
Security-aware elasticity for NoSQL databases in
multi-cloud environments

Athanasios Naskos
Department of Informatics, Aristotle University of Thessaloniki, Greece

E-mail: anaskos@csd.auth.gr

Anastasios Gounaris

Department of Informatics, Aristotle University of Thessaloniki, Greece
E-mail: gounaria@csd.auth.gr

Haralambos Mouratidis

School of Computing, Engineering and Mathematics, University of
Brighton, UK

E-mail: H.Mouratidis@brighton.ac.uk

Panagiotis Katsaros

Department of Informatics, Aristotle University of Thessaloniki, Greece
E-mail: katsaros@csd.auth.gr

Abstract: We focus on horizontally scaling NoSQL databases in a cloud
environment, in order to meet performance requirements while respecting security
constraints. The performance requirements refer to strict latency limits on the
query response time. The security requirements are derived from the need to
address two specific kinds of threats that exist in cloud databases, namely data
leakage, mainly due to malicious activities of actors hosted on the same physical
machine, and data loss after one or more node failures. A key feature of our
approach is that we account for multiple cloud providers offering resources of
different characteristics. We explain that usually there is a trade-off between
performance and security requirements and we derive a model checking approach
to drive runtime decisions that strike a user-defined balance between them taking
into account the infrastructure heterogeneity. Finally, we evaluate our proposal
using real traces to prove the effectiveness in configuring the trade-offs.

Keywords: Security-aware elasticity; Horizontal Scaling; Multi-clouds.

Biographical notes: Athanasios Naskos is a Ph.D. candidate in the department
of Informatics of the Aristotle University of Thessaloniki. He received his
B.Sc (2011) and M.Sc (2013) Diploma in Computer Science from the same
institute. His research interests lie in the field of cloud elasticity, distributed data
management and model checking.

Copyright © 2015 Inderscience Enterprises Ltd.

2 A. Naskos et al.

Anastasios Gounaris is an Assistant Professor at the Dept. of Informatics of the
Aristotle University of Thessaloniki, Greece. A. Gounaris received his PhD from
the University of Manchester (UK) in 2005. His research interests are in the area
of autonomic, adaptive and wide-area data management, massive parallelism,
flow and query optimization, data mining and resource scheduling. More details
can be found at http://delab.csd.auth.gr/âˆ¼gounaris/

Haralambos (Haris) Mouratidis is Professor of Software Systems Engineering
at the School of Computing, Engineering and Mathematics, at the University of
Brighton, U.K. He holds a B.Eng. (Hons) from the University of Wales, Swansea
(UK), and a M.Sc. and PhD from the University of Sheffield (UK). His research
interests lie in the area of secure software systems engineering, requirements
engineering, and information systems development. He has published more than
140 papers (h-index 21) and he has secured funding of more than Â£2.4M from
national and international funding bodies as well as industrial funding towards
his research.

Panagiotis Katsaros is an Assistant Professor at the Dept. of Informatics of the
Aristotle University of Thessaloniki, Greece. He has published over 80 research
articles in international journals and conference proceedings in the areas of
formal analysis, model checking, dependability & security. He has been involved
in numerous national and EU projects leading three of them and has open
international collaborations with wellknown researchers in the aforementioned
areas.

1 Introduction

Cloud computing is an evolving paradigm that has transformed the way organisations and
individuals store, share and access their information. It introduces a number of advantages
and benefits by supporting a computational infrastructure where availability of resources
is dynamic, meaning that hardware and software are provided on demand when users need
them at a reasonable monetary cost. On the other hand, the paradigm also creates challenges
and introduces concerns related to security. In fact, many organisations and individuals
are still avoiding cloud services mostly because they are not sure if the services provided,
typically by different providers, are suitable for their security requirements.

Security concerns related to data leakage and data loss are of particular importance.
Simply speaking, data leakage is the unauthorised transfer of data from one user to another.
Each user should have access to their own data and not be able to access the data of others
unless are authorised to do so. In the cloud, the risk of data leakage is increased due to the
storage of data in a multi-tenant environment. A recent study, Grispos et al. (2013) [1], has
shown that the risk of data leakage is increased for a company when employees use cloud-
based services. On the other hand, data loss refers to a condition where data is destroyed
and becomes unavailable. This could be the result of a malicious act (e.g. an attack to an
organisation’s data), due to human error or due to hardware/software/network failures. In a
cloud environment - and in particular in a multi-tenant environment - the risk of data loss
can be increased due to the multi-tenancy situation.

We deal with a particular feature of cloud databases, namely elasticity, in light of
security concerns. Elasticity allows cloud users to modify the amount of resources used

Security-aware elasticity for NoSQL databases in multi-cloud environments 3

on-the-fly, so that they can always handle the external request load, even when load changes
are unanticipated. It is manifested in three main forms, horizontal scaling, where virtual
machines (VMs) are added or removed, vertical scaling, where the hardware configuration
of the existing VMs is modified, and migration, where existing VMs are moved between
physical hosting machines. More specifically, in this work, we build upon our previous
work Naskos et al. (2015) [2] on performance-oriented horizontal scaling so that we can
reach elasticity decisions that take into account both performance and security requirements.
Performance requirements are expressed as a threshold regarding the maximum allowed
response time to user requests, while security requirements are expressed through the
probability of data leakage due to multi- tenancy and of data loss through hardware
failure and/or due to multi-tenancy. Ideally, one would aim to attain zero violations of
the performance threshold, no security incidents, while minimizing the monetary cost
associated with the provision of cloud VMs.

1.1 Problem Challenges.

The main challenge in the setting described above stems from the fact that the three
requirements, that is bounded response times, minimal monetary cost and protection from
failures and data leakage, are essentially intertwined and contradicting to a large extent, as
explained below:

• NoSQL databases partition the data across several nodes and can benefit from the
inherent feature of cloud infrastructures to dynamically provision resources. The
combination of these two characteristics allow cloud databases to horizontally scale
when the external load increases, so that more servers become available to respond
to user requests. If horizontal scaling is performed carefully, for example, in a load
balancing way that avoids over-reacting, the average response time can be maintained to
a certain desired level regardless of any changes in the external load. More specifically,
more VMs can be added (scale-out) when the load increases, but this comes at
an increased monetary cost. Analogously, when the external load decreases, some
servers can be released by the user on the grounds that over-provisioned servers incur
unnecessary monetary cost. In private clouds, monetary costs are implicit (e.g., through
increased energy consumption), whereas, in public clouds, a fee is actually paid.
To make matters more complicated, when adding a new server, a transient phase is
expected, during which performance does not improve or even may deteriorate, due to
data movement to the new server.

• Online services may become unavailable due to failures of both the physical machines
and the network, which can lead to data loss. The main mechanism to address this
type of threat is through replication (or mirroring) that allows for data to be copied to
several servers. The more the copies, the more resistant to failures the system becomes.
However, this comes at the expense of higher response times when updating data, since
eventually changes need to be propagated to all copies. Moreover, the more VMs are
employed, e.g., for performance reasons, the higher the probability a number of VMs
equal to or greater than the replication factor to fail thus leading to data loss. This is
orthogonal to the fact that the volume of lost data decreases with the number of VMs
for the same replication factor.

• Despite any efforts from cloud providers, there is always the danger that malicious
cloud users hosted on the same physical machines as the databases get unauthorized

4 A. Naskos et al.

access to data. Intuitively the more physical machines are used to host the database,
the higher the danger, whereas, at the same time, public machines are more vulnerable.

To summarize, scaling out a database may improve the performance, but this may incur
unnecessary monetary costs due to over-provisioning. Mirroring can be combined with
scaling out and may cause performance problems but increases the robustness to failures.
Scaling out may also exacerbate the data leakage and data loss threats. As such, keeping
latency low through scaling-out is in contrast to monetary cost and avoiding the threat of
data leakage and data loss.

1.2 Real-world Motivating Example.

We take motivation for our work from a real-case scenario, the Greek National Gazette
Infrastructure, involving the sharing and storage of large number of documents. The Greek
National Gazette is responsible for publishing laws and legal decisions on the Government’s
newspaper in order for these laws and decisions to be active and applicable. Besides legal
decisions there are also a number of decision categories originated from the private and
public sector that by law must be sent for publications to the Governments’s newspaper.
In such scenario, the dynamic provision of services with acceptable performance is very
important as is the need to make sure that documents are not leaked before the official
publication, and they are not lost after they are published. As such, the administrators face
the following dilemma: to temporarily acquire additional and potentially unsafe cloud VMs
or to sacrifice performance during peak user request periods?

1.3 Contributions and Structure.

The contributions of this work are threefold. First, we present a Markov Decision Process
(MDP) modelling approach to cloud elasticity in an homogeneous, single cloud provider
setting. Our approach is coupled with probabilistic model checking and accompanied by
a security threat-aware decision mechanism; to this end, we build upon our performance-
oriented proposal in Naskos et al. (2015) [2]. The elasticity decision mechanism can account
for user-defined trade-offs between performance and security requirements, while aiming to
avoid over- and under-provisioning in any case. Second, we introduce a novel MDP model
that accounts for multiple, heterogeneous cloud providers. Third, we present an evaluation
that sheds light upon the impact of security requirements on the elasticity behavior. Our
results show that our decision making proposal can effectively strike a configurable balance
between the conflicting requirements mentioned above. This work is an extended version
of the conference paper in Naskos et al. (2015) [3], which focuses only on the single cloud
provider setting.

The remainder of this paper is structured as follows. In Sec. 2, we provide the
specifications of our models. In Sec. 3, we present the MDP models and the decision
mechanisms developed for the single provider setting. In Sec. 4, we introduce the complete
approach for multiple and heterogeneous cloud infrastructures. In Sec. 5, we evaluate our
proposal for a wide range of security attack and failure probabilities using real cloud database
traces. We discuss the related work in Sec. 7 and conclude in Sec. 8. Compared to the
conference version in Naskos et al. (2015) [3], the material in Sec. 2 and 4 is new, while
the experiments in Sec. 5 are repeated from scratch and Sec. 3 has been revised.

Security-aware elasticity for NoSQL databases in multi-cloud environments 5

2 Specification of Model Features

Our elasticity policies are based on advanced analysis (i.e., probabilistic model checking)
of MPD models. Obviously, the model should be designed in a way that all the essential
aspects of elasticity in our problem our captured, so that its analysis leads to good runtime
decisions. MDPs are specified by their states, actions, transition probabilities and rewards
Puterman (1994) [4]. Below, we provide the list of the main design requirements:

R1: Horizontal Scaling. The model should be capable of capturing the behaviour of the
system under different numbers of VMs employed and the transitions between states
with different number of VMs.

R2: Performance Uncertainty and Transient Periods. NoSQL systems are particularly
complex and it is extremely difficult to derive analytical models that describe
their behavior in terms of performance accurately. Moreover, their behaviour is
unpredictable and may vary significantly even for the same external conditions. This
uncertaintly need to be reflected on the model. Furthermore, during transition from
one state to another in terms of the number of VMs employed, the system typically
experiences a non-stable transient period, which also needs to be captured by the model.

R3: Security Incidents. Security incidents, along with their probability of occurrence,
need to be explicitly covered.

R4: Multi-objective Rewards. Analysis of MDPs heavily relies on the rewards associated
with the model entities. To be able to take security-aware elasticity decisions based on
such an analysis, the rewards should consider both performance- and security-related
incidents (either explicitly or implicitly).

R5: Heterogeneity. The model should differentiate the system’s state according to the exact
combinations of cloud providers that provide the VMs used.

3 Model-based security-aware elasticity for a single cloud provider

In this section, we first introduce the basic modelling representation at a conceptual level
and how it is used to drive performance-oriented elasticity (initially proposed in Naskos
et al. (2015) [2]); later in the section, this approach is extended and refined to cover both
performance and security issues.

In our initial model, each state corresponds to a different cluster size, where the size
equals to the number of active cloud virtual machines (VMs), running a NoSQL database,
such as HBase and Cassandra. The NoSQL database is typically both shared and replicated;
i.e., its tables are horizontally fragmented and each fragment is allocated to multiple VMs.

Figure 1 introduces a simplified representation of our MDP state space and the enabled
actions in each of the shown states. Every state si corresponds to the number of VMs that
compose the application cluster (e.g. the NoSQL cluster used in Naskos et al. (2015) [2])
with i (min #VMs ≤ i ≤ max #VMs) representing the cluster’s size at some time
instant.

This illustration of the state space is separated in time sections (t, t+ 1, t+ 2, ...) with
each one corresponding to a distinct decision step of the cloud provisioning policy. Decision
steps are distinct time periods captured in the model; every decision step in the actual

6 A. Naskos et al.

sicurrent

si
si+j

si−j

s′i

si+j

si−j

s′′i

si−j−j

s′i−j

t t+1 t+2

ad
d j

remj

no_op

no_op

addj

remj

no_op

same as si
moving to t+2

stable
transient

Figure 1 MDP model overview.

deployment, corresponds to pre-specified time periods (e.g. 5 minutes for the present work).
We can thus take into account the evolution of the conditions with time, which is particularly
important when a decision policy is coupled with external load prediction. As shown in
Figure 1, on every decision step the possible elastic actions are add, for adding VMs to
the cluster, remove, for removing VMs and no_op, for maintaining the same number of
active VMs. The first two actions are also parameterized with the number of VMs added or
removed, respectively.

After add elastic actions, the decision maker may be idle for a pre-specified time period
(e.g. one decision step) to allow the system to stabilize. During this transient period, as
the number of active VMs is changed, new VMs need to be (i) created, (ii) booted, (iii)
configured, (iv) added to the NoSQL cluster and (v) initialized with data. In Figure 1, the
states in the form

(
si

si+j

)
at t+1 represent transient states, i.e. unstable system states due

to a recent change in the number of active VMs. Thus, based on the enabled actions at t,
we have three states at t+ 1 including two stable states si−j and s′i, where the number of
VMs is not changed, and one transient state. States si and s′i represent a configuration with
i VMs, however as the environment evolves, these two states can behave differently to the
incoming load (e.g. they may receive different incoming load and may be characterized
by different response latency). Also, as we observe, after the s′i state, the same pattern is
repeated with different time sections and state naming conventions, with s′i now being the
current state.

Overall, this model meets the R1 and the second part (i.e. transient states) of R2
requirements.

3.1 Model-based elasticity for performance

A common performance requirement is the latency (lat) of processing user requests, i.e.
the time elapsed from query submission to answer, not to exceed a certain threshold x,
regardless of the number of concurrent users. However, for the same number of VMs and
the same amount of incoming load λ, the latency may vary significantly, due to factors that
are both external to our model and hard to model; e.g., a time-consuming operating system
process is initialized.

To ameliorate this, the probabilistic nature of our model can easily capture the
uncertainty of the environment that follows every elasticity decision. The model’s

Security-aware elasticity for NoSQL databases in multi-cloud environments 7

si

sib1

sib...

sibn

t

pro
b1

prob...

probn

stable
actual
states

(a) Mapping to actual states

si

no
viol

viol sibn

sib1

sib...

sibn−1

t

pr
obv

io
l

probno−viol

pro
b1

prob...
probn−1

probn

stable violation

no violation
actual
states

(b) The VC modelling approach
Figure 2 Resolution of performance uncertainty

representation in Figure 1 is further elaborated in Figure 2a to account for the possible
variability in the application’s performance for a given external load and cluster size. More
specifically, the conceptual states si in Figure 1 correspond to n actual states (shown
as sibm in Figure 2a , 1 ≤ m ≤ n), to better map the behaviour (bm) of interest (i.e.
performance, security). Each new extended state corresponds to a different expected system
behaviour and is derived through clustering the collected and predicted log entries of the
past, current and future measurements, for the same external load and cluster size, resulting
in deviations from the expected behaviour. The probability of transition to each possible
state is proportional to the probability of occurrence of the corresponding state behaviour.
With this state transformation our model fully meets the R2 requirement.

In Naskos et al. (2015) [2], several elasticity policies are examined, and the most effective
one was termed as ADV+VC+PRE, standing for advanced+violation-cluster+prediction.
More specifically, the policy is termed as advanced because it computes the cumulative
reward after a pre-specified number of transitions in the model, called steps; this configurable
parameter is set to 4 for the current work, based on experimentation with different values.
The VC label indicates that all the measurements for a given number of VMs and external
load that do not meet the latency threshold, are gathered to the same state and all the other
measurements, are clustered to more than one states, representing all the viable behaviours
of our system. Thus, two new conceptual states are introduced and presented in Figure 2b,
the no violation state, which is further extended to more than one states and the violation
state, which is connected with a single state, which depicts the undesirable behaviour of
our NoSQL cluster. PRE indicates that a prediction mechanism of future incoming load is
utilized (i.e. Linear Regression (LR) for the present work). Utilizing the future incoming
load prediction, we are able to compute the future latency measurements based on the logged
measurements.

8 A. Naskos et al.

Rewards are associated only to model states (action rewards can also be used, however
are not considered in the present work) and are derived according to the following utility
function:

u(vms) =

{
0, if lat > x

1 + (1/vms), if lat ≤ x
(1)

where vms is the current number of VMs. As such, this utility function includes a user-
specified constraint and manages to take into account both performance issues (through
the lat threshold) and monetary costs. The latter are implicitly considered by decreasing
the utility in a way inversely proportional to the number of machines when there is no
performance violation. Overall, this utility function penalizes both under-provisioning and
over-provisioning.

Runtime decisions are taken as follows. Every time a decision needs to be taken, the
model template described above is dynamically instantiated according to the latest log
measurements. Then, a two-phase model verification procedure takes place to decide the
optimal path (i.e. finite sequences of states and actions ((add/remove/no_op))) considering
the performance. To this end, the PRISM tool Kwiatkowska et al. (2009) [5] and its property
specification language (PCTL probabilistic temporal logic) are used. In the first phase,
we ask for the maximum cumulative reward of the model (i.e. on every transition in the
model (i.e. step in a path) the selected utility function is evaluated and the result is summed
to the total reward of the path), generating single or multiple optimal paths that lead to
the same optimal reward. The PCTL property used to ask for the maximum reward is
Rmax =? F [steps = max_steps], where maxsteps defines the depth of the verification
(i.e. length of the paths) and is set by the user. Secondly, if there are more than one optimal
paths, every first action of every optimal path is checked with another PCTL property
Pmax =? F [steps = max_steps & violation] to define its maximum probability of
performance specific Service-Level Agreement (SLA) violation. The first action with the
lowest maximum performance violation probability is the one selected from our decision
mechanism.

3.2 Model-based elasticity for data leakage

The performance-oriented model aims to avoid performance violations, while avoiding
costly over-provisioning. Here, we describe how our model is enhanced with capabilities
to capture data leakages and consider them during elasticity decision making thus meeting
requirements R3 and R4 as well. The modifications refer to both the main model and the
decision policy.

More specifically, we further extend the state transformation presented in Figure 2b
yielding a hierarchical conceptual model. The new extension is presented in Figure 3. Hence,
every si state is further connected to one of safe ornot safe states, where the former stands
for no data leakage incident, while the latter denotes the opposite. Hence, the probability
of the sibm state is computed through the multiplication of the probm probability and
the probability of no attack probinp attack

or attack probiattack
, respectively, since the data

leakage attacks and latency violations are considered to be independent events. We consider
that there is an explicit mechanism to count and report the number of attacks leading to
data leakages in a periodic manner, e.g. Papadimitriou et al. (2011) [6]. The data leakage
probability information is used in our models to initialize the transition probabilities to

Security-aware elasticity for NoSQL databases in multi-cloud environments 9

si

no
attack

no
viol

viol sibn

sib1

sib...

sibn−1

attack

no
viol

viol sibn

sib1

sib...

sibn−1

t

pr
ob
i n
o
a
tt
a
ck

prob
i
a
tta

ck

pr
obv

io
l

probno−viol

pro
b1

prob...
probn−1

probn

pr
obv

io
l

probno−viol

pro
b1

prob...
probn−1

probn

stable attack no attack

violation no violation actual states

Figure 3 Detailed MDP model stable states.

10 A. Naskos et al.

states that represent safe or not safe states. A reasonable assumption is that the probability
of attacks per VM is the same and equal to probattack, and the attacks on different VMs are
statistically independent; in that case, probiattack

becomes equal to 1− (1− probattack)i.
In addition, we apply modifications to the performance-oriented model verification

procedure and we further employ two additional utility functions for the reward
specification. In our first approach, and in order to account for data leakages and performance
trade-offs, we propose a 3-parameter function as follows:

u(vms) =

0, if attack = true

a, if lat > x ∧ attack = false.

b+ (c/vms), if lat ≤ x ∧ attack = false.

(2)

where a, b and c are user defined values and attack is a flag that indicates a data
leakage. In Sec. 5 we show how setting the 3 parameters, can yield configurable trade-offs
between the different objectives (i.e. (i) security, (ii) performance (latency violation and
under-provisioning avoidance), (iii) economy (avoiding over-provisioning)).

The second utility function uses a different weighting scheme between the goals we are
trying to achieve and alleviates the need for measurement threshold specification:

u(vms) = k · p̃vmsattack
+m · ˜vms+ n · ˜lat (3)

where k, m and n are user defined weights with k +m+ n = 1, p̃vmsattack
is the

normalized probability of attack for the given number of VMs, ˜vms is the normalized
number of VMs and ˜lat is the normalized response latency. Regarding the probability of
attack, in our cases, the low and upper bounds are 1− (1− probattack)imin and 1− (1−
probattack)

imax , respectively; we normalize this interval to [0, 1]. Similarly, assuming that
we know the minimum and maximum number of VMs that can be employed, we normalize
the number of VMs to [0, 1]. For the response latency, where there is no upper bound, we use
z-score normalization; then we transform the [−1, 1] range into [0, 1], while values lower
than -1 (resp. greater than 1) are mapped to 0 (resp. 1). Note that this utility function should
be minimized rather than maximized.

For both utility functions, the second PCTL property (Sec. 3.1) is transformed to seek
the first action with the lowest maximum probability of both performance-specific SLA
violation and data leakage in cases of multiple optimal paths.

4 Model-based security-aware elasticity for multiple cloud providers

Our model is further extended to account for multiple cloud providers, hence to meet the R5
requirement. With this extension, VM instances from different cloud providers with similar
performance behaviour and different data leakage probability are supported (note that in
general, the performance of similar VM instances provided by different cloud providers can
vary Jiang et al. (2009) [7]). Having multiple VM instances with different attack probabilities
offered by k cloud providers cp, the attack probability piattack

is computed as

piattack
= 1− (1− probattackcp1

)#VMi1cp1 ∗ · · · ∗ (1− probattackcpk
)#VMikcpk

where probattackcpj
and #VMijcpj are the attack probability of a single VM and the

number of active VMs, for the cloud provider j (cpj), respectively; also i1 + i2 + . . .+
ik = i.

Security-aware elasticity for NoSQL databases in multi-cloud environments 11

sibm

si
+1pr

si
+1pu

si
+1pr
+1pu

si
+2pr

si
+2pu

si
−1pr

si
−1pu

si
−1pr
−1pu

si
−2pr

si
−2pu

s′i

t
t+1

a
d
d
1

add
1

add2

add2
ad
d2re

m
1rem

1rem
2

rem2

rem
2

n
o_
op

stable actual state

Figure 4 Detailed MDP model states for multi-cloud.

Overall, if there are k providers, adding j VMs does not lead to a single si+j conceptual
state (omitting the transient state for simplicity), but to

(
k+j−1

j

)
possible states. For example,

suppose that there are two providers, offering (i) private VM, depicted as pr and (ii) public
VM, depicted as pu in Figure 4. Adding two VMs from state sibm may lead to one of the(
2+2−1

2

)
= 3: (i) si + 1pr + 1pu, (ii) si + 2pr, (iii) si + 2pu states. Figure 4 shows the

extensions to the model for two time sections.
The model solver is responsible to handle the non-determinism and select one of

these states. Apparently, this extension further augments the complexity of the verification
process. However, the PRISM model checker is able to handle far more complex models;
e.g., it verifies models of systems with similar setup to the one presented in Section 5,
producing models with up to 9958 states, in just a few seconds.

5 Evaluation

5.1 Experimental Setup

We have used logs from a real Cassandra infrastructure to conduct systematic experiments.
The collected measurements are used firstly, to populate the initial logs, and secondly, to
emulate a real situation. Through emulation, we have managed to fairly test each policy
or configuration on an equal basis. The workload consists of asynchronous read requests
(req), the volume of which evolves in a sinusoidal manner varying from 4000 to 16000
req/sec coupled with with 2 plateau periods at 13000 req/sec for 1000 time units each. We
collected measurements every 30 secs and, in our emulation, a time unit is equal to this
measurement collection period. In each sine period, there are 360 measurements. The period
of the decision making should be configured according to the volatility of the incoming load
of the system and the monitoring frequency. There are cloud providers (e.g. Amazon EC2)
that charge extra fees for less than 5 mins monitoring frequency. We allow an elasticity

12 A. Naskos et al.

action to take place every 10 time units, to emulate a system that may modify the VMs
every 5 mins (or 10 mins is cases of add action, to allow the system to stabilize). Additions
affect more the latency of system as there is an added overhead to the system on scale-up
(create VM, boot VM, setup NoSQL cluster, data transfer). Scaling-down is simpler as the
VMs can be removed immediately (i.e. there is no need for graceful removal of a VM if
the replication factor is not affected). As the emulated load is generated based on the logs,
which also act as training set, we consider that the system is well trained, and as such, the
MDP models are instantiated in an accurate manner. In every up-scale action, up to 3 VMs
can be added, while during down-scaling, up to 2 VMs are allowed to be removed in a single
step. The cluster sizes varies from 8 up to 18 VMs. Every experiment runs for 3 iterations.
Further details are provided in Naskos et al. (2015) [2].

4000 6000 8000 10000 12000 14000 16000

Load

10
1

10
2

10
3

L
a
te

n
c
y

Dataset Latency Distribution (8 VMs)

50 ms

45 ms

4000 6000 8000 10000 12000 14000 16000

Load

10
1

10
2

L
a
te

n
c
y

Dataset Latency Distribution (18 VMs)

50 ms

45 ms

Figure 5 Latencies for 8 (top) and 18 (bottom) VMs

Security-aware elasticity for NoSQL databases in multi-cloud environments 13

Fig. 5 presents the latency distribution in two characteristic states of the collected dataset,
where the dotted line shows the latency thresholds used in the experiments.

5.2 Experimental Results in a Hybrid Cloud Environment

Our experiments show the trade-offs between security attacks and latency violations for a
series of utility function configurations and probabilities of attack incidents. We present a
setting, where the cloud deployment is hybrid with both private and public VMs. The attack
probability for the private VMs is set to 0%, while, for the public one, is 1% for the first set
of experiments and 0.1% for the second. Firstly, we present the elasticity behaviour when
the extra machines are provided by the public provider exclusively. Later, we present results
when the additional VMs can be provided by both parties. For brevity, we present results
only for data leakage; the results for data loss are similar, as reported in Naskos et al. (2015)
[3].

5.2.1 Data Leakage Attacks - Single Cloud Provider for Extra Machines

In this set of experiments we compare the security-aware model against the baseline model
in Section 3.1. For the former, we employ the utility function in Eq. (2) in five different
setups as shown in Table 1. Intuitively, DLeak-0 tries to avoid attacks at any performance
cost. The next three policies, i.e. DLeak-[1-3], place more importance on latency violations
than DLeak-0. DLeak-4 tries to balance performance and security, emphasizing on attack
avoidance slightly less than the DLeak-0 policy. The latency threshold is set to either 45 or
50 msecs.

DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
a 100 0.5 100 100 100
b 100 1 100 1000 100
c 1 1 160 1600 16

Table 1 Parameter setup for the utility function in Eq. (2))

In Figure 6, we present the adaptation of the number of VMs to the incoming load
for each policy. The red dotted line represents the incoming load while the solid blue
line represents the number of active VMs. Except few instabilities, due to the inherent
environment uncertainty infused in our emulations, the ADV+VC+PRE and DLeak-[1-3]
policies can broadly follow the load variation. The DLeak-0 and DLeak-4 policies keep the
number of active VM to the most safe state, which is 8 VMs.

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
45 msecs 12.4 8 12.1 11.3 12.2 8
50 msecs 12.1 8 11.6 10.9 11.7 8

Table 2 Average number of active VMs (1% attack probability)

Initially, we set the probability of data leakage attack per VM per step to 1%; later,
we examine data leakage probability of 0.1% that differs by an order of magnitude. The

14 A. Naskos et al.

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m
s

ADV+VC+PRE

change state actions (%): 7.75
violations (%): 0.50

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m
s

DLeak-0

change state actions (%): 0.00
violations (%): 65.80

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m
s

DLeak-1

change state actions (%): 8.19
violations (%): 1.74

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m
s

DLeak-2

change state actions (%): 9.81
violations (%): 9.36

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m

s

DLeak-3

change state actions (%): 7.92
violations (%): 1.19

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

4000

6000

8000

10000

12000

14000

16000

lo
a
d

load vms

8

10

12

14

16

18

v
m
s

DLeak-4

change state actions (%): 1.22
violations (%): 65.23

Figure 6 Variation of the external load and the number of active VMs

leftmost pair of columns in Figure 7 (top) presents the percentage of time steps where latency
violations (left blue bar) and data leakages (right green bar) occur for the ADV+VC+PRE
policy. In this experiment, the latency threshold is 45 msecs, and, for cluster size from 8
to 18 VMs, the attack probability ranges from 0% (lower bound) to 9.5% (upper bound).
ADV+VC+PRE manages to yield a very low number of performance violations at the
expense of non-negligible security attacks. The second and sixth pair of columns in the
same figure present the results for DLeak-0 and DLeak-4, respectively, where the system is
essentially penalized only for the attack situations, as the latency violation reward is very
close to the no-attack no-violation case. As expected, the number of VMs is kept low (see
Table 2). Overall, the attacks are reduced to their minimum, however the latency violations
are reaching their highest percentage (65.8% and 65.23% respectively).

As we also observe in Figure 7, the DLeak-2 parameterisation achieves a reduction in
the deviation from the lower bound of probability attacks of 30% (from 4.8% to 3.36%)
compared to the ADV+VC+PRE policy, at the expense of an increase in the latency
violations, since the system is prohibited to scale in several cases to avoid data leakage

Security-aware elasticity for NoSQL databases in multi-cloud environments 15

60

61

62

63

64

65

66

67

68

65.80%
65.23%

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
Decision Policy

0

2

4

6

8

10

 (
%
)
o
f
a
tt
a
ck
s
a
n
d
 v
io
la
ti
o
n
s

0.50%

1.74%

9.36%

1.19%

4.18%

0.00%

4.03%
3.36%

4.22%

0.00%

Aggregated Latency Violations

latency violations data leakages

55
56
57
58
59
60
61
62
63
64

62.09%
61.33%

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
Decision Policy

0

2

4

6

8

10

 (
%
)
o
f
a
tt
a
ck
s
a
n
d
 v
io
la
ti
o
n
s

0.25%

1.74%

8.86%

1.33%

3.83%

0.00%

3.55%
2.92%

3.45%

0.00%

Aggregated Latency Violations

latency violations data leakages

Figure 7 Aggregated Latency Violations and Data Leakage Percentage for 45 msecs (top) and 50
msecs (bottom) latency thresholds and 1% data leakage probability per VM.

attacks. DLeak-1 slightly increases the number of violations (from 0.5% to 1.74%) with a
negligible decrease in the data leakage attacks (3.5%). DLeak-3 parameter setup increases
the number of violations without being able to decrease the number of data leakages. As
we observe in Table 2, DLeak-2 keeps the number of active VMs lower than the DLeak-1
and DLeak-3, which explains the decrease in the number of data leakages. This also is an
indication that different parameter configurations can achieve different trade-offs.

Fig. 7 (bottom) repeats the same experiment, but with the latency violation threshold set
to 50 msecs. The data leakages percentage is decreased in all the security enhanced policies
with DLeak-2 achieving the best tradeoff this time as well.

In Fig. 8, the data leakage probability because of multi-tenancy is changed to 0.1% per
VM per time unit, hence the percentage of data leakage throughout the cluster ranges from

16 A. Naskos et al.

60

61

62

63

64

65

66

67

68

65.85%

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
Decision Policy

0

2

4

6

8

10

 (
%
)
o
f
a
tt
a
ck
s
a
n
d
 v
io
la
ti
o
n
s

0.42% 0.77%

4.30%

0.69%

8.86%

0.40% 0.00% 0.37% 0.16% 0.42% 0.34%

Aggregated Latency Violations

latency violations data leakages

55
56
57
58
59
60
61
62
63
64

62.11%

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
Decision Policy

0

2

4

6

8

10

 (
%
)
o
f
a
tt
a
ck
s
a
n
d
 v
io
la
ti
o
n
s

0.25% 0.65%

5.89%

0.59%

8.45%

0.38% 0.00% 0.39% 0.09% 0.40% 0.24%

Aggregated Latency Violations

latency violations data leakages

Figure 8 Aggregated Latency Violations and Data Leakage Percentage for 45 msecs (top) and 50
msecs (bottom) latency thresholds and 0.1% data leakage probability per VM.

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
45 msecs 12.4 8 12.3 11.8 12.3 11.4
50 msecs 12 8 11.8 11 11.9 10.9

Table 3 Average number of active VMs (0.1% attack probability)

0% to 0.99%. As we observe, the data leakage percentage is reduced by 60% (from 0.4%
to 0.16%) for the DLeak-2 with an increase in the latency violations (i.e. 4.3% from 0.42%
achieved by ADV+VC+PRE policy), reaching a significantly better trade-off than the other
setups. The mean number of the active VMs in DLeak-2 is reduced from 12.4 to 11.8, as
presented in Table 3. Interestingly, other configurations, such as DLeak-4, fail to reach a

Security-aware elasticity for NoSQL databases in multi-cloud environments 17

35

36

37

38

39

40

41

42

43

40.74% 40.95%

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
Decision Policy

0

2

4

6

8

10

 (
%
)
o
f
a
tt
a
ck
s
a
n
d
 v
io
la
ti
o
n
s

0.42%
0.97%

7.85%

0.74%

2.23%

0.00%

1.73%
1.18%

1.73%

0.00%

Aggregated Latency Violations

latency violations data leakages

20

21

22

23

24

25

23.56%
23.85%

ADV+VC+PRE DLeak-0 DLeak-1 DLeak-2 DLeak-3 DLeak-4
Decision Policy

0

1

2

3

4

5

6

7

 (
%
)
o
f
a
tt
a
ck
s
a
n
d
 v
io
la
ti
o
n
s

0.31%
0.95%

6.24%

0.74%

1.93%

0.00%

1.27%
0.94%

1.32%

0.00%

Aggregated Latency Violations

latency violations data leakages

Figure 9 Aggregated Latency Violations and Data Leakage Percentage for 45 msecs (top) and 50
msecs (bottom) latency thresholds and 1% data leakage probability per VM using
multiple cloud providers.

beneficial trade-off. When the latency violation threshold is changed to 50 msecs (see Figure
8 (lower)) the same trend applies, with a further reduction of data leakage attacks for the
DLeak-2, reaching 76% less compared to the ADV+VC+PRE.

5.2.2 Data Leakage Attacks - Multiple Cloud Providers for Extra Machines

In this setting, the number of VMs in the private infrastructure ranges from 8 VMs up to 12
VMs and in the public infrastructure from no VMs up to 10 VMs. The total range of VMs
is maintained the same with the previous experiments i.e. 8 to 18 VMs, hence the model
solver should choose between a mixture of private and public VMs. The data leakage attack
probability per VM per time unit is 1%.

18 A. Naskos et al.

In Figure 9(top), we present experiments with the 45msecs latency threshold. The
ADV+VC+PRE policy achieved 0.42% of performance violation and 2.23% of data leakage
attacks. As it is expected, the data leakage attacks are reduced, compared to the previous
experiment of the single cloud provider given that more private VMs can be used. DLeak-2
managed to drop the data leakage incidents to the half approximately, but with 7.85% latency
violations. However, the main difference in the behaviour of the different configurations
is that DLeak-3 achieves an interesting trade-off as well: it reduces security incidents less
than DLeak-2, but with much fewer performance violations. Also, DLeak-3 dominates
DLeak-1. The same trend applies also when the latency threshold becomes 50msecs (Figure
9(bottom)).

5.2.3 Lessons Learned

The main lesson learnt from the above experiments is that the elasticity decision making
approach along with the 3-parameter utility function in Sec. 3.2 provides a powerful tool
for striking a balance between security and performance requirements. As a rule of thumb
to be used by system administrators, we advocate setting the parameters a and b at the order
of hundreds (2 orders of magnitude higher than the reward for the security incident) and
the parameter c an order of magnitude higher than the maximum cluster size, in order to
yield an effective approach in reaching a mid-way balance. Then, if the ratio of data leakage
incidents compared to performance ones is considered high, further increasing b and c can
be investigated.

5.2.4 Weight-based Utility

DLeak’-0 DLeak’-1 DLeak’-2 DLeak’-3 DLeak’-4 DLeak’-5 DLeak’-6
k 0 0 0.5 1/3 0.25 0.1 0.3
m 0 0.5 0 1/3 .25 0.25 0
n 1 0.5 0.5 1/3 0.5 0.65 0.7

Table 4 Parameter setup for the utility function in Eq. (3))

We also experimented with the utility function in Eq. 3 for a range of different settings as
shown in Table 4. Indicative results are shown in Figure 10. The main observations are that
(i) a range of different trade-offs can be achieved through setting the weights accordingly;
(ii) these trade-offs are in general inferior to the ones for the previous utility function in
terms of ratio of performance and security incidents. The latter is attributed to the fact that
the latency threshold is not explicitly taken into account; (iii) On the minimization of the
weighted utility function, both the attack probability and the number of VMs in Eq. 3,
try to keep the number of VMs as low as possible, while the latency measurement tries
the opposite. Hence, setting all the weights equal, as presented in DLeak’-3 in Table 4,
under-provisions the system, avoiding attacks on one hand, penalizing the performance
on the other. A more acceptable trade-off (inferior than the one achieved using Eq. 2), is
accomplished when the n weight is set more than 0.6.

Security-aware elasticity for NoSQL databases in multi-cloud environments 19

DLeak'-0 DLeak'-1 DLeak'-2 DLeak'-3 DLeak'-4 DLeak'-5 DLeak'-6

Decision Policy

0

10

20

30

40

50

60

(%
)
o
f
v
io
la
ti
o
n
s
a
n
d
 a
tt
a
ck
s

0.66%

32.36%

36.59%

56.70%

33.52%

10.33%

5.03%

8.70%

1.33% 1.17%
0.09%

1.25%

4.83%
5.88%

Aggregated Latency Violations

latency violations data leakages

Figure 10 Aggregated Latency Violations and Data Leakage Percentage for 50 msecs latency
thresholds and 1% data leakage probability per VM with weighted utility.

6 Real-world Scenario Adaptation

Based on the lessons learned presented in the Section 5, the Greek National Gazette using
our proposal should be able to securely utilize public resources on pick periods, to guarantee
for the performance of the system. The existing infrastructure should be adapted to work on
par with a public cloud infrastructure (like the Amazon’s EC2), to be able to deploy public
VMs on the fly, when it is needed. The initial values of maximum number of public VMs,
the bounds of elasticity and the latency threshold can be defined by an administrator and
adapted at runtime. Our proposal, considering the utility function, is the one presented in
Eq. 3 with a setup similar to DLeak-3, as it achieves a good balance between security and
performance.

7 Related Work

The literature is rich with research efforts that consider security issues within the context of
cloud computing. Recent initiatives mainly from the industry and government organisations
such as ENISA and Cloud Security Alliance, have sought to produce a number of guidelines
and methods to help in the selection of cloud providers as well as addressing some specific
security concerns of the cloud. Yet such guidelines appear often too cumbersome with no
clear indications as to when a Cloud Service Provider may be considered as not being
trustworthy. This makes the valuable information detailed within these documents hard to
exploit.

Gong et al. (2010) [8] showed that using a side-channel attack, an attacker can instantiate
new VMs of a target virtual machine so that the new VM can potentially monitor the cache
hosted on the same physical machine. Mulazzani et al. (2011) [9] showed that attackers
can exploit data duplication techniques to access customer data by obtaining hash code
of the stored file. Wenzel et al. (2012) [10] consider security and compliance analysis of
outsourcing services in the cloud computing context.

20 A. Naskos et al.

There are also works that focus on the development of model-based approaches
to security analysis in cloud environments. A goal-driven approach is introduced to
analyse security risks of cloud based system Islam et al. (2012) [11]. Goals, threats and
risks are consider from three main components: data, service/application, and technical
and organisational measure. We have also contributed to this line of research with the
development of a model-based framework that enables elicitation, analysis of security and
privacy requirements and selection of deployment models Kalloniatis et al. (2013) [12] and
service providers Mouratidis et al. (2013) [13] based on such requirements. These works
provide important developments in analysing and modelling security in cloud computing
but they do not take into account performance issues.

Our work is also related to proposals that deal with cloud elasticity to maintain specific
performance characteristics. Tan et al. (2012) [14] combine cloud elasticity with anomaly
prevention, which refers to the resource contention, software bugs or hardware failures.
This proposal utilizes a prediction technique based on system metrics to vertically scale
the resources of the VMs or to decide for VM migration, i.e. they consider different forms
of elasticity, as is also the case in Gong et al. (2010) [15] and Shen et al. (2011) [16]. A
work that indirectly solves MDP models utilizing reinforcement learning-based policies to
guide elasticity appears in Tsoumakos et al. (2013) [17], which is extended in our previous
performance-oriented work in Naskos et al. (2015) [2].

A significant number of proposals use rule-based techniques to guide the elasticity,
e.g., Moore et al. (2013) [18] and Copil et al. (2013) [19]. In Copil et al. (2013) [19], a
technique is proposed that addresses the implications of an elastic action across multiple
dimensions, providing for example the cost implication of a horizontal scaling action.
None of those techniques is accompanied by online probabilistic verification of elasticity
properties. Finally, model checking and runtime quantitative verification for cloud solutions
other than horizontal scaling has been proposed in Calinescu et al. (2011) [20] and Perez
et al. (2013) [21]. The former, utilizes PRISM to guide service adaptation, while the latter
presents a technique to predict the minimum cost of cloud deployments using PCTL over
MDP models. In summary, to the best of our knowledge, our proposal is the first one that
addresses the elasticity problem taking into account both performance and security issues.

Finally, several works handle the elasticity between heterogeneous cloud infrastructures,
like Copil et al. (2014) [22], Hector et al. (2014) [23] and Qi et al. (2013) [24], or
between heterogeneous VM instances of the same cloud infrastructure, like Gupta et al.
(2015) [25]. These proposals consider the performance heterogeneity between the different
utilized VM instance types. In our proposal, we consider the same performance footprint
between the used VM instances and the heterogeneity concerns the different security levels
offered by multiple cloud providers. Our current modelling approach is also capable of
capturing multiple VM instance types with heterogeneous performance, however this is out
of the scope of this paper. None of the aforementioned proposals considers the security
heterogeneity between multiple cloud providers, and none of them handles the elasticity
using a formalized, dependable approach like the one proposed in this work.

8 Conclusions

This work presents a novel approach to support elasticity decisions for cloud databases,
which considers both performance and security requirements. Since, these requirements are
contradicting, we have developed a probabilistic model checking solution that accounts for

Security-aware elasticity for NoSQL databases in multi-cloud environments 21

user-defined trade-offs between them and is applicable to multi-cloud environments even
with different attack probabilities (not presented in this work). As demonstrated by the
experiments, our proposal is capable of striking a configurable balance between security-
related incidents and performance degradation. Our mechanism can be applied on NoSQL
clusters of any size as its scalability is affected only by the scaling size (i.e. maximum
number of VMs to add and remove on every decision), which usually does not exceeds some
tens of VMs (scaling concurrently) and not the actual size of the cluster. Vertical elasticity
will be considered as a future work, where the system will be modeled per VM and not
as a cluster (proposed in this work), as in vertical elasticity the decision maker should be
acknowledged for the resources used by every distinct VM at each time period, to be able
to decide.

References

[1] George Grispos, William Bradley Glisson, and Tim Storer. Using smartphones as a proxy for
forensic evidence contained in cloud storage services. CoRR, abs/1303.4078, 2013.

[2] Athanasios Naskos, Emmanouela Stachtiari, Anastasios Gounaris, Panagiotis Katsaros,
Dimitrios Tsoumakos, Ioannis Konstantinou, and Spyros Sioutas. Dependable horizontal scaling
based on probabilistic model checking. In CCGrid. IEEE, 2015.

[3] Athanasios Naskos, Anastasios Gounaris, Haralambos Mouratidis, and Panagiotis Katsaros.
Security-aware elasticity for nosql databases. In Model and Data Engineering - 5th International
Conference, MEDI 2015, Rhodes, Greece, September 26-28, 2015, Proceedings, pages 181–197,
2015.

[4] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1994.

[5] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: probabilistic model checking
for performance and reliability analysis. SIGMETRICS, 36(4):40–45, 2009.

[6] Panagiotis Papadimitriou and Hector Garcia-Molina. Data leakage detection. Knowledge and
Data Engineering, IEEE Transactions on, 23(1):51–63, 2011.

[7] Dejun Jiang, Guillaume Pierre, and Chi-Hung Chi. Ec2 performance analysis for resource
provisioning of service-oriented applications. In ICSOC/ServiceWave Workshops, pages 197–
207, 2009.

[8] Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen, and Zhenghu Gong. The characteristics
of cloud computing. In Proceedings of the 2010 39th International Conference on Parallel
Processing Workshops, ICPPW, pages 275–279, 2010.

[9] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber, and Edgar Weippl.
Dark clouds on the horizon: Using cloud storage as attack vector and online slack space. In
USENIX Security Symposium, 2011.

[10] Sven Wenzel, Christian Wessel, Thorsten Humberg, and Jan Jürjens. Securing processes for
outsourcing into the cloud. In 2nd International Conference on Cloud Computing and Services
Science, April 2012.

[11] Shareeful Islam, Haralambos Mouratidis, Christos Kalloniatis, Aleksandar Hudic, and Lorenz
Zechner. Model based process to support security and privacy requirements engineering. IJSSE,
3(3):1–22, 2012.

[12] Christos Kalloniatis, Haralambos Mouratidis, and Shareeful Islam. Evaluating cloud deployment
scenarios based on security and privacy requirements. Requir. Eng., 18(4):299–319, 2013.

[13] Haralambos Mouratidis, Shareeful Islam, Christos Kalloniatis, and Stefanos Gritzalis. A
framework to support selection of cloud providers based on security and privacy requirements.
Journal of Systems and Software, 86(9):2276–2293, 2013.

22 A. Naskos et al.

[14] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani, and Deepak
Rajan. Prepare: Predictive performance anomaly prevention for virtualized cloud systems. In
ICDCS, pages 285–294, 2012.

[15] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive elastic resource scaling for
cloud systems. In CNSM, pages 9–16, 2010.

[16] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale: Elastic resource
scaling for multi-tenant cloud systems. In SOCC, pages 5:1–5:14, 2011.

[17] Dimitrios Tsoumakos, Ioannis Konstantinou, Christina Boumpouka, Spyros Sioutas, and
Nectarios Koziris. Automated, elastic resource provisioning for nosql clusters using tiramola.
In CCGrid, pages 34–41, 2013.

[18] Laura Moore, Kathryn Bean, and Tariq Ellahi. A coordinated reactive and predictive approach
to cloud elasticity. In CLOUD COMPUTING, pages 87–92, 2013.

[19] Georgiana Copil, Daniel Moldovan, Hong Linh Truong, and Schahram Dustdar. Multi-level
elasticity control of cloud services. In ICSOC, pages 429–436, 2013.

[20] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and Giordano
Tamburrelli. Dynamic qos management and optimization in service-based systems. IEEE Trans.
Software Eng., 37(3):387–409, 2011.

[21] Diego Perez-Palacin, Radu Calinescu, and José Merseguer. Log2cloud: Log-based prediction
of cost-performance trade-offs for cloud deployments. In ACM SAC, pages 397–404, 2013.

[22] G. Copil, D. Moldovan, Hong-Linh Truong, and S. Dustdar. On controlling cloud services
elasticity in heterogeneous clouds. In Utility and Cloud Computing (UCC), 2014 IEEE/ACM
7th International Conference on, pages 573–578, 2014.

[23] Hector Fernandez, Guillaume Pierre, and Thilo Kielmann. Autoscaling web applications in
heterogeneous cloud infrastructures. In IC2E, 2014.

[24] Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L. Hellerstein. Harmony: Dynamic
heterogeneity-aware resource provisioning in the cloud. In ICDCS, pages 510–519, 2013.

[25] Vishal Gupta, Min Lee, and Karsten Schwan. Heterovisor: Exploiting resource heterogeneity to
enhance the elasticity of cloud platforms. In Proceedings of the 11th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pages 79–92. ACM, 2015.

	Introduction
	Problem Challenges.
	Real-world Motivating Example.
	Contributions and Structure.

	Specification of Model Features
	Model-based security-aware elasticity for a single cloud provider
	Model-based elasticity for performance
	Model-based elasticity for data leakage

	Model-based security-aware elasticity for multiple cloud providers
	Evaluation
	Experimental Setup
	Experimental Results in a Hybrid Cloud Environment
	Data Leakage Attacks - Single Cloud Provider for Extra Machines
	Data Leakage Attacks - Multiple Cloud Providers for Extra Machines
	Lessons Learned
	Weight-based Utility

	Real-world Scenario Adaptation
	Related Work
	Conclusions

