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Abstract—Security-related concerns in elastic cloud applica-
tions call for a risk-based approach due to the inherent trade-offs
between security and other non-functional requirements, such as
performance. To this end, we advocate a solution that can be
efficiently realized through modeling the application behavior
as a Markov Decision Process, on top of which probabilistic
model checking is applied. We explain the main steps and we
illustrate how we can perform online analysis and decision
making regarding elasticity decisions. Our runtime analysis is
capable of providing evidence for key security-related aspects of
the running applications, like the probability of data leakage in
the next hour.
Index terms: risk-based cloud elasticity, probabilistic model
checking, horizontal scaling

I. INTRODUCTION

Cloud computing is established as the main option for the
deployment of web applications. Such applications come from
a wide range of stakeholders including big companies, SMEs,
organizations and research institutes. Cloud computing has
become attractive for two reasons: i) Computational resources
are released on demand and application providers have the
options to be charged in a pay-as-you-go manner. This means
that up-front investments in equipment and human resources
are minimized, and can be fully allocated to application
deployment and management; (ii) resources are released in
response to workload changes. This property, known as au-
toscaling, has an impact on the monetary cost of running a
cloud application, since resources are used only when required.

Elastic applications are those that can benefit from the afore-
mentioned inherent property of cloud infrastructures to provide
computational resources on the fly according to their current
needs. Computation resources are typically provided in the
form of Virtual Machines (VMs). Elasticity is manifested in
three main forms: (a) Horizontal scaling, where either new
VMs are added or existing ones are removed. This type of
elasticity provides the biggest potential for scalability and
performance improvements, due to the perceived unlimited
number of VMs that can be provided. (b) Vertical scaling,
where certain properties (e.g., the number of cores) of the
existing VMs are modified. (c) Live migration, where a VM
is moved to a different physical host, while staying operational.

In the following sections, we narrow our focus on horizontal
scaling and we argue that the goals of meeting performance
requirements with the help of horizontal scaling contradict to
those of security, thus calling for a risk-based security solution.

A. Security concerns and horizontal scaling in public clouds.

Public and hybrid clouds, as opposed to private ones, offer
resources to arbitrary customers, who are also called tenants.
Tenants do not have control on either the security policy for
running the underlying infrastructure or the type of other
tenants, whose VMs are collocated on the same physical
machines. While this does not necessarily imply that public
clouds are insecure, it has been repeatedly reported to prohibit
migration of applications to the cloud [1].

The Cloud Security Alliance published a report in 2013,
which identified the main cloud-related security threats [2].
Data breaches due to malicious co-tenants was on the top. This
can lead to both data leakage and data loss. Simply speaking,
data leakage is the unauthorized disclosure of data from one
user to another, whereas data loss refers to a condition where
data is destroyed and becomes unavailable. In addition, in a
multi-tenant environment, issues such as lack of authorization
mechanisms for sharing physical resources increase the risk of
threats, such as service traffic hijacking, which occurs when
attackers hijack cloud accounts by stealing security credentials
and eavesdropping on activities and transactions; and side-
channel attacks, which are based on information obtained from
bandwidth-monitoring or other similar techniques. Moreover,
when multiple tenants share an underlying infrastructure the
risk of threats related to misconfiguration and uncoordinated
change control is increased allowing a malicious tenant to gain
access to another tenant’s resources.

Keeping the number of VMs as low as possible could be
regarded as an indirect way to mitigate security concerns
related to data leakage and loss. However, this may entail an
unacceptable compromise on performance. Performance is in
the top three most studied Service Level Agreements (SLA)
parameters, due to the fact that critical applications require
responses in a fixed short period of time [3]. So, addressing
security concerns and honoring Service Level Agreements
(SLAs) should be examined in a combined manner to render
a cloud application reliable.

An example is shown in Figure 1, which refers to a setting
where an elastic NoSQL database serves end-user requests ac-
cording to the The Yahoo! Cloud Serving Benchmark (YCSB).
The exact deployment details are in [4]. The figure refers to a
fixed rate of user requests and shows how the average and
standard deviation values of the latency of responses vary
with the number of VMs used. The observation is that a
strict threshold on latency would force the system to acquire
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Fig. 1: Execution plans based on different cost metrics.

additional VMs, the exact quantity of which needs to be
computed at runtime according to the current workload and
the fact that the behavior of the system is volatile. However,
increasing the number of VMs, and assuming that each VM
runs on a different physical machine in the generic case, also
increases the probability of a malicious tenant to be collocated.
This probability may vary according to the type of the cloud
provider [5], but the important issue is that it is non-negligible.
Choosing a single trustworthy provider is not sufficient either,
given that providers may offer VMs from other providers as
well in periods of very high demands [6]. Overall, as explained
above, the addition of new VMs poses a threat of data leakage
and data loss. The magnitude of this threat is application-
dependent. In the example, the threat of data loss is lower
than in normal applications, because NoSQL databases are
replicated at least two or three times, which makes it harder
for a malicious user to destroy all copies.

Due to the inherent trade-offs between security and per-
formance requirements, any solution to analyze and enforce
security-aware horizontal scaling for cloud applications needs
to be risk-based. It should account for the following aspects:
(a) probability of data leakage and data loss; (b) dynamic
evolution of the external environment and volatility of the
system behavior; and (c) potential heterogeneity of the cloud
infrastructure. The former essentially expresses a security risk,
which stems from the inherent vulnerability due to co-tenancy
and needs to be balanced with performance goals.

B. Our solution for risk-based security in a nutshell.

We advocate the usage of a formal verification approach,
as a means to apply mathematical reasoning for providing
security-oriented probabilistic guarantees for elastic cloud
applications. The exact technique we employ is probabilistic
model checking [7] on top of system models in the form of
Markov Decision Processes (MDPs), which are instantiated on
the fly. Our technique is capable of analyzing and providing
evidence for key security-related aspects of the running appli-
cations, e.g., to answer questions like “What is the probability

that there will be a data leakage in the next hour?”. Moreover,
it is capable of driving elasticity decisions taking into account
security constraints, e.g., given the current query load and the
prediction for this load in the next half an hour, to decide
on how many VMs to add or remove in order to maximize
a bi-objective utility functions that takes into account both
performance and security objectives.

Using probabilistic model checking for analyzing and driv-
ing elasticity decisions is a novel technique with particularly
promising initial results, as reported in [4], whereas in [8],
its potential in considering security requirements has been
demonstrated. Most of the work in cloud security focuses
on the identification of risks and vulnerabilities, security
mechanisms, such as encryption, digital signatures and access
control, and manners to attain security assurance, such as mon-
itoring, certificates, auditability and so on [9]. However, the
detailed investigation of security assurance during horizontal
scaling, and even more, the security-aware elasticity decision
making that we hereby enable is something that is novel in
both the field of cloud security [9], [10] and the field of
dynamic resource allocation in clouds [11], [12].

II. MODELING ELASTIC APPLICATIONS

We advocate a model-based approach. Figure 2 illustrates
a conceptual model of an elastic application that considers
both security and performance SLA requirements and which is
deployed on a public cloud. Each curved rectangle represents
a conceptual state at a specific time instant. The evolution of
the elastic application is modeled as a transition to a state at a
future time point t+∆t through elastic actions, such as adding
or removing VMs.

For each state, we capture the features of interest for
the analysis and decision making: (i) The mixture of VM
types employed. In the figure, we assume that VMs are of
two different types and/or providers, v and w. (ii) The total
deployment cost, labeled as m. (iii) The probability of data
leakage labelled as x. (iv) The probability of data loss labeled
as y. (v) The probability of performance-related SLA condition
violations labeled as z. Finally, (vi) the probability of no
security threats or performance violations labeled as k. A
reasonable assumption is to consider all these probabilities
statistically independent. In that case,

k = (1− x)(1− y)(1− z)

Further, the probability of data leakage on a single machine
of type A, dlA, can be safely regarded as independent of the
number of VMs of type A employed. So,

x = 1− (1− dlv)v(1− dlw)w

Similarly, y can be defined as a function of the number and
type of VMs employed.

The evolution of the system due to elasticity actions refers to
discrete time intervals of period ∆t. We consider three actions:
add, remove or no change. Note that in the generic case, the
effects of actions at time t may be delayed and not manifested
at the next period but after multiple time points. For example,
adding a new VM to serve a NoSQL database implies that a
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Fig. 2: A conceptual model of an elastic application that considers both security and performance SLA requirements.

new VM needs to be created, booted, configured and receive
data, which might take more than ∆t time. During this process,
the system is supposed to be in a transient state.

A. MDP implementation of the conceptual model.

We implement our technique using the Markov Decision
Processes (MDP) modeling approach. The choice of MDP
is made because a) MDP enables both analysis and decision
making, and b) it can capture both non-determinism and uncer-
tainty in a given system [13]. Both properties are essential in
an elastic cloud application. Because of horizontal scaling, at
each time point, the number of VMs can increase, remain the
same or decrease. This gives rise to non-determinism. Also,
at any given point, there might or might not be a performance
or security-related requirement violation. This necessitates the
modeling of uncertainty.

MDPs are specified using: a) states, b) actions, c) proba-
bilities, and d) rewards. The states represent system snapshots
at specific time points, which are characterized by a set of
system properties. The actions are transitions between the
states, which express some change to the state properties. The
probabilities refer to each triple (state s)-(action a)-(state s′)
and represent the probabilities of transition from one state to
another due to a specific action thus quantifying uncertainty.
Finally, the rewards are used to perform quantitative analysis
(or solution) of MDP models.

The conceptual model needs to be implemented as a MDP
according to the analysis requirements. Since, during analysis
and elasticity decision making, we need to explicitly consider
different types of the application behavior, we map each
conceptual system state to multiple MDP model states, each
for one behavior type. The behavior type is defined according
to the application non-functional requirements. Let an ap-
plication set three requirements: to avoid data leakage, data
loss and latency above a user-specified threshold. Then, each
combination of a binary variable that indicates the satisfaction
of each requirement defines a behavior type (see Figure 3).
Furthermore, each MDP state is annotated as to whether it
refers to a transient state or not (not shown in the figure).

The actions are the same as in the conceptual model. The
only difference is that, if the MDP state is a transient one, only
no change is allowed because taking further resizing decisions
during instable periods is very prone to suboptimal decision

making. The next step is to define the transition probabilities.
In Figure 4, we provide a complementary view of the previous
figure, where each path from s to s′ corresponds to a MDP
model state. The probabilities p0 to p7 in Figure 3 are the
product of the probabilities in Figure 4 along the correspond-
ing path. For example, p7 = (1−x)(1−y)(1−z). In general,
i) for a given initial state s and action a,

∑′
s p(s, a, s′) = 1;

and ii) multiple actions can be plausible for each state.

Fig. 3: Mapping of a conceptual state to a set of MDP states.

B. MDP instantiation.

In order to serve online analysis (discussed later in detail),
the model is instantiated on the fly. To this end, the decision
depth and the probabilities need to take actual values. The
decision depth refers to how many periods the model can
account for. If the depth is too small, then the system becomes
too short-sighted; if it is too big, the prediction uncertainty
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Fig. 4: Setting the MDP model probabilities.

is increased. Both situations lead to suboptimal decisions.
Clearly, the number of MDP states grows exponentially in
the number of ∆t periods. If a period represents 5 minutes
of real time, a model with depth set to 4 refers to a scenario
where elasticity is re-assessed every 5 minutes, and the model
looks ahead for 20 minutes. If the system evolves less rapidly,
the application manager could map each period to a longer
time. In general, setting ∆t appropriately heavily relies on the
volatility of the application environment, e.g., if during night
hours the workload remains roughly stable, then ∆t can be
increased.

In our approach, the probabilities x, y and z are derived
through logs. Past log entries referring to the same mixture
of VM types as the state of interest are analyzed to estimate
the probabilities. For performance-related metrics, such as the
latency, not only the number of VMs needs to be considered,
but also the external load of incoming requests. This implies
the need to add a load prediction component, as shown in
Figure 4. In general, for our approach to be applicable, we
assume that a security analysis and profiling mechanism is in
place, which is capable of deriving attack probabilities as a
function of the cluster configuration. Such a mechanism is or-
thogonal to our approach and can be even more sophisticated.
For example, upon instantiation, it may take into account
whether any VM additions would involve usage of a new
physical machine rather than deploying VMs on an already
used one. Finally, since the models are instantiated on the fly,
the attack probabilities can be dynamically refined.

III. ONLINE ANALYSIS AND DECISION MAKING

The analysis is based on verification of models instantiated
on demand. To this end, we couple the probabilistic model
with a probabilistic property specification language, namely
Probabilistic Computation Tree Logic (PCTL), which is fed
to the PRISM model checker [14]. We also show, how the
analysis can directly support decision making with regards to
elasticity.

PRISM can efficiently analyze complex models. We have
been able to solve MDP models with 9958 states correspond-
ing to 4 periods in 0.073 seconds using a machine with a quad
core CPU and 8GB of RAM, while the program is reported to

have processed models up to 1011 states on a single machine
[14].

A. Examples of Verified Analysis using PRISM

Fig. 5: An example of probabilistic model checking.

Figure 5 presents a concise view of the analysis of two
PCTL properties. For simplicity, we have grouped the eight
states of Figure 3 in two groups according to the data leakage
property. Further, we assume that the decision depth is set to
2 and the probability of data leakage in a time interval x is
0.02. Also, in this toy example, only one action is allowed,
e.g., no change, i.e., there is no non-determinism. Obviously,
in a more complete example with non-determinism including
all elasticity actions, multiple such paths are eligible.

The first PCTL property (in green) answers the ques-
tion “What is the probability of having no data leakage
incident?”. The corresponding PCTL is expressed as P =
? [G !data leakage], and is satisfied by the green path in the
model, while the returned probability is 0.9604.

The second PCTL (in red) answers the question “What
is the probability of eventually (i.e., in the final state in
the verification) having data leakage?”. It is expressed as
P =? [F data leakage & steps = max steps] and returns
the cumulative probability of the red transitions, which is 0.02.

In Table I, we present more complex examples of risk-based
security analysis, where any of the three actions is allowed.
Thus, during analysis, different sequences of actions are in-
vestigated. Formally, these sequences are called adversaries,
or policies, or strategies. The results of each analysis may
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include multiple adversaries. The PCTL statements are mostly
self-explanatory. The symbol U defines which state needs to
follow the state on the left, while F stands for eventually
reaching a state, G stands for a condition that needs to hold
throughout the policy and X for the next state. The decision
depth is termed as max steps.

The examples in Table I fall into three categories. The first
two rows refer to analyses, where the outcome is a probability
of reaching certain model states. The next two examples return
a boolean value indicating whether a specific property holds.
The last two PCTL properties are numerical multi-objective
ones, as they ask for the maximum possible probability of
reaching a state under the condition that the probability of
reaching another state is bounded by a given threshold. The
objectives may either refer to a single property, like data loss
in the fifth example, or multiple ones, like data leakage, data
loss and monetary cost in the last example.

B. Decision Making

MDPs are inherently suited for decision making as well.
To this end, each model state needs to be associated with a
reward value. State rewards are computed using functions that
quantify various aspects of the system like performance and
security concerns or more concrete assets like the number of
active VMs or the actual deployment cost. As an example,
consider the following utility function that uses weights to
balance three aspects: the normalized probability of data
leakage (p̃dleak), data loss (p̃dloss) and the latency exceeding
a threshold (p̃perf ):

u(vms) = a · p̃dleak + b · p̃dloss + c · p̃perf , a+ b+ c = 1 (1)

Note that, in general, threats and objectives can be prior-
itized. This is reflected on the utility function by assigning
different values to the weights. Also, our approach is orthog-
onal to any user-defined utility function.

Our decision making proposal is based on the computation
of the cumulative reward of every adversary. The model
solver examines the possible alternatives, i.e., all combina-
tions of state transitions, and computes the optimal cumu-
lative state reward along with the corresponding sequence
of actions. For example, using the utility function above,
the optimal reward is the minimum one. In PRISM, this
can be done with the help of a different type of PCTL
specification, which asks for reward minimization rather than
probabilities: R{“cumulative reward”}min =? [F steps =
max steps].

Interestingly, several decision policies can be built on top
of the aforementioned verification. For example, if multiple
adversaries are returned with equal reward, then a second
PCTL on other aspects, such as the probability of security
violation as presented in Table I can be used to choose the
final strategy.

Moreover, it is not necessary to perform all actions in that
strategy. In [4], an elasticity decision making technique is
presented tailored to NoSQL databases. That technique follows
the steps mentioned earlier. After deciding on the adversary at
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Fig. 6: Example of security-aware elasticity decisions.

each time point the decision mechanism is activated, only the
first elasticity action is enacted, and then the whole adversary
is re-evaluated from scratch. Such an approach is in line with
a wide range of adaptive solutions, such as Model Predictive
Control (MPC) [15], where a sequence of adaptations is
computed, of which only the first step actually is applied.
According to the evaluation results in [4], the quality of elas-
ticity decisions outperform other proposals for scaling NoSQL
databases in avoiding both violations of latency thresholds and
over-provisioning of VMs.

In Figure 6, we show how a security-aware elasticity
decision maker behaves in a setting similar to the one in
[4]. While the load varies (green plot), the number of VMs
is constantly re-evaluated. The blue plot shows that number
when only performance requirements are considered, whereas
the red plot shows the behavior when the state rewards are
computed based on Eq. (1). In the latter case, the usage of
VMs is more limited in order to mitigate the threat of data
leakage and loss.

IV. FINAL REMARKS

Our approach is of interest to both owners of elastic
applications and cloud service providers. The outcomes of our
proposal can be used either to analyse the (elastic) behaviour
or to take elasticity decisions. Additionally, the analysis results
can be used to fine-tune the utility function, acting as a feed-
back mechanism, so that the decisions are good in practice.

Analysis and decision making in elastic applications is, by
its nature, an instance of autonomic computing problems. A
key point to autonomic solutions is to render them dependable
and endow them with a solid formal basis. To this end, employ-
ing probabilistic model checking is a promising direction, as
explained in this article. Not only it allows for the continuous
verification of system properties, but it is an effective tool for
meeting both security- and performance oriented goals. The
work in [4], [8] is a good starting point for exploring this
direction further and deeper.

In the text above, we focused on horizontal scaling as the
most drastic and less intrusive elasticity action. Regarding the
security threats, data leakage and loss were selected as the
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Analysis Goal PCTL property

1 What is the maximum probability (among all possible adversaries) of moving
from a state with data leakage to a state with no data leakage?

Pmax =? [data leakage U !data leakage]

2 What is the maximum probability (among all possible adversaries) of expe-
riencing a data loss incident until eventually move to a state with no data
loss?

Pmax =? [data loss U F !data loss & steps = max steps]

3 Starting from any reachable state, is it always possible (i.e., is there at least
one adversary) to eventually reach a state with no data leakage?

filter(exists, P >= 1 [F !data leakage &

steps = max steps])

4 Starting from a state with no data loss, do all adversaries eventually reach a
state with no data loss?

filter(forall, P >= 1 [F data loss &

steps = max steps], !data loss)

5 What is the maximum probability of experiencing data loss in a state that
immediately follows the initial state, while the probability to end up at a state
with no data loss is greater than or equal to 0.9?

multi(Pmax =? [X data loss],

P >= 0.9 [F !data loss & steps = max steps])

6 What is the maximum probability of having total cost of deployment less than
a specified budget, while the probability of experiencing any security incident
does not exceed 0.05?

multi(Pmax =? [F total cost <= Budget &

steps = max steps], P <= 0.05 [G data leakage &

data loss])

TABLE I: Additional examples of analyses enabled.

most prominent ones that depend on the number of occupied
VMs, i.e., their severeness can be handled through horizontal
elasticity. Our approach can cover additional security threats
that are affected by scaling. Also, it is applicable to the two
complementary types of elasticity, namely vertical elasticity
and live migration. To this end, the envisaged models need to
be more fine-grained, considering VM configuration types and
physical machines rather than only the number of VMs. The
analysis of all elasticity types in combination with additional
security threats is a challenging avenue for further research.
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