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Abstract

Anomaly detection is considered an important data mining task, aiming at the

discovery of elements (known as outliers) that show significant diversion from

the expected case. More specifically, given a set of objects the problem is to re-

turn the suspicious objects that deviate significantly from the typical behavior.

As in the case of clustering, the application of different criteria leads to differ-

ent definitions for an outlier. In this work, we focus on distance-based outliers:

an object x is an outlier if there are less than k objects lying at distance at

most R from x. The problem offers significant challenges when a stream-based

environment is considered, where data arrive continuously and outliers must

be detected on-the-fly. There are a few research works studying the problem

of continuous outlier detection. However, none of these proposals meets the

requirements of modern stream-based applications for the following reasons: i)

they demand a significant storage overhead, ii) their efficiency is limited and iii)

they lack flexibility in the sense that they assume a single configuration of the

k and R parameters. In this work, we propose new algorithms for continuous

outlier monitoring in data streams, based on sliding windows. Our techniques

are able to reduce the required storage overhead, are more efficient than pre-

viously proposed techniques and offer significant flexibility with regards to the
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input parameters. Experiments performed on real-life and synthetic data sets

verify our theoretical study.

1. Introduction

Anomaly detection is a data mining task focusing on the discovery of ob-

jects, called outliers, that do not seem to have the characteristics of the general

population. To quote Johnson [1]: “an outlier is an observation in a data set

which appears to be inconsistent with the remainder of that set of data”. For

example, from a statistical point of view, an object is an outlier if it deviates

significantly from the distribution.

Outlier discovery is performed for two main reasons: i) removing the outliers

before executing a clustering task leads to more effective cluster formation and

ii) outliers may not always be noise, but they may represent interesting elements

that diserve further exploration (e.g., a large beautiful house sold in a very low

price). Thus, either being noise or useful information, outliers should be mined

efficiently.

One of the most widely used outlier definitions is the one based on distance:

an object x is considered as an outlier, if there are less than k objects in a

distance at most R from x, excluding x itself. On the other hand, if the number

of objects in the R-neighborhood of x are enough (i.e., more than k), then x is

characterized as an inlier. The outliers defined this way are termed distance-

based outliers [2, 3], and the corresponding type of outlier detection has the

advantages of detailed granularity of analysis and detecting isolated groups of

outliers [6]. Note that, to characterize an object x ∈ U as an outlier or an

inlier, we just need a way to compute the distance between x and any other

object of the universe U . If the objects are represented as points in a multi-

dimensional space, then the distance can be any Lp norm (e.g., Euclidean or

Manhattan). However, many applications require distance computations based

on more expensive distance measures such as the Jaccard distance for near

duplicate detection, the edit distance for sequence alignment in bioinformatics,
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distances based on quadratic form in multimedia applications and many more.

Therefore, it is meaningful to provide general techniques that can work using

many different distance measures and not to focus solely on multi-dimensional

spaces.

Another important issue affecting the way outliers are mined is the dynamic

nature of the universe U under consideration. In a static data set, we do not

expect any changes in the outliers, since there are no insertions, deletions or

updates. However, such data sets are rare in modern applications, which on the

contrary require data mining tasks were changes are very frequent. Thus, in this

work we focus on data streams, where the contents of U change continuously

and, consequently, the set of outliers must be updated accordingly.

In data stream applications, data volumes are huge, meaning that it is not

possible to keep all data memory resident. Instead, a sliding window is used,

keeping a percentage of the data set in memory. The data objects maintained

by the sliding window are termed active objects. When an object leaves the

window we say that the object expires, and it is deleted from the set of active

objects. There are two basic types of sliding windows: i) the count-based window

which always maintains the n most recent objects and ii) the time-based window

which maintains all objects arrived the last t time instances. In both cases,

the expiration time of each seen object is known. The challenge is to design

efficient algorithms for outlier monitoring, considering the expiration time of

objects. Another important factor of stream-based algorithms is the memory

space required for auxiliary information. Storage consumption must be kept

low, enabling the possible enlargement of the sliding window, to accommodate

more objects.

Contributions. In this work, we design efficient algorithms for continuous

monitoring of distance-based outliers, in sliding windows over data streams,

aiming at the elimination of the limitations of previously proposed algorithms.

Our primary concerns are efficiency improvement and storage consumption re-

duction. A secondary concern stems from the problem of effective parameter
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configuration that application developers face; more specifically, it is hard to

set R and k a-priori in a way that meets the user needs. To address this, we

allow for multiple configurations to be set and evaluated concurrently thus im-

proving on the algorithm flexibility. In summary, our main contributions are

the following:

• We prove a linear space lower bound which implies that in order to answer

outlier queries on a set of objects one needs to store information about all

objects even if we are settled with an approximate answer with a prob-

ability of success. This means that the window size W fully determines

the number of stored objects, which are O(W ). This is a serious setback

since in the various streaming models (e.g., [4]) we always strive for effi-

ciency in queries as well as (asymptotic) minimization of space in order

to support queries on larger sets of data. This is because the size W of

the sliding window silently determines the size of the memory as well as

the“interesting objects” to consider.

• A novel continuous algorithm is designed, which has two versions, and

requires the radius R to be fixed but can handle multiple values of k.

This algorithm (COD) consumes significantly less storage than previously

proposed techniques and in addition, is more efficient.

• Since different users may have different views of outliers, we propose a new

algorithm (ACOD) able to handle multiple values of k and multiple values

of R, enabling the concurrent execution of different monitoring strategies.

• We propose an algorithm (MCOD) based on micro-clusters [5], to reduce

the number of distance computations. There are cases where the distance

function used is very expensive, and therefore, there is a need to keep this

number low. This algorithm is also extended to support multiple queries

(AMCOD).

• Performance evaluation results are offered based on real-life as well as

synthetically generated data sets. The results show that our algorithms
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are consistently more efficient.

Roadmap. The rest of the work is organized as follows. Section 2 discusses

related work in the area, whereas Section 3 presents some important preliminary

concepts, to keep the article self-contained. In Section 4 we prove a lower bound

on the space required to solve the problem. This bound essentially says that

that in order to monitor outliers in one pass we need to store information about

all objects. We present our techniques in Section 5, whereas Section 6 contains

the performance evaluation results based on real-life and synthetic data sets.

Finally, Section 7 concludes the work and briefly discusses future work in the

area.

2. Related Work

Outlier detection is a topic that has been attracting the interest of researchers

for several decades. Comprehensive surveys can be found in [6, 7, 8, 9, 10]. We

distinguish between two main categories of techniques, static and steaming ones,

which are discussed in turn.

2.1. Static Outlier Detection

Most of the early techniques originate from the statistics community [1, 11],

where the objects are modeled as a distribution, and objects are marked as

outliers depending on their deviation from this distribution. However, for large

dimensionalities and complex data types, statistical techniques fail to model the

distribution accurately, leading to performance degradation. In addition, these

techniques do not scale well for large databases.

The problem of outlier detection has been also addressed by the database

and data mining communities, aiming at solving the problem of scalability to

large datasets mentioned above, shifting the focus on tailored data structures

and adaptations to specific environments, such as sensors, time series, texts,

and so on. Outlier detection has been studied both in the context of multi-

dimensional data sets [12] and in the more general case of metric spaces [13].

Usually, the proximity among objects is used to decide if an object is an outlier
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or not. However, specialized techniques may also be applied (e.g., projections

in the case of multi-dimensional data). In [14], the local reachability density

is used to mark an object as an outlier. Distance-based outliers, considered in

our work, follow a proximity-based approach and employ another simple and

intuitive definition [2, 3], where an object is considered an outlier if there is a

limited number of objects in its neighborhood, or equivalently, if the distance

of a data point to its k-nearest neighbor exceeds a threshold [6]. Additional

outlier definitions exist; for example, graph generation is used in [15] in order

to model geometrical structure and exploit local graph connection for subspace

outlier detection. Outlier elimination from aggregate query results by discover-

ing appropriate predicates is proposed in [16]. Recent trends in outlier detec-

tion include the investigation of techniques that are particularly significant for

big data analysis, such as dealing with high dimensionality, e.g., [17, 18], and

considering graph-based data types common in social networks, e.g., [19, 20],

categorical data [21] and video streams [22]. Apart from the fact that outliers

are important in many applications, their discovery allows the data set to be

“cleaned” to apply a particular model [23], while in many cases, their detection

is a by-product of clustering, e.g., as in [24].

2.2. Streaming Outlier Detection

The fundamental characteristic of the majority of the proposed algorithms

is that they operate in a static fashion. This means that the algorithm must be

executed from scratch if there are changes in the underlying data objects, lead-

ing to performance degradation when updates are frequent. A special case with

extremely high interest is the streaming case, where objects arrive in a stream-

ing fashion [25], and usually in high rates. In this case, traditional algorithms

fail to meet the processing requirements and therefore, specialized stream-based

techniques emerge. One of the data mining tasks studied under the streaming

model is clustering, where we are interested in clustering either a single stream

or multiple streams. Similarly, anomaly detection over data streams is another

emerging task with many applications like real-time fraud/spam detection, com-
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puter network abuse, stock monitoring.

Among the various streaming techniques, we focus on sliding window meth-

ods, which have been used extensively. Since the stream is continuously updated

with fresh data, it is impossible to maintain all of them in main memory. There-

fore, a window is used which keeps track of the most recent data and all mining

tasks are performed based on what is “visible” through the window. As reported

in [7], most window-based models are currently offline. The most relevant re-

search works are [26] and [27] which both consider the problem of continuous

outlier detection in window-based data streams, without limiting their tech-

niques to multi-dimensional data. However, both methods have some serious

limitations that are tackled in this work.

In this research, we improve upon the two proposals mentioned above and

propose four algorithms for continuous outlier monitoring over data streams. In

comparison to existing approaches our techniques manage to reduce the running

time and the storage requirements. In addition, our techniques offer significant

flexibility regarding the parameter values, enabling the execution of multiple

distance-based outlier detection tasks with different values of k and R. More-

over, by using the concept of micro-clusters, we manage to reduce the number

of distance computations. This work is an extension of the research carried out

in [28]; the main extensions include the theoretical analysis, the proposal of the

AMCOD variant and additional evaluation (e.g., for arbitrary window slides).

Other proposals that deal with the broader problem of outlier detection in

data streams include detection of changes, e.g., [29]; consideration of discrete

sequences, e.g., [30]; techniques that rely on estimating the deviation from the

expected values in time-series, e.g., [31] and density, e.g., [32]; specialized tech-

niques for sensor networks, e.g., [33], and probabilistic streams, e.g., [34, 35];

and solutions for the high-dimensionality problem in streaming outlier detec-

tion, e.g., [36]. Distance-based outlier detection has been also considered in

[37] without considering incremental outlier computation though, [38], which

employs data editing techniques, and [39], which focuses on efficient correlation

computation techniques for multiple time series. Finally, in [40], an anytime
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technique is presented, which adopts a best-effort approach given the available

time to process each element in the stream.

3. Fundamental Concepts

This section serves a two-fold purpose: firstly to formalize the problem, and

secondly to explain in more depth the rationale and the limitations of existing

approaches. Table 1 summarizes the most frequently used symbols throughout

the article, along with their interpretation.

Sliding window semantics can be either time-based or count-based. In time-

based window scenarios, the window size W and the Slide are both time in-

tervals. Each window has a starting time Tstart and an ending time Tend =

Tstart+W . The window slide is triggered periodically by the system time (wall

clock time), causing Tstart and Tend to increase by Slide. Each window contains

Table 1: Frequently used symbols.

Symbol Interpretation

qi the i-th query
Q the set of queries
W the window size; q.W is the size of the window for query q
Slide the window slide
P the set of objects in the current window (active objects)
n the number of non-expired objects (n = |P|)
pi the i-th object, i = 1, ..., n
pi.arr the arrival time of object pi
pi.exp the expiration time of object pi
now the current time instance
R the distance parameter for the outlier detection; q.R is the

distance parameter for query q
k the number of neighbors parameter; q.k is the neighbors’ pa-

rameter for query q
I(R, k) the set of inliers (i.e., non-outliers) for specific R and k
D(R, k) the set of outliers for specific R and k
Spi

the set of succeeding neighbors of pi
n+
pi

the number of succeeding neighbors of pi (n
+
pi

= |Spi
|)

Ppi
the set of preceding neighbors of pi

n−

pi
the number of preceding neighbors of pi (n

−

pi
= |Ppi

|)
nnpi

the total number of neighbors of pi, nnpi
= n+

pi
+ n−

pi
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a set P of n objects. In general, n varies between sliding windows reflecting the

differences in arrival rates. The non-expired objects are those whose arrival time

p.arr ≥ Tstart. An object expires after x slides, where x = ⌈ W
Slide

⌉; p.exp is the

expiration time point of p. Count-based windows can be deemed as a special

case of time-based ones, where the window size W is measured in data objects,

n is fixed for all slides, and a slide occurs after the arrival of a certain number of

objects. The proposed methods are applicable to both types of windows. Some

important definitions follow:

Definition 1. Object neighbors: Let R ≥ 0 be a user-specified threshold.

For two data objects pi and pj, if the distance between them is no larger than R,

pi and pj are said to be neighbors. The function nn(pi, R) denotes the number

of neighbors that a data object pi has, given the parameter R.

Definition 2. Distance-Based Outlier: Given R and a parameter k ≥ 0, a

distance-based outlier is an object pi, where nn(pi, R) < k.

The set of distance-based outliers is denoted by D(R, k). If a point is not an

outlier then it is an inlier. We represent the set of inliers by I(R, k). These two

sets do not overlap and cover the complete object set, i.e., D(R, k)∪I(R, k) = P

and D(R, k) ∩ I(R, k) = ∅.

Each pair of R and k parameters forms a query. Based on the above, the

definition of the first problem we deal with, which refers to a single query, is as

follows:

Problem 1. Single-query Distance-Based Outlier Detection: Given the

parameters R and k, and a fixed window size W output the distance-based out-

liers between all non-expired objects at each window slide.

In this work, we also investigate a generalization of the same problem for

multiple queries, that is multiple pairs of R and k parameters. More specifically,

we additionally consider the following problem:
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Problem 2. Multi-query Distance-Based Outlier Detection: Given a

set Q of queries, output the distance-based outliers between all non-expired ob-

jects for each query qi ∈ Q at each window slide.

A naive solution to the problem of continuous detection of distance-based

outliers over windowed data streams would involve keeping for each object p ∈ P

the complete set of its neighbors. Clearly, such an approach is characterized by

quadratic space requirements (O(n2)) in the worst case; as such, it is practically

infeasible for large windows. As stated in the previous section, two more efficient

approaches to this problem have been proposed. According to [26], for each

object p, it is sufficient to keep at most k preceding neighbors and just the

number of its succeeding neighbors n+
p to detect the distance-based outliers

D(R, k) for specific R and k. Furthermore, for each new object pnew, a range

query with radius R is executed to determine pnew’s neighbors. For each such

neighbor pi, n
+
pi

is increased by one. Additionally, Ppnew
is updated with all the

neighbors found and n+
pnew

is set to zero. At any time instance, the approach

adopted by [26] to decide if an object p is an outlier involves the computation of

Pp. The cost to compute the size of Pp that corresponds to objects that have not

expired is O(logk), which means that the cost for all objects is O(nlogk). The

approach in [27] reduces this cost to O(n), as it continuously keeps the number of

neighbors of an object for all window slides until its expiration. Because of that,

the method in [27] has worst case space requirements O(nW ), as it maintains

up to W counters for each object (for Slide equal to 1 time unit). In the worst

case, the space needed can become equal to O(n2). Moreover, each of these

counters may be updated multiple times before becoming obsolete. However,

[27] can answer queries with multiple values of k.

In summary, the approach in [26] has acceptable memory requirements

(O(kn)), negligible time requirements to update the information for each ex-

isting object due to the arrival of new objects and the expiration of old objects

(O(1) for each new object), and significant time requirements to produce out-

liers (O(nlogk)). On the other hand, the approach in [27] has high memory
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requirements (O(nW )), high time requirements to update existing information

due to changes in the window population (O(nW ) for each new object), and

low time requirements to produce the actual outliers (O(n)). In addition, both

approaches require a range query with regard to all current objects P for each

new object’s arrival. In this work, we aim to develop algorithms that have both

low space and time requirements, and also do not rely on the execution of ex-

pensive range queries that consider the entire set P . Our solutions have O(n)

space requirements and we prove that we cannot solve the problems with less

space; however they are faster than the exact algorithms in both [26] and [27].

4. A Theoretical Space Lower Bound

We prove a space lower bound for discovering outliers in a stream of data.

To do that, we use results from one round communication complexity [41] by

reducing the problem of Set-Disjointness [42] to our problem. We denote the

one-round randomized communication complexity of a function f : X × Y → Z

with error δ by R1
δ(f). Let [n] represent the set of all natural numbers from 1

to n. Assume a partition of [n] in three sets {T1, T2, {i}}. That is, T1 ∩ T2 = ∅,

i /∈ T1, T2 and T1 ∪T2 ∪{i} = [n]. In the problem of Set-Disjointness, Alice gets

a random subset X ⊆ T1 ∪ {i} and Bob gets a random subset Y ⊆ T2 ∪ {i}. It

is suitable to represent sets X and Y by the bit vectors x and y respectively of

size n, so that the i-th bit xi of x is 1 if and only if i ∈ X . The same holds for

Y as well. The Set-Disjointness problem is defined as a boolean function f as

follows:

f(x, y) = 1, if x · y 6= 0

f(x, y) = 0, if x · y = 0

where · is the inner product of vectors in {0, 1}n. The following lemma comes

from [42].

Lemma 1. The one-way randomized communication complexity for the problem

of Set-Disjointness is R1
δ(n) = Ω(n).
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We prove a space lower bound on the following problem, which we call the

counting distance-based outlier problem.

Definition 3. Calculate the number of distance-based outliers for some distance

R and for k = 2.

By reducing the problem of Set-Disjointness to the counting problem for

distance-based outliers we can prove that this problem requires linear space

even if we employ randomization and approximation. Apparently, the problem

of finding the number of outliers is at most as difficult as the problem of really

discovering them since in this case we can just count them. Thus, any lower

bound for the problem of Definition 3 transfers to the more general problem.

Let n points in the cartesian space of dimension 2 that are represented by

vectors pi ∈ R
2, 1 ≤ i ≤ n. These points are located in the cartesian space on

the line y = 0 so that the Euclidean distance d(pi, pi+1) for all 1 ≤ i < n is 3R.

We represent this set of points by P . Alice and Bob know these points. Alice

adds a point ai ∈ R
2 to the disk defined by point pi with radius R if xi = 0.

Let this set of points added by Alice be A. Similarly, Bob adds a point bi ∈ R
2

to the disk defined by point pi with radius R if yi = 0. Let this set of points

added by Bob be B and finally assume that Q = P ∪ A ∪ B.

The following observation is crucial for the proof.

Observation 1. There is an outlier in Q for some radius R and k = 2 if and

only if f(x, y) = 1.

Proof 1. ⇒ Let the outlier in Q be pi. Then, pi can be an outlier only if

xi = yi = 1. This means that f(x, y) = 1.

⇐ Assume that f(x, y) = 1 and let i be the i-th bit such that xi = yi = 1. Then,

no point will be added by either Alice or Bob and thus in a radius of R there is

not going to be another point. Thus, pi is an outlier.

Assume that the real number of outliers in set Q is z. We say that an

algorithm (ǫ, δ)-approximates the distance-based outlier counting problem if this

algorithm returns an estimate z̃ of the real number of outliers z such that
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(1− ǫ)z ≤ z̃ ≤ (1+ ǫ)z with probability of success equal to 1− δ. The following

lemma proves the lower bound.

Lemma 2. If there exists a streaming algorithm that uses space s and that

(ǫ, δ)-approximates the distance-based outlier counting problem for 0 < ǫ, δ < 1,

then R1
δ(f) ≤ s.

Proof 2. Assume that M is an algorithm that uses s space and (ǫ, δ)-approximates

the distance-based outlier counting problem. Alice simulates M on the input pro-

vided by the points P∪A. As soon as the simulation finishes she sends the s bits

of the work space of M to Bob and he continues with the execution by providing

the points in B. If M’s estimation is > 0 then Bob outputs 1, otherwise if the

output is 0 then Bob outputs 0 as well.

The crucial note is that if M outputs 0 then this can by definition be an

ǫ-approximation only of 0 outliers, while if the number of outliers is ≥ 1 then 0

cannot be a valid ǫ-approximation, for any bounded ǫ. Thus, Bob outputs 1 iff

there is at least one outlier. In fact, by definition there are either 0 outliers or

the number of outliers is 1. Observation 1 concludes the proof.

Thus, by Lemma 1 it follows that s = Ω(n). This means that if we wish to

discover in one pass the outliers in a stream of size n, then effectively the used

memory must be asymptotically as large as the size of the stream. The same

can be also said in the case one employs a sliding window of size W . Lemma 2

implies that the memory size must be Ω(W ). Note that the bound is based on

sparse point sets. In case an assumption is made about the input distribution

then the bound does not hold.

5. Outlier Detection Algorithms

In this section, we provide algorithms for the continuous detection of distance-

based outliers. We start by describing our framework for detection of outliers.

The event-based method schedules efficiently potential changes in the set of out-

liers. Based on this framework, we develop four algorithms for distance-based

outlier detection.
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The first algorithm, a simple approach, which comes in two flavors, main-

tains outliers when the radius R and the number of neighbors k is constant

while the second and the third algorithms build on the first by allowing these

parameters to vary dynamically. The fourth algorithm, builds on the previ-

ous algorithms and reduces considerably the number of range queries over a

sequence of departures and arrivals in the data stream.

5.1. The Event-Based Approach

We are interested in tracking the outliers in a set of objects of a stream

defined by a sliding window. In particular, a set of outliers is maintained subject

to arrivals of new objects from the stream and departures of existing objects

due to the restricted window size (either restricted with respect to time or

with respect to number of objects). The arrival and departure of objects has

the effect of a continuously evolving set of outliers. At only certain discrete

moments, however, this set may change and an inlier becomes an outlier or

vice-versa. Between these discrete moments, the set of outliers remains as is.

The effect of arrivals of objects is to turn existing outliers into inliers. On

the other hand, the potential effect of departures is to turn inliers into outliers.

However, the exact time of the departure of each object is prespecified (due to

the sliding window) and thus we can plan in the future the exact moments in

which one needs to check whether an inlier has turned into outlier. The exact

time of arrivals is considered unknown and unpredictable.

Henceforth, an event is the process of checking whether an inlier becomes an

outlier due to departure of objects from the window. The expiration time of the

objects is known whether we talk about time-based windows (in this case a new

object p has expiration time now + ⌈ W
Slide

⌉) or for count-based windows (in this

case p expires after a predefined number of new objects have arrived). Thus, the

time stamp of an event depends on the expiration time of objects. This forces

a total order on the events which can be organized in an event queue. An event

queue is a data structure that supports efficiently the following operations:

• findmin: returns the event with the most recent time stamp (the most
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recent event).

• extractmin: invokes a call to findmin and deletes this event from the

event queue.

• increasetime(p, t): increases the time stamp of the event associated to

object p by t. It is assumed that we are provided with a pointer to p and

there is no need to search for it.

• insert(p, t): inserts an event for object p into the queue with time stamp

t.

These operations can be supported efficiently by a min-ordered priority

queue. Employing a Fibonacci heap allows us to support these operations in

O(1) worst-case time as well as in O(log n), O(1) and O(1) amortized time

respectively [43] (one can also get similar worst-case bounds [44]). Note that

due to the min-order of the heap, these structures support the operation of

decreasetime which, however, can be trivially changed to support the opera-

tion of increasetime.

The event-based method for outliers employs an event queue to efficiently

schedule the necessary checks that have to be made when objects depart. Thus,

the event queue accommodates inliers only, since these can be affected by the

departure of an object. Arrivals of new objects result in potential updates of

the keys of some objects in the event queue. Additionally, existing outliers are

checked as to whether they have become inliers and thus they should be inserted

in the event queue.

5.2. The Basic Algorithm

In a similar manner to [26], it is sufficient to maintain at most k preceding

neighbors and the number of succeeding neighbors for each object to detect the

distance-based outliers D(R, k) for specific R and k. The preceding neighbors

Pp of an object p are all objects within distance ≤ R from p while their arrival

time is < p.arr. Similarly, the succeeding neighbors Sp are those with arrival
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time > p.arr. For the succeeding neighbors of p only their number n+
p needs to

be stored. Note that, if object p has ≥ k succeeding neighbors then p will never

become an outlier, and it is called a safe inlier. A safe inlier is not stored in

the event queue. Assuming that p is an inlier but not a safe one, meaning that

n+
p < k, then we need to store the k − n+

p most recent objects in set Pp. This

is because, only these objects can affect the status of the object p as in total

there are k neighbors (see Figure 1 for an example). All objects are stored in

a structure that supports range queries efficiently (e.g., an M-tree [45]). In the

following, we describe how the event based-scheme is applied.

Let p be an object and let p.minexp = min{pi.exp|pi ∈ Pp} be the minimum

expiration time of Pp. Assume that object p is an inlier (not a safe one) at the

present time instance (now). The event corresponding to p gets a time stamp

p.ev equal to p.minexp and thus p will be checked again as an outlier candidate

in time p.ev.

There are two cases as to what triggers the processing of the event queue

and the update of D(R, k). Based on how we process the arrival of new objects

we get two variations of the proposed method, which handle the event queue

in a different manner. In the first variation, termed LUE (Lazy Update of

Events), when a new object p′ arrives, then a range query is performed, and

for all returned objects pi ∈ D(R, k), n+
pi

is increased by one. If some object

pi gets k neighbors then it is inserted in the event queue setting the value of

p.ev accordingly. Additionally, the set Pp′ is constructed with size at most k.

All objects pi ∈ I returned by the range query have their n+
pi

values increased

by one. Finally, if n−

p′ < k then p′ is an outlier and it is added to D(R, k).

Otherwise, p′ is added to the event queue. When an object departs, then an

event may be triggered by invoking extractmin which returns object x from the

event queue such that x.ev = now. If n−

x + n+
x < k then object x becomes an

outlier and is added to D(R, k) otherwise, x.ev and Px are updated and it is

reinserted into the event queue. The pseudocode of these operations is given in

Algorithm 1, Algorithm 2 and Procedure 1 respectively.

In the second variation, termed DUE (Direct Update of Events), the ar-
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Algorithm 1: Arrival (p, now)
p: the new object, now: the current time instance

1. A ← result of range query w.r.t p.
2. for each q ∈ A do

3. n+
q ← n+

q + 1;
4. if (q ∈ D(R, k) and (n−

q + n+
q == k)) then

5. remove q from D(R, k);
6. if (n−

q 6= 0) then
7. ev ← min{pi.exp|pi ∈ Pq};
8. insert(q, ev);
12. Pp ← k neighbors with the highest expiration times;
13. if (nnp < k) then
14. add p to D(R, k);
15. else

16. ev ← min{pi.exp|pi ∈ Pp};
17. insert(p, ev);
19. add p to the data structure supporting range queries;

rival of the new object p′ forces the recomputation of event times of objects

inside the event queue. In particular, all computations are the same with the

exception that all objects pi ∈ I returned by the range query have their events

time updated. In addition, for each such object pi its set Ppi
is updated and

finally checked whether it has become a safe inlier. This means, that for each

such object an increasetime operation is performed which is not as expensive

as extractmin. When an event is processed concerning object x due to the

departure of another object, then this event will surely cause x to become an

outlier. In this way, we managed to reduce the number of calls to extractmin by

making calls to increasetime. The pseudocode of Procedure 1 changes slightly

as follows. Lines 4 and 6-10 are removed from Procedure 1 (ProcessEvent)

since each event corresponds to an outlier. Additionally, just below Line 11 in

algorithm Arrival we should add some lines that recompute the new event time

ev for q (if q is in the event queue) and call procedure increasetime(q, ev−now).

In Figure 1 we depict an example of LUE in the two dimensional space for

k = 4 and for some fixed R. Let the subscripts denote the order of arrival
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Algorithm 2: Departure (p, now)
p: the departing object, now: the current time instance

1. remove p from the data structure supporting range queries;
2. call ProcessEvent(p,now);

Procedure 1: ProcessEvent (p, now)
p: the departing object, now: the current time instance

1. x← findmin();
2. while (x.ev == now) do
3. x← extractmin();
4. remove expired objects from Px;
5. if (n−

x + n+
x < k) then

6. add x to D(R, k);
7. else

8. ev ← min{pi.exp|pi ∈ Px};
9. insert(x, ev);
11. x← findmin();

of these objects. We focus on objects p8 and p14 since all other nodes can be

handled similarly. For object p8 all objects pi with i < 8 are preceding and all

objects pj with j > 8 are succeeding objects. Objects in the current window are

denoted with black dots. In this example, n+
p8

= 2, Pp8
= {p1} and thus p8 is

an outlier. Similarly, n+
p14

= 0, Pp14
= {p1, p7, p10, p12} and thus p14 is an inlier.

Assume that object p22 arrives and after the range query we get A = {p8}.

Then, n+
p8

is increased by one and thus p8 gets four neighbors and becomes an

inlier. Thus, n+
p8

= 3, Pp8
= {p1} and p8 is inserted in the event queue with

p8.ev = p1.exp. For p22 we have that n+
p22

= 0, Pp22
= {p8} and as a result it is

an outlier. Finally, the event queue must be checked to find out whether some

object has become an outlier again. Assume that the first object is expired,

thus a Departure operation is invoked for object p1. The event queue is checked

and in this simple setting the object with the minimum event time is p14. Thus,

after the changes we get that n+
p14

= 0, Pp14
= {p7, p10, p12} and p14 becomes
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an outlier. The process continues in the same way until an event is found for

which the event time is > now. For DUE, a similar procedure is followed, with

the exception that we process the event queue differently.

The complexity analysis of the two variants is presented in [28], where it

is shown that LUE is preferred over DUE when the distribution of objects is

very dense, while, if the object distribution is not very dense, then the second

variation is preferred because it handles object departure more efficiently.

5.3. Multiple Outlier Detection

In a multi-user scenario, multiple queries with varying values of R and k

may be posed. Each pair of R and k determines a query q of distance-based

outlier detection. D(q.R, q.k) denotes the outliers of query q from the set of

all queries Q. In this section, we study the continuous evaluation of multiple

queries. For simplicity, we discuss separately the case in which k varies and R

remains constant and vice-versa. At the end, we combine trivially both methods

into one so that both parameters can vary.

First, we examine the case where R is fixed and k varies. This means that

all the valid queries Q have the same R and different values for the parameter

k. The neighbors of an object are the same for all queries since R is fixed.

Therefore, n+
p for an object p is the same for all queries. Moreover, for a query

q, the value of n−

p of an object p is at most q.k − n+
p . Thus, the only possible

R

p8 p10
R

p1

p16

p18

p14

p7

p12

p22

Figure 1: Example of LUE variant.
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difference between queries is the size of Pp with respect to object p. Notice that,

for two queries qi and qj , it holds that if qi.k < qj .k thenD(R, qi.k) ⊆ D(R, qj .k).

Therefore, if kmax = max{qi.k} (0 ≤ i ≤ |Q|), by keeping kmax − n+
p preceding

neighbors for an object p, we can answer any query with k ≤ kmax.

The algorithms are similar to the ones discussed in the previous section

(both variations). Here we only report the changes. We continuously evaluate

the query with the maximum value of parameter k, as described in the previous

section. When an object departs, if the examination of an object p, at p.ev

time instance, reports p as outlier we check the other queries in Q whether

p is also outlier in them. In particular, for each query q, if n−

p + n+
p < q.k,

then p is outlier in q. Queries are examined with decreasing order of k, and

this procedure is terminated as soon as we reach a query for which p is inlier.

Moreover, when a new object arrives, if object p ∈ D(R, q.kmax) and its counter

n+
p is increased, we check all the queries for a possible move of p from outlier

set to inlier set. Notice that p is not necessarily outlier in all queries. For each

query q, if p ∈ D(R, q.k) and n−

p + n+
p ≥ q.k then p should be removed from

D(R, q.k). The queries are examined again in decreasing order of k and the

procedure is stopped when we reach a query in which p is not outlier. We call

this algorithm COD (Continuous Outlier Detection).

We proceed now with the examination of the case of fixed k and varying

R. In this case, two sets for each object p are maintained, the sets Pp and Sp

(recall that we only stored the size of Sp) along with their distances from p, by

taking into account the maximum distance Rmax = max{qi.R} (0 ≤ i ≤ |Q|).

When R varies it is necessary to maintain Sp since the neighbors of an object

depend on the radius of the query. This may lead to high memory requirements,

since in the worst case the number of neighbors can reach the number of active

objects n. In the sequel, we study a more efficient scheme in terms of memory

requirements. Therefore the size of Sp is limited to k objects.

The decision for the set of preceding neighbors is more difficult because both

the nearest and most recent objects are preferable. If we keep the most recent

objects, then it is possible to erroneously omit a neighbor, which affects the
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query answer, with q.R < Rmax and if we keep the nearest objects it is possible

to mistakenly report object p as an outlier when one of its nearest objects

expires.

The key idea is the observation that all the preceding neighbors of p, which

may have an impact on whether p is outlier or not, belong to the answer of

the k − 1-skyband query in the expiration time - distance space. A k′-skyband

query reports all the objects that are dominated by at most k′ other objects [46].

Therefore 0-skyband equals to the skyline query. In our case, the maximization

of the expiration time and the minimization of the distance determine the dom-

ination relationship between objects, i.e., an object dominates another object

if it has greater expiration time and smaller distance from p. The rationale of

this observation is that at each time instance, the k nearest objects to p belong

to the (k − 1)-skyband of the preceding neighbors.

Therefore, when a new object arrives, the preceding neighbors are detected

by taking into account the maximum distance Rmax. Then, these objects are

transformed to the expiration time - distance space. The objects belonging

to the (k-1)-skyband are stored in Pp. Each entry of Pp consists of both the

distance and the expiration time of the object.

Notice that the evaluation of the skyband query is required only once, when

the object p arrives and Pp is initialized. 1 Then, it is sufficient to discard

the expired objects. Moreover, if there are n
′+
p (< n+

p ) succeeding neighbors of

p with distance less than or equal to Rmin then we can reduce the preceding

neighbors that we keep in those which belong to the answer of the (k−1−n
′+
p )-

skyband query. This is because of the fact that if we have n
′+
pi

succeeding

neighbors for all the queries (since the distance from p is less than or equal to

Rmin) then the maximum number of preceding neighbors that could be used

is k − n
′+
p . During the event processing, we can update the Pp set without

1For reasonable values of Rmax, we expect that the number of neighbors with distance less
than or equal to Rmax will be much less than the number of active objects. For example,
for 200K active objects from Zillow, by using Rmax such that 1% of objects are outliers, on
average only 561 objects belong to Pp (0.281% of P).
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evaluating the (k − 1 − n
′+
p )-skyband from scratch, since the (k − 1 − n

′+
p )-

skyband is subset of the (k−1)-skyband. If n
′+
p ≥ k then no preceding neighbors

are stored (n−

p = 0). The following theorem guarantees the correctness of the

algorithm (its proof is given in [28]).

Theorem 1. Given the n
′+
p succeeding neighbors with distance less than or

equal to Rmin for each object p, the distance-based outliers D(R, k) can be de-

tected by keeping the (k − 1 − n
′+
p )-skyband of the preceding neighbors of each

object, if (n
′+
p < k) or no preceding neighbors, if (n

′+
p ≥ k).

To support the evaluation of multiple queries with different R we contin-

uously evaluate the query with the minimum distance Rmin because ∀R >

Rmin,D(R, k) ⊆ D(Rmin, k). The event-based technique is used. Similarly to

the case of varying k, if the examination of an object p, causes the move of p

from the inliers to outliers then we should check p for the remaining queries

with ascending order of R. The procedure is stopped when p is not moved to

the outliers of a query. Moreover, when the set of succeeding neighbors of an

outlier p increases due to the arrival of a new object, then we should check if p

should be moved from outliers to inliers. Again all queries are examined with

ascending order of R and the termination condition is similar.

In cases where both R and k are varying, we follow the latter methodology

and we assume k equals to kmax. We evaluate the query with q.R = Rmin and

q.k = kmax, because its outliers is a superset of the outliers of any other query.

Finally, we filter the results with respect to each query q to provide the exact

outliers. This algorithm is denoted as ACOD (Advanced Continuous Outlier

Detection). In general, instead of searching the queries in decreasing order of

k (resp. increasing order of R) we can perform a binary search to identify the

value of k (resp. of R) for which an object becomes inlier. It holds that if an

object belongs to D(R, k), it also belongs to D(R′, k′) for any R′ ≤ R, k′ ≥ k.

Similarly, if object belongs to I(R, k), it also belongs to I(R′, k′) for any R′ ≥ R,

k′ ≤ k.
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5.4. Mitigating the Impact of Range Queries

The previously proposed methods provide an efficient way to perform po-

tentially multi-parameter distance-based outlier detection. Nevertheless, they

still suffer from a significant limitation, which characterizes all proposals to date

for outlier detection in streams, namely the need to evaluate range queries for

each new object with respect to all other active objects [27, 26]. In this section,

we propose a methodology to mitigate this. Our methodology is based on the

concept of evolving micro-clusters that correspond to regions containing inliers

exclusively. The resulting algorithm is denoted as MCOD (Micro-cluster-based

Continuous Outlier Detection). The additional symbols used are presented in

Table 2.

Let us assume that, initially, the R and k parameters for outlier detection are

fixed. We set the radius of MCi, which is the maximum distance of any object

belonging to MCi from mcci, to R/2, and the minimum size of a micro-cluster

to k+1. An object can belong to at most a single micro-cluster. As such, there

are at most ⌊n/(k + 1)⌋ micro-clusters at any window. In general, an object

may have neighbors that belong to other micro-clusters. However, the centers

of such micro-clusters are within a range of 2R from each other.

Note that micro-clusters have been employed in several works to assist clus-

tering in streamed data [47, 48]. Such works tend to build upon the cluster

feature vector introduced in [5], to attain a more compact representation of the

objects with a view to improving clustering efficiency without sacrificing clus-

Table 2: Additional symbols used in MCOD

Symbol Interpretation

MCi the i-th micro-cluster
mcci the center of the i-th micro-cluster
mcni the size of MCi, i.e., the number of objects it contains
p.mc the identifier of the micro-cluster of object p
p.Rmc the list of micro-clusters associated with object p
Imc the set of objects that belong to a micro-cluster
PD the set of objects that do not belong to any micro-cluster
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Figure 2: Some micro-clusters for k=4.

ter quality. The actual clustering is performed by a subsequent offline stage.

However, in our case, micro-clustering serves a different purpose, i.e., outlier

detection, and micro-clusters are fully tailored to online processing.

In the example of Figure 2, there are three micro-clusters, and for the objects

of each one of them, a different symbol has been used. When the micro-clusters

are thought of as spheres with radius R/2, they can be either overlapping (e.g.,

MC2, MC3) or not-overlapping (e.g., MC1). Even in the former case, an object

always belongs to a single micro-cluster, as explained later. Moreover, the center

of the micro-cluster may correspond to an existing object (e.g., MC1) or may

not (e.g., MC2, MC3); the center does not change to eliminate the need to

reconsider micro-cluster population at runtime. We regard all objects in PD as

potential outliers (e.g., p1, p2); such objects are depicted with the + symbol.

However, an object that does not belong to any micro-cluster may be an inlier

(e.g., p1).

Note that all the following expressions hold: Imc ⊆ I ⊆ P , D ⊆ PD ⊆ P ,

Imc ∪ PD = P , and Imc ∩ PD = ∅. The following two lemmas hold; the

corresponding proofs can be found in [28].

Lemma 3. An object that belongs to a micro-cluster (i.e., p ∈ Imc) is definitely

not an outlier.
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Algorithm 3: Update-MCOD (p, p′, now)
p: the arriving object, p′: the expired object
now: the current time instance

1. make a ( 3
2
R)-range query to the centers of clusters w.r.t. p;

Let C the set of clusters returned and MCc the closest cluster;
2. if (distance(p,mccc) ≤

R

2
) then

3. p.mc = MCc; mcnc = mcnc + 1;
4. A = {q|q ∈ PD ∨MCc ∈ q.Rmc};
5. for each q ∈ A do

6. if (distance(q, p) ≤ R) then
7. n+

q = n+
q + 1;

8. if (q ∈ D(R, k) and (n−

q + n+
q == k)) then

9. remove q from D(R, k);
10. else

11. make an R-range query to objects ∈ PD w.r.t. p;
Let A the set of objects returned;

12. for each q ∈ A do

13. if (distance(q, p) ≤ R) then
14. insert q to Pp;
15. n+

q = n+
q + 1;

16. if (q ∈ D(R, k) and (n−

q + n+
q == k)) then

17. remove q from D(R, k);
18. if (distance(q, p) ≤ R

2
) then insert q to NC;

19. else insert q to NNC;
20. if (|NC| ≥ θ · k) then //θ ≥ 1
21. create new cluster MCn; mccn = p; mcnn = |NC|;
22. for each q ∈ NC do

23. q.mc = MCn;
24. move q from PD to Imc;
25. for each q ∈ NNC do insert MCn to q.Rmc

26. else

27. for each q ∈ C do

28. ev = min{pi.exp|pi ∈ Pp};
29. insert(p, ev);
30. if (p′ ∈MCo) then
31. mcno = mcno − 1;
32. if (mcno < k) then
33. remove MCo from clusters;
34. for each q ∈MCo do

35. treat q as new object without
updating its neighbors

36. remove p′ from the data structure supporting range queries;
37. call ProcessEvent(now);
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Lemma 4. An object p belongs to the set of outliers D if and only if there are

less than k neighbors of p in either the set of potential outliers PD or in Imc,

such that the distance from the center of those micro-clusters is at most 3
2R.

The information kept for each object in the current window differs on the

basis of the set it belongs to. More specifically, for objects p ∈ Imc, we only keep

p.mc. For each object p ∈ PD, we keep the expiration time of the k most recent

preceding neighbors and the number of succeeding neighbors, as described in

the previous sections. In addition, we keep a list containing the identifiers of

the micro-clusters, whose centers are less than 3
2R far. The reason we keep this

information derives from the lemma above. The assignment of objects to those

micro-clusters may lead to a change in the status of the potential outliers; in

other words, the micro-clusters of this type may affect the objects in PD. The

list of identifiers is stored in p.Rmc. Also, we employ a hash data structure

so that we can find i) the objects in each micro-cluster, ii) the objects deemed

as potential outliers, and iii) the objects in PD referring to a particular micro-

cluster in O(1) time.

The main rationale behind our approach is i) to drastically reduce the num-

ber of objects that are considered during the range queries when these are per-

formed; and ii) the event queue not to include objects that belong to Imc. The

pseudocode when a single object arrives and a single object departs is presented

in Algorithm 3. It can be generalized for the case where multiple objects arrive

and depart in a straight-forward manner. The detailed steps of the algorithm

after each window slide and the proof of correctness are discussed in [28].

The efficiency of this algorithm is expected to improve proportionally with

the size of Imc. In other words, if the size of PD is small, and close to the size

of the actual outliers, then the performance improvements are expected to be

higher. This is the case when the (average) density of the objects is higher than

the density threshold implied by the R and k parameters by several factors.

Finally, this methodology can easily support multiple values for k, if the

minimum size of micro-cluster is set to kmax + 1. Also, multiple values for
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both R and k can be supported, if we maintain additionaly information for

the potential outliers and if we use an appropriate size for the micro-clusters.

More specifically, similarly to ACOD, for each potential outlier p we have to

store a set of preceding neighbors along with their distances from p and a set of

succeeding neighbors. The events of the potential outliers are determined and

examined similarly to the events of ACOD. Moreover, the minimum cardinality

for the micro-clusters is set to kmax+1 and the maximum allowed distance from

their center is set to Rmin/2. This algorithm is denoted as AMCOD and it is

included in the performance results given in the following section.

6. Performance Evaluation

We have conducted a series of experiments to evaluate the performance of

the proposed algorithms. We compare algorithms COD and MCOD against

the algorithm in [27], which is termed Abstract-C. These three methods handle

queries with different values of k and fixed R. Note that, we do not include the

simple algorithm of Section 5.2 which requires k and R to be fixed, since its

functionality is covered by COD algorithm. We also have studied the advanced

algorithms ACOD and AMCOD which is used for multiple queries with different

values of both k and R. All methods have been implemented in C++ and the

experiments have been conducted on a Pentium@3.0GHz WinXP machine with

1GB of RAM. In addition, a JAVA implementation integrated into the MOA2

framework [49] can be found in [50].

We have used two real-life and two synthetic data sets. The real data sets are

i) FC (Forest Cover), available at the UCI KDD Archive (url:kdd.ics.uci.edu),

containing 581,012 records with quantitative attributes such as elevation, slope

etc. and ii) ZIL (Zillow), extracted from www.zillow.com, containing 1,252,208

records with attributes such as price and number of bedrooms. The first syn-

thetic data set (IND) contains 5M objects with independent attributes that

follow a uniform distribution. We also generated a more complicated synthetic

2http://moa.cms.waikato.ac.nz
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data set (GAU). This set comprises of 5M objects; 60% of objects follow a

uniform distribution and the remaining objects follow 4 different gaussian dis-

tributions of equi-sized population.

We study the performance of the proposed methods by varying the most

important parameters such as the window size W , the distance R, the number

of required neighbors k and the number of queries. We measure the CPU cost,

memory requirements, the number of distance computations and other mea-

surements. The default values for the parameters (unless explicitly specified

otherwise) are: W = n = 200K, |Q| = 1, i.e., there is a single query, k = 10 and

the parameter R is set in a way that the number of outliers |D| = (0.01±0.001)n.

Since we want to investigate the most demanding form of continuous queries, we

set Slide = 1, for the proposed methods. However, the memory requirements

of Abstract-C are very high for Slide = 1. More specifically, Abstract-C stores

W ·(W−1)
2 counters, which corresponds to 74GB for W = 200K and 465GB for

W = 500, assuming integers need 4 bytes. Because of that, we used Slide = 1

only for our proposed methods, while we choose Slide = 0.001W for Abstract-C.

All measurements correspond to 1000 slides, i.e., 1000 insertions/deletions.

6.1. Running Time

First, we study algorithms COD, MCOD and Abstract-C which can handle

multiple queries with different values of k. The first experiment studies the

performance of the methods for varying values of W in the range [10K, 1000K].

Figure 3 depicts the results. Despite the favorable configuration of parameter

slide, Abstract-C performs significantly worse than our algorithms in terms of

running time. The event-based technique used by COD benefit from the fact

that not all objects need to be investigated at each slide. MCOD is even better

because uses micro-clusters, therefore many objects are not investigated at each

slide and also the number of range queries which is very consuming operation

is reduced. In general, MCOD runs faster than COD because it reduces the

number of distance computations by avoiding the application of a range query

for each new object. However, the two methods have similar performance for
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Figure 3: Running time vs. active objects (COD, MCOD and Abstract-C).

the IND data set, where MCOD generates a negligible number of micro-clusters

and therefore the method degenerates to COD. Also COD performs better than

MCOD in small windows as shown for the FC dataset in Figure 3 because the

overhead of micro-cluster maintenance exceeds the gain of distance computation

reduction, since the absolute number of distance computations is low.

The performance of Abstract-C is affected drastically by parameter Slide

both in response time and memory consumption. The next experiment studies

the behavior of Abstract-C with respect to Slide. The results are presented in

Figure 4. As expected, COD and ACOD are slightly affected while Abstract-

C is improved as Slide increases. However, Abstract-C is better than COD

only for very large slides and better than ACOD only for special cases of data

distribution. As shown in Figure 4, Abstract-C outperforms COD in cases where

Slide is more than 12% of the window size for FC, ZIL and GAU datasets and
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Figure 4: Running time vs. slide (COD, MCOD and Abstract-C).

1.2%W for IND dataset. Moreover, ACOD is consistently better than Abstract-

C except for the IND dataset, due to the poor ability of micro-cluster generation.

From this experiment, it is evident that Abstract-C is rather inefficient for

continuous outlier monitoring and can be used more efficiently in cases where

outlier snapshots or approximate answers are adequate. Abstract-C is omitted

from subsequent experiments. Note that we do not present experiments with

[26], because its running time is worse than Abstract-C for continuous outlier

detection, and its memory consumption is not lower than ours.

Next, we investigate the performance of the proposed methods with respect

to the number of outliers. The results are given in Figure 5. The outliers’

number varies from 0.1% to 3% of n, which is set to its default value 200,000.

As expected, MCOD is better than COD in most of the cases, whereas, the

performance of MCOD may degrade as the number of outliers increases.
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Figure 5: Running time vs. number of outliers (COD, MCOD and Abstract-C).

In the next two experiments, we study the performance of ACOD and AM-

COD. Figure 6 shows the running time of the methods for different values of W ,

whereas Figure 7 depicts the result for different number of outliers. Both exper-

iments show the superiority of AMCOD against ACOD, in cases where the data

distribution favors the micro-cluster generation. As expected, the performance

of AMCOD is affected from its ability to generate micro-clusters, thus ACOD

reduces the gap between them when either the data distribution does not al-

low efficient micro-cluster generation (i.e. uniform distribution) or the number

of outliers increases. Further observations can be drawn from Figures 3 to 7.

Methods COD and MCOD perform better than ACOD and AMCOD respec-

tively since in both experiments there is only a single query, whereas, ACOD

and AMCOD should be used only in cases of multiple queries with different R

values.
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Figure 6: Running time vs. active objects (ACOD and AMCOD).

In the next experiment, we investigate multiple queries. Parameter R is

fixed for all queries to examine the efficiency of the COD and MCOD, which

can support different values only of k. ACOD and AMCOD are also reported

for comparison reasons. More specifically, for IND, R = 73.5 while k ∈ [5, 14],

for FC, R = 42 and k ∈ [5, 10], for ZIL, R = 3600 and k ∈ [5, 10], whereas

for GAU R = 63 and k ∈ [5, 14]. Figure 8 illustrates the CPU time of the

algorithms. Notice that there may exist similar queries, due to the limited

number of different values of k. However, to better examine scalability, the

methods do not exploit the existence of similar queries. As mentioned before,

ACOD and AMCOD are appropriate for varying values of R and therefore they

present the worst performance. It is evident that the running time of all methods

increases sublinearly with respect to the number of queries. Again, MCOD is

better than COD except for IND data set, for which it generates only a few
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Figure 7: Running time vs. number of outliers (ACOD and AMCOD).

micro-clusters.

The next experiment studies the usability of ACOD and AMCOD by vary-

ing the number of queries while allowing different values for both R and k.

The methods COD and MCOD are used for comparisons reasons. ACOD and

AMCOD evaluate all the queries together whereas COD and MCOD evaluate

each query separately and the sum of all the running times is presented. Figure

9 shows the results. ACOD performance improves as the number of queries

increases. Although the evaluation of the query with kmax and Rmin with the

ACOD method is the most time consuming, ACOD has the best performance

because of result reuse for the remaining queries. AMCOD is better that ACOD

in most of the cases. However, as kmax increases and Rmin decreases, the num-

ber of outliers increases for the basic query and therefore the generation of

micro-clusters degrades. In these cases, AMCOD performs worse than ACOD.
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Figure 8: Running time vs. number of queries with different values of k.

6.2. Qualitative Analysis

First, we examine the behavior of the event-based technique. For each

method, the following measurements are taken: a) the average number of events

that exist in the system, b) the average number of events triggered by the arrival

of new objects, and c) the average number of events processed after each arrival.

Table 3 illustrates the results for the FC data set in the experiments of Figures

5 and 7.

Notice that the number of events triggered is more than the number of object

processed. This is because the former includes also events related to expired

objects and events corresponding to objects that have become safe inliers. These

events are immediately discarded without any further processing and only the

remaining events are processed. Event processing includes the update of the

neighbors of the object, the check for possible inclusion of the object to the
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Figure 9: Running time vs. number of queries with different values of R and k.

outliers and the re-estimation of the event for the specific object. From the

fourth and the fifth column of the table, it is evident that the majority of events

are discarded immediately. In COD, the number of events is very close to the

number of objects not in the outliers set, thus the events are reduced as the

number of outlier increases, contrary to the behavior of ACOD, MCOD and

AMCOD. For the other data sets, the total number of events is similar but less

events are processed, due to the fact that the average number of an object’s

neighbors is higher and more objects become safe inliers.

The next table presents the affect of micro-cluster technique for the ZIL data

set for the experiment of Figure 6. The first column for each method (CPU

RQ) shows the CPU time consumed for the processing of the range queries.

As mentioned before, the CPU time corresponds to 1000 slides. The second

column (DC) shows the total number of distance computations including the
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Table 3: Event Analysis (FC data set).
outliers algorithm #events #events #events
(%W ) (K) triggered (avg) processed (avg)

0.1

COD 198.5 1.3 0.19
ACOD 144.4 9.6 0.55
MCOD 16.1 1.1 0.19
AMCOD 8.6 2.2 0.44

0.5

COD 196.2 1.9 0.67
ACOD 145.4 10.3 1.49
MCOD 46.6 1.9 0.67
AMCOD 28.3 5.1 1.39

1

COD 194.5 2.4 1.09
ACOD 146.4 10.6 2.04
MCOD 65.9 2.5 1.08
AMCOD 43.1 6.5 1.92

3

COD 189.5 3.3 1.61
ACOD 149.3 10.2 2.49
MCOD 113.3 3.5 1.61
AMCOD 84.8 8.3 2.35

distance computations between objects, between clusters and between objects

with clusters. It is evident that micro-cluster technique reduces drastically the

number of range queries and therefore the number of distance computations

which finally affects the CPU consume.

6.3. Memory Consumption

Table 5 presents the memory consumption of the two real data sets for the

experiments of Figures 3 and 6. The consumed memory corresponds to the

memory needed to store the information for each active object (i.e., preceding

and succeeding neighbors), the heap size used for the events prioritization, the

outliers of all the queries and the micro-cluster information for MCOD. As can

be seen, the required amount of memory is only a small fraction of the total

Table 4: Micro-cluster affect.
ZIL

ACOD AMCOD
W CPU RQ (sec) DC (K) CPU RQ (sec) DC (K)

10,000 1.04 4032.8 0.08 61.0
200,000 2.52 13663.9 0.17 269.2
300,000 6.98 35698.6 0.22 425.8
400,000 10.25 50593.1 0.27 548.5
500,000 16.06 81816.6 0.27 577.9
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Table 5: Memory requirements (in MBytes).

FC ZIL

W COD ACODMCODAMCOD COD ACODMCODAMCOD
10,000 0.46 2.95 0.27 0.27 0.48 4.29 0.11 0.10
200,000 9.58 100.45 4.94 5.49 9.60 111.85 2.74 3.11
300,000 14.11 133.27 11.04 13.12 14.47 194.28 4.01 4.61
400,000 18.76 178.30 15.40 18.78 19.32 280.37 5.43 6.32
500,000 23.52 232.72 20.23 25.15 24.23 377.51 6.56 7.66

memory available in modern machines, even for the ACOD method. However,

AMCOD achieves better performance than ACOD and uses much less amount

of memory, slightly more memory than that of MCOD.

Table 6 shows the average number of neighbors kept in lists S and P for

the same experiments for FC data set. The sum of cardinality of S and P is

presented. Notice that COD and MCOD have only preceding neighbors whereas

ACOD and AMCOD have preceding and succeeding neighbors. ACOD keeps

larger number of neighbors than COD and uses this information to reduce the

number of events processes. MCOD and AMCOD stores less neighbors than

COD and ACOD respectively due to the use of micro-clusters. Many objects

are not associated with an event, therefore no neighbors are maintained for these

objects. Note that memory consumption is affected by both the size of these

lists and the size of the events, thus the overall gain of MCOD and AMCOD

regarding the memory consumption is higher.

Table 6: Average number of neighbors maintained per object.

FC

W COD ACOD MCOD AMCOD
10,000 9.2 32.2 1.7 5.0
200,000 9.6 51.8 1.2 4.7
300,000 9.4 45.6 2.5 9.1
400,000 9.4 45.8 2.8 10.5
500,000 9.4 47.8 2.8 11.2
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6.4. LUE vs. DUE

In all the previous experiments the first variation (LUE) of event handling

is used. Table 7 compares experimentally both variants of event handling as

described in Section 5.2. for COD. For each variant, we measure a) the average

number of events that exist in the system, b) the average number of events

triggered by each arrival, c) the average number of events inserted in the queue

after each arrival and d) the average number of increasetime operations in each

update.

Table 7: Event Handling Variations (W = 200K, outliers = 1%W ).
IND FC ZIL

LUE DUE LUE DUE LUE DUE
#events (in K) 164.4 79.9 194.5 7.50 195.8 9.91

#events triggered 6.07 0.12 2.37 0.92 1.58 1.38
#events inserted 1.55 1.10 1.91 1.74 1.16 1.11

#increasetime ops - 9.81 - 10.1 - 9.57

DUE has much better space usage because all objects that are safe inliers

are removed straight away from the event queue. This is more tense when the

distribution of objects is skewed as in the cases of FC and ZIL. The number

of triggered events (and as a result the number of (re)inserted events) is lower

in DUE than in LUE. This was expected, since DUE focuses on reducing these

costly operations and replacing them with increasetime operations, which are

theoretically cheaper. Note that due to the smaller size of the event queue

in DUE, the operation of extractmin (event trigger) is cheaper and thus the

savings are twofold. However, the implementation of the event queue in DUE

is much more complicated and thus, these operations have larger absolute cost.

Although further experimental analysis is needed to clarify in which setting each

algorithm is better, DUE is more preferable in cases where the available memory

is limited.

6.5. Summary of Results

We conducted extensive experiments in both synthetic and real datasets.

The results show the efficiency and the effectiveness of the proposed methods.
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The proposed algorithms are consistently more efficient than Abstract-C, the

state-of the art online algorithm for continuous outlier detection. Abstract-

C may perform better only for very large values of parameter Slide, thus is

more appropriate for applications where snapshots of outliers or approximate

answers without guarantees are required (i.e., we depart from the continuous

outlier detection problem). Moreover, MCOD and AMCOD typically perfrom

better than COD and ACOD, respectively. However, there are two cases where

COD and ACOD are more suitable: a) when the data distribution does not favor

the micro-cluster generation, as in the IND dataset and b) when the number of

outliers is very high with respect to the active window size.

7. Conclusions

Anomaly detection is an important data mining task aiming at the selection

of some interesting objects, called outliers, that show significantly different char-

acteristics than the rest of the data set. In this work, we study the problem of

continuous outlier detection over data streams, by using sliding windows. More

specifically, four algorithms are designed, aiming at efficient outlier monitoring

with reduced storage requirements. Our methods do not make any assump-

tions regarding the nature of the data, except from the fact that objects are

assumed to live in a metric space. As it is shown in the performance evaluation

results, based on real- life and synthetic data sets, the proposed techniques are

by factors more efficient than previously proposed algorithms.

There are several directions for future research. It is interesting to design

outlier detections algorithms over uncertain data streams, where each object has

an assigned existential probability. A second direction is to use load shedding

techniques in outlier mining towards performance improvement.
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