig-

nificant impact on performance are derived. The overall

goal is to reduce the execution time taking to account

the pipeline nature of MapReduce execution.

An alternative configuration technique is employed

by Lim et al. [70], which leverages the what-if engine

initially proposed by Herodotou et al. [41]. This en-

gine is responsible to configure execution settings, such

as memory allocation and number of map and reduce

tasks, by answering questions on real and hypotheti-

cal input parameters using a random search algorithm.

What-if analysis is also employed by [45] for optimally
configuring memory configurations. The distinctive fea-

ture of this proposal is that it is dynamic in the sense

that it can take decisions at runtime leading to task

migrations.

In a more traditional ETL setting, apart from the

optimizations described previously, an additional op-

timization mechanism has been proposed by Simitsis

et al. [93] in order to define the degree of parallelism.

Specifically, due to the large size of data that a work-

flow has to process, data is partitioned to be executed

following the intra-operator parallelism paradigm. The

parallelism is considered profitable whenever the over-

head of data partitioning and merging does not incur

an overhead higher then the expected benefits. Some-

times it might be worth investigating whether splitting

an input dataset into partitions could reduce the la-

tency in ETL flow execution on a single server as well.

An example study can be found in [72].

Another approach to choosing the degree of paral-

lelism appears in [57], where a set of greedy and sim-

ulated annealing heuristics that decide the degree of

parallelism are proposed. This proposal considers two

objectives, performance and monetary cost assuming

that resources are offered by a public cloud at a certain

price. The objective function targets either the mini-

mization of the sum of the task costs constrained by

a defined monetary budget, or the minimization of the

monetary cost under a constraint on runtime. Addition-

ally, both metrics can be minimized simultaneously us-

ing an appropriate objective function, which expresses

the speedup when budget is increased.

Another optimization technique in [26] proposes a

set of optimizations at the chip processor level and more

specifically, proposes heuristics to drive compiler deci-
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Fig. 9 The three main evaluation approaches followed and
the aspects discussed in the experimental one.

sions on whether to execute low-level commands in a

pipelined fashion or to employ SIMD (single instruc-

tion multiple data) parallelism. Interestingly, these op-

timizations are coupled with traditional database-like

ones at a higher level, such as pushing selections as

early as possible.

5 Evaluation Approaches

The purpose of this section is to describe what approach

the authors of the proposals have followed to evaluate

their work. Due to the diversity of the objectives and

the lack of a common and comprehensive evaluation

approach and benchmark, in general, the proposals are

not comparable to each other; therefore no performance

evaluation results are presented.

We can divide the proposals in three categories (see

also Figure 9). The first category includes the optimiza-

tion proposals that are theoretical in their nature and

their results are not accompanied by experiments. Ex-

amples of this category are [6,31]. The second cate-

gory consists of optimizations that have found their way

into data flow tools; the only examples in this category

are [1,48].

The third category covers the majority of the pro-

posals, for which experimental evaluation has been pro-

vided. We are mostly interested in three aspects of

such experiments, namely the workflow type used in

the experiments, the data type used to instantiate the

workflows, and the implementation environment of the

experiments. In Table 4, the experimental evaluation

approaches are summarized, along with the maximum

DAG size (in terms of number of tasks) employed. Specif-

ically, the implementation environment defines the exe-

cution environment of a workflow during the evaluation

procedure. The environment can be a real-world one,

which considers either the customization of an existing

system to support the proposed optimization solutions

or the design of a prototype system, which is essentially
a new platform, possibly designed from scratch and tai-

lored to support the evaluation. A common approach

consists of a simulation of a real execution environment.

Discussing the pros and cons of each approach is out of

our scope, but in general, simulations allow the experi-

mentation with a broader range of flow types, whereas

real experiments can better reveal the actual benefits

of optimizations in practice.

The type of the workflows considered are either syn-

thetic or real-world. In the former case, arbitrary DAGs

are produced, e.g., based on the guidelines in [87]. In the

latter case, the flow structure is according to real-world

cases. For example, the evaluation of [23,25,30,57,63,

113] is based on real-world scientific workflows, such

as the Montage and Cybershake ones described in [55].

Another example of real-world workflows are derived

by TPC-H queries (used for some of the evaluation ex-

periments in [47,70,82] along with real world text min-

ing and information extraction examples). In [91–94],

the evaluation of the optimization proposals is based

on workflows that represent arbitrary, real-world data

transformations and text analytics. The case studies

in [26,70] include standard analytical algorithms, such

as PageRank, k-means, logistic regression, and naive

bayes.

The datasets used for workflow execution may af-

fect the evaluation results, since they specify the range

of the statistical metadata considered. The processed

datasets can be either synthetic or real ones extracted

by repositories, such as the Twitter repository with

sample data of real tweets. Examples of real datasets

used in [47,82] include biomedical texts, a set of Wiki-

pedia articles, and datasets from DBpedia. Addition-

ally, Braga et al. [15] have evaluated the proposed opti-

mization techniques using real data extracted by www.

conference- service.com, www.bookings.com, and

www.accuweather.com. Typically, when employing stan-

dard scientific flows, the datasets used are also fixed;

however, in [63] a wide-range of artificially created meta-

data have been used to cover more cases.

As shown in Table 4, a big portion of the opti-

mization techniques have been evaluated by executing

workflows in a simulated environment. The real envi-

ronments that have been employed include among oth-

ers ETL tools, such as Kettle and Talend, extensions to

MapReduce, tailored prototypes, and DBMSs.

Finally, for many techniques, only small data flows

comprising no more than 15 nodes were used, or the

information with regards to the size of the flows could

not be derived. In the latter case, this might be due

to the fact that well-known algorithms have been used
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Table 4 Experimental Evaluation of Proposals

(Refs.,Year)
Workflow

Type

Data

Type
Implementation Environment

Max.

DAG
Size

([40],1998) Synthetic Synthetic Real (DBMS) 4
([21],1999) Synthetic Synthetic Real (DBMS) 16
([111],1999) Synthetic Synthetic Simulation 15
([88],2005) Synthetic Synthetic Simulation 70
([30],2005) Real Real Real (Pegasus) N/A
([108],2005) Synthetic Synthetic Simulation 200
([95],2006) Synthetic Synthetic Real (ad-hoc prototype) 4
([102],2007) Synthetic Synthetic Simulation 15
([107],2007) Synthetic Synthetic Real (Web-Sphere Process Server [107]) N/A
([15],2008) Real Real Simulation 7
([68],2008) Synthetic Synthetic Real (ad-hoc prototype) 8
([23],2009) Synthetic Synthetic Simulation 120
([65],2010) Synthetic Synthetic Simulation 60
([93],2010) Real Synthetic Real (Kettle ETL tool) 80
([57],2011) Real Synthetic Real (ADP prototype) 500

([100,99],2011) Synthetic Synthetic Simulation 100
([47],2012), ([82],2015) Real Real Real (Stratosphere [8]) 15

([70],2012) Real Synthetic Real (extensions to MapReduce) 14
([91],2012),([92,94],2013) Real Real Real (Kettle ETL tool) 15
([44],2013),([46],2015) Real Synthetic Real (extensions to MapReduce) N/A

([67],2013) Synthetic Synthetic Simulation 4
([63],2014) Real Synthetic Simulation 200
([85],2014) Real Synthetic Real (extensions to MapReduce) < 10
([25],2014) Real Real Real (Taverna) N/A
([26],2015) Real Synthetic Real (Tupleware prototype) N/A
([45],2015) Real Real Real (extensions to MapReduce) N/A

([60],2015),([59],2014) Synthetic Synthetic Simulation 200
([72],2015) Real Synthetic Real (Talend ETL tool) 11
([113],2015) Real Synthetic Both (Pegasus) > 10000

(e.g., k-means in [26] and matrix-multi-plication in [44])

without explaining how these algorithms are internally

translated to data flows. All experiments with work-

flows comprising hundreds of tasks used synthetic datasets.

6 Discussion on findings

Data flow optimization is a research area with high

potential for further improvements given the increas-

ing role of data flows in modern data-driven applica-

tions. In this survey, we have listed more than thirty

research proposals, most of which have been published

after 2010. In the previous sections, we mostly focused

on the merits and the technical details of each proposal.

They can lead to performance improvements, and more

importantly, they have the potential to lift the bur-

den of manually fixing all implementation details from

the data flow designers, which is a key motivation for

automated optimization solutions. In this section, we

complement any remarks made before with a list of ad-

ditional observations, which may also serve as a descrip-

tion of directions for further research:

– In principle, the techniques described previously can

serve as building block towards more holistic solu-

tions. For instance, task ordering can, in principle,

be combined with i) additional high-level mecha-

nisms, such as task introduction, removal, merge,

and decomposition; and ii) low-level mechanisms,

such as engine configuration, thus yielding added

benefits. The main issue arising when mechanisms

are combined is the increased complexity. An ap-

proach to mitigating the complexity is a two-phase

approach, as commonly happens in database queries.

An additional issue is to determine which mecha-

nism should first be explored. For some mechanisms,

this is straight-forward, e.g., decomposition should

precede task ordering and task removal should be

placed afterwards. But, for mechanisms, such as con-

figuration, this is unclear, e.g., whether it is benefi-

cial to first configure low-level details before higher

level ones remains an open issue.

– In general, there is little work on low-complexity,

holistic, and multi-objective solutions. Toward this

direction, Simitsis et al. [93] considers more than one

objective and combines mechanisms at both high
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and low level execution plan details; for instance,

both task ordering and engine configuration are ad-
dressed in the same technique. But clearly more

work is needed here. In general, most of the tech-

niques have been developed in isolation, each one

typically assuming a specific setting and targeting

a subset of optimization aspects. This and the lack

of a common agreed benchmark makes it difficult

to understand how exactly they compare to each

other, the details of how the various proposals can

be combined in a common framework and how they

interplay.
– There seems to be no common approach to eval-

uating the optimization proposals. Some proposals

have not been adequately tested in terms of scala-

bility, since they have considered only small graphs.

In some data flow evaluations, workloads inspired

from benchmarks such as TPC-DI/DS have been

employed, but as most of the authors report as well,
it is doubtful whether these benchmarks can com-

pletely capture all dimensions of the problem. There

is a growing need for the development of systematic

and broadly adopted techniques to evaluate opti-

mization techniques for data flows.

– A significant part of the techniques covered in this

survey have not been incorporated in tools, nor have

been exploited commercially. Most of the optimiza-

tion techniques described here, especially regarding

the high level execution plan details, have not been

implemented in real data flow systems apart from

very few exceptions, as explained earlier. Hence, the

full potential and practical value of the proposals

have not been investigated in actual execution con-

ditions, despite the fact that evaluation results thus

far are shown to provide improvements by several

orders of magnitude over non-optimized plans.
– A plethora of objective functions and cost models

have been investigated, which, to a large extent,

they are compatible with each other, despite the

fact that original proposals have examined them in

isolation. However, it is unclear whether any of such

cost models can capture aspects, such as the execu-

tion time of parallel data flows, which are very com-

mon nowadays, in a fairly accurate manner. A more

sophisticated cost model should take into account

sequential, pipelined and partitioned execution in a

unified manner, essentially combining the sum, bot-

tleneck and critical path cost metrics. An early work

on this topic has appeared in [62].

– Developing adaptive solutions that are capable of

revising the flow execution plan on the fly is one

important open issue, especially for online, continu-

ous, and stream processing. Also, very few optimiza-

tion techniques consider the cost of the graph edges.

Not considering edge metadata does not reflect en-
tirely real data flow execution in distributed set-

tings, where the cost of transmitting data depends

both on sender and receiver.

– In this survey, we investigated single flow optimiza-

tions. Optimizing multiple flows simultaneously, is

another area requiring attention. An initial effort is

described by Jovanovic et al. [52], which builds upon

the task ordering solutions of [88].

– There is early work on statistics collection [39,86,

24,77], but clearly, there is more to be done here

given that without appropriate statistics, cost-based

optimization becomes problematic and prone to sig-

nificant errors.

– On the other hand, a different school of thought ad-

vocates that in contrast to relational databases, au-

tomated optimization cannot help in practice in flow

optimization due to flow complexity and increased
difficulty in maintaining flow statistics, and develop-

ing accurate cost models. Based on that, there is a

number of commercial flow execution engines (e.g.,

ETL tools) that instead of offering a flow optimizer

they provide users with tips and best practices. No

doubt, this is an interesting point, but we consider

this category as out of the scope of this work.

6.1 Future Research Directions

Given the above observations and the trend in devel-

oping new solutions in the recent years, data flow op-

timization seems to be technology in evolution rather

than an area, where most significant problems have

been resolved. Moreover, providing solutions to all these

problems is more likely to yield significantly different

and more powerful new approaches to data flow opti-

mization, rather than delta improvements on existing

solutions.

The main future research directions foreseen in this

survey directly relate to tackling the limitations implied

by the observations above, and call for a paradigm shift

towards:

– Multiple optimization mechanisms considered con-

currently. The fact that data flows increasingly op-

erate on continuously arriving and evolving data

renders task ordering a key optimization mecha-

nism. But since modern data flow engines provide

multiple alternatives ranging from the implemen-

tation type to the degree of parallelism and geo-

distributed data analytics is becoming a reality, task

ordering needs to be combined with all lower-level

mechanisms defined. This will further explode the
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already exponential search space. As mentioned above,

two-phase optimization solutions is a promising ap-
proach to tackle scalability issues, but may signifi-

cantly diverge from good solutions because the opti-

mizations on one level directly impact on decisions

on the other, e.g., re-ordering tasks may ungroup

tasks supposed to run a single location.

– Multiple and additional KPIs (key performance in-

dicators). Novel data flow optimization solutions are

foreseen to account for at least two objectives, for

example, running time and monetary costs for em-

ploying cloud resources. This entails that both bi-

objective techniques need to be developed and the

corresponding cost models need to be devised.

– Several flows optimized simultaneously.Modern data

flow engines very commonly run on top of clus-

ters, which already benefit from managers, such as

YARN andMESOS, that take responsibility for shar-

ing resources among multiple users and applications.
Since the execution layer naturally supports simul-

taneous flow executions, a step going beyond the

current state-of-the-art in data flow optimization is

to account for such concurrent flows.

– End-to-end optimization solutions. The optimization

solutions cannot be incorporated into real systems

unless the practical issues of acquiring and main-

taining flow statistics are resolved; therefore, data

flow metadata management is a promising direction

for future research.

7 Additional Issues in Data-centric Flow

Optimization

Additional issues are split into four parts. First, we

describe optimizations enabled in current state-of-the-

art parallel data flow systems, which, however, cannot

cover arbitrary DAGs and tasks, and as such, have not

been included in the previous sections. Next, we dis-

cuss techniques that, although they do not perform op-

timization in their own, they could, in principle, facili-

tate optimization. We provide a brief overview of opti-

mization solutions for the WEP execution layer, com-

plementing the discussion of existing scheduling tech-

niques in Section 8. We conclude with a brief note on

implementing the optimization techniques into existing

systems.

7.1 Optimization In Massively Parallel Data Flow

Systems

A specific form of data flow systems are massively paral-

lel processing (MPP) engines, such as Spark and Hadoop.

These data flow systems can scale to a large number

of computing nodes and are specifically tailored to big
data management taking care of parallelism efficiency

and fault tolerance issues. They accept their input in a

declarative form (e.g., PigLatin [76], Hive, SparkSQL),

which is then automatically transformed into an exe-

cutable DAG. Several optimizations take place during

this transformation.

We broadly classify these optimizations in two cat-

egories. The first category comprises database-like op-

timizations, such as pushing filtering tasks as early as

possible, choosing the join implementation, and using

index tables, corresponding to task ordering and imple-

mentation selection, respectively. This can be regarded

as a direct technology transfer from databases to par-

allel data flows and to date, these optimizations do not

cover arbitrary user-defined transformations.
The second category is specific to the parallel execu-

tion environment with a view to minimizing the amount
of data read from disk, transmitted over the network,

and being processed. For example, Spark groups pipelin-

ing tasks in larger jobs (called stages) to benefit from

this type of parallelism. Also, it leverages cached data

and columnar storage, performs compression, and re-

duces the amount of data transmitted during data shuf-

fling through early partial aggregation, when this is pos-

sible. Grouping tasks into pipelining stages is a case

of runtime scheduling. Early partial aggregation can

be deemed as a task introduction technique. The other

forms of of optimizations (leveraging cached data, colum-

nar storage, and compression) can be deemed as spe-

cific forms of implementation selection. Flink is another

system employing optimizations, but it has not yet in-

corporated all the (advanced) optimization proposals

in its predecessor projects, as described in [47,82]. The

proposal in [14] is another example that proposes opti-

mizations for a specific operator, namely ParFOR.
We do not include these techniques in Tables 1 and 2

because they apply to specific DAG instances and have

not matured enough to benefit generic data flows in-

cluding arbitrary tasks. Finally, in terms of scheduling

tools for data-intensive flows, several software artefacts

have started emerging, such as Apache Oozie, Apache

Cascading. We also do not cover these because they

refer to the WEP execution rather than the WEP gen-

eration layer.

7.2 Techniques Facilitating Data-centric Flow

Optimization

Statistical metadata, such as cost per task invocation

and selectivity, play a significant role in data flow op-

timization as discussed previously. [24,39,77,86] deal
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with statistics collection and modeling the execution

cost of workflows; such issues are essential components
in performing sophisticated flow optimization. [105] an-

alyze the properties of tasks, e.g., multiple-input vs

single-input ones; such properties along with depen-

dency constraint information complement statistics as

the basis on top of which optimization solutions can be

built.

In principle, algebraic approaches to workflow exe-

cution and modeling facilitate flow optimization, e.g., in

establishing dependency constraints. Examples of such

proposals appear in [82,74]. The techniques that we dis-

cuss go beyond any type of modeling; however, when an

algebraic approach is followed, further operator-specific

optimizations become possible capitalizing on the vast

literature of query optimization as already mentioned.

Some techniques allow for choosing among multi-

ple implementations of the same tasks using ontolo-

gies, rather than performing cost-based or heuristic op-

timization [75]. In [109], improving the flow with the

help of user interactions is discussed. Additionally, in

[74], different scheduling strategies to account for data

shipping between tasks are presented, without however

proposing an optimization algorithm that takes deci-

sions as to which strategy should be employed.

Apart from the optimizations described in Section 4,

the proposal in [93] considers also the objective of data

freshness. To this end, the proposal optimizes the acti-

vation time of ETL data flows, so that the changes in

data sources are reflected on the state of a Data Ware-

house within a time window. Nevertheless, this type

of optimization objective leads to techniques that do

not focus on optimizing the flow execution plan per se,

which is the main topic of this survey.

For the evaluation of optimization proposals, bench-

marks for evaluating techniques are proposed in [87,

89]. Finally, in [42,66], the significant role of correct

parameter configuration in large-scale workflow execu-

tion is identified and relevant approaches are proposed.

Proper tuning of the data flow execution environment is

orthogonal and complementary to optimization of flow

execution plan.

7.3 On Scheduling Optimizations in Data-centric

Flows

In general, data flow execution engines tend to have

built-in scheduling policies, which are not configured

on a single flow basis. In principle, such policies can be

extended to take into account the specific characteris-

tics of data flows, where the placement of data and the

transmission of data across tasks, represented by the

DAG edges, requires special attention [22]. For exam-

ple, in [56], a set of scheduling strategies for improv-
ing the performance through the minimization of mem-

ory consumption and the execution time of Extract-

Transform-Load (ETL) workflows running on a single

machine is proposed. As it is difficult to execute the

data in pipeline in ETLs due to the blocking nature of

some of the ETL tasks, the authors suggest splitting

the workflow into several sub-flows and apply differ-

ent scheduling policies if necessary. Finally, in [50], the

placement of data management tasks is decided accord-

ing to the memory availability of resources taking into

account the trade-off between co-locating tasks and the

increased memory consumption when running multiple

tasks on the same physical computational node.

A large set of scheduling proposals target specific

execution environments. For example, the technique in

[38] targets shared resource environments. Proposals,

such as [18,23,66,81,83,112] are specific to grid and

cloud data-centric flow scheduling. [7] discusses opti-

mal time schedules given a fixed allocation of tasks to

engines, provided that the tasks belong to a linear work-

flow.

Also, a set of optimization algorithms for schedul-

ing flows based on deadline and time constraints is an-

alyzed in [3,4]. Another proposal of flow scheduling op-

timization is presented in [78] based on soft deadline

rescheduling in order to deal with the problem of fault

tolerance in flow executions. In [18], an optimization

technique for minimizing the performance fluctuations

that might occur by the resource diversity, which also

considers deadlines, is proposed. Additionally, there is

a set of scheduling techniques based on multi-objective

optimization, e.g., [33].

7.4 On incorporation Optimization Techniques into

Existing Systems

Without loss of generality, there are two main types of

describing the data flow execution plan in existing tools

and prototypes: either in an appropriately formatted

text file or using internal representations in the code.

These two approaches are exemplified in systems, like

the Pentaho Kettle, Spark, Taverna, and numerous oth-

ers. In the former case, an optimization technique can

be inserted as a component that processes this text file

and produces a different execution plan. As an example,

in Pentaho, each task and each graph edge are described

as different XML elements in an XML document. Then,

a technique that performs task reordering can consist

of an independent programming module that parses the

XML file and modifies the edge elements. On the other
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hand, systems, such as Spark, transform the flow sub-

mitted by the user in a DAG, but without exposing
a high level representation to the end user. The inter-

nal optimization component, called Catalyst, then per-

forms modifications to the internal code structure that

captures the executable DAG. Extending the optimizer

to add new techniques, such as those described in this

survey, requires using the Catalyst extensibility points.

The second approach seems to require more effort from

the developer and be more intrusive. Finally, tools that

allow for rapid feedback to the developer and the hu-

man expert designer being in the loop, e.g., as in [43],

can also benefit for automated optimization solutions

like those discussed in this survey.

8 Related Work

To the best of our knowledge, there is no prior survey

or overview article on data flow optimization; however,

there are several surveys on related topics.

Related work falls into two categories: (i) surveys on

generic DAG scheduling and on narrow-scope schedul-

ing problems, which are also encountered in data flow

optimization; and (ii) overviews of workflow systems.
DAG scheduling is a persisting topic in computing

and has received a renewed attention due to the emer-

gence of Grid and cloud infrastructures, which allow for

the usage of remote computational resources. For such

distributed settings, the proposals tend to refer to the

WEP execution layer and to focus on mapping compu-

tational tasks ignoring the data transfer between them,

or assume a non-pipelined mode of execution that does

not fit will into data-centric flow setting [32]. A more re-

cent survey of task mapping is presented in [37], which

discusses techniques that assign tasks to resources for

efficient execution in Grids under the demanding re-

quirements and resource allocation constraints, such as

the dependencies between the tasks, the resource reser-

vation, and so on. In [10], an overview of the pipelined

workflow time scheduling problem is presented, where

the problem formulation targets streaming applications.

In order to compare the effectiveness of the proposed

optimization techniques, they present a taxonomy of

workflow optimization techniques taking into account

workflow characteristics, such as the structure of flow

(i.e., linear, fork, tree-shaped DAGs), the computation

requirements, the size of data to be transferred between

tasks, the parallel or sequential task execution mode,

and the possibility of executing task replicas. Addition-

ally, the taxonomy takes into consideration a perfor-

mance model that describes whether the optimization

aims to a single or multiple objectives, such as through-

put, latency, reliability, and so on. However, in data-

centric flows, tasks are activated upon receipt of input

data and not as a result of an activation message from
a controller, as assumed in [10]. None of the surveys

above provides a systematic study of the optimizations

at the WEP generation layer.

The second class of related work deals with a broader-

scope presentation of workflow systems. The survey in

[29] aims to present a taxonomy of the workflow system

features and capabilities to allow end users to take the

best option for each application. Specifically, the taxon-

omy is inspired by the workflow lifecycle and categorizes

the workflow systems according to the lifecycle phase

they are capable of supporting. However, the optimiza-

tions considered suffer from the same limitations as

those in [32]. Similarly, in [9], an evaluation of the cur-

rent workflow technology is also described, considering

both scientific and business workflow frameworks. The

control and data flow mechanisms and capabilities of

workflow systems both for e-science, e.g., Taverna and

Triana, and business processes, e.g., YAWL and BPEL-

based engines, are discussed in [27]. [106] discusses how

leading commercial tools in the data analysis market

handle SQL statements, as a means to perform data

management tasks within workflows. Liu et al. [71] fo-

cus on scientific workflows, which are an essential part

of data flows, but does not delve into the details of

optimization. Finally, Jovanovic et al. [51] present a

survey that aims to present the challenges of modern

data flows through different data flow scenarios. Addi-

tionally, related data flow optimization techniques are

summarized, but not surveyed, in order to underline the

importance of low data latency in Business Intelligence

(BI) processes, while an architecture of next generation

BI systems that manage the complexity of modern data

flows in such systems is proposed.

Modeling and processing ETL workflows [104] fo-

cuses on the detailed description of conceptual and log-

ical modeling of ETLs. Conceptual modeling refers to

the initial design of ETL processes by using UML dia-

grams, while the logical modeling refers to the design of

ETL processes taking into account required constraints.

This survey discusses the generic problems in ETL data

flows, including optimization issues in minimizing the

execution time of an ETL workflow and the resumption

in case of failures during the processing of large amount

of data.

Data flow optimization bears also similarities with

query optimization over Web Services (WSs) [101], es-

pecially when the valid orderings of the calls to the WSs

are subject to dependency constraints. This survey in-

cludes all the WSs related techniques that can also be

applied to data flows.
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Part of the optimizations covered in this survey can

be deemed as generalizations of the corresponding tech-
niques in database queries. An example is the corre-

spondence between pushing selections down in the query

plan and moving filtering tasks as close to data source

as possible [12]. Comprehensive surveys on database

query optimization are in [19,49], whereas lists of se-

mantic equivalence rules between expressions of rela-

tional operators that provide the basis for query opti-

mization can be found in classical database textbooks

(e.g., [35]). However, as discussed in the introduction,

there are essential differences between database queries

and data flows, which cannot be described as expres-

sions over a limited set of elementary operations. At a

higher level, data flow optimization covers more mech-

anisms (e.g., task decomposition and engine selection)

and a broader setting with regards to the criteria con-

sidered and the metadata required.

Nevertheless, it is arguable that data flow task or-

dering bears similarities to optimization of database

queries containing user-defined functions (UDFs) (or,

expensive predicates), as reported in [21,40]. This sim-

ilarity is based on the intrinsic correspondence between

UDFs and data flow tasks, but there are two main dif-

ferences. First, the dependency constraints considered

in [21,40] refer to pairs of a join and a UDF, rather than

between UDFs. As such, when joins are removed and

only UDFs are considered, the techniques described in

these proposals are reduced to unconstrained filter or-

dering. Second, the straightforward extensions to the

proposals [21,40] are already covered and improved by

solutions targeting data flow task ordering explicitly as

discussed in Section 4.1.

9 Summary

This survey covers an emerging area in data manage-

ment, namely optimization techniques that modify a

data-centric workflow execution plan prior to its execu-

tion in an automated manner. The survey first provides

a taxonomy of the main dimensions characterizing each

optimization proposal. These dimensions cover a broad

range, from the mechanism utilized to enhance execu-

tion plans to the distribution of the setting and the en-

vironment for which the solution is initially proposed.

Then, we present the details of the existing proposals,

divided into eight groups, one for each of the identified

optimization mechanisms. Next, we present the evalua-

tion approaches, focusing on aspects, such as the type of

workflows and data used during experiments. We com-

plete this survey with a discussion of the main findings,

while also, for completeness, we briefly present tangen-

tial issues, such as optimizations in massively parallel

data flow systems and optimized workflow scheduling.
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