Dependable Horizontal Scaling Based On Probabilistic ModeChecking

Athanasios Naskds Emmanouela Stachtidri Anastasios Gounaris Panagiotis Katsarés
Dimitrios Tsoumako§ loannis Konstantinduand Spyros Sioutas
*Aristotle University of Thessaloniki, Greece, Emdiinaskos,emmastac,gounaria,katsa@ssd.auth.gr
fNational Technical University of Athens, Greece, Emaiting@cslab.ece.ntua.gr
flonian University, Greece, Emaildtsouma,sioutas@ionio.gr

Abstract—The focus of this work is the on-demand resource
provisioning in cloud computing, which is commonly referred
to as cloud elasticity. Although a lot of effort has been invsted
in developing systems and mechanisms that enable elastigit
the elasticity decision policies tend to be designed withéu
quantifying or guaranteeing the quality of their operation.
We present an approach towards the development of more
formalized and dependable elasticity policies. We make two
distinct contributions. First, we propose an extensible aproach
to enforcing elasticity through the dynamic instantiation and
online quantitative verification of Markov Decision Proceses
(MDP) using probabilistic model checking. Second, various
concrete elasticity models and elasticity policies are stlied.
We evaluate the decision policies using traces from a real
NoSQL database cluster under constantly evolving external
load. We reason about the behaviour of different modeling ad
elasticity policy options and we show that our proposal can
improve upon the state-of-the-art in significantly decreaig
under-provisioning while avoiding over-provisioning.

I. INTRODUCTION

elasticity they support, the underlying objectives driyin
the elasticity actions and the decision making policy (e.g.
reactive or proactive), such as [2]] [3]] [4]J [5]) [6]. Howes,
elasticity proposals tend to work on a best-effort basis
without being able to guarantee their adequacy under the
expected workload scenarios. The main aim of our proposal
is to make a decisive step towards more formalized and
dependable elasticity decision policies. Dependabibfers

to the fact that elasticity actions should be selected aliagr

to the results of continuous verification of elasticity agpe
that are of user interest, including the resulting systitityut
and the probability to experience SLA violations. At a highe
level, we view the elasticity problem as a specific instarfce o
autonomic computing [7], for which the need for coupling
continuous verification when responding to environmental
changes has already been identified [8]. To this end, we
adopt a formal verification approach, as a means to apply
mathematical reasoning for providing correctness guaesnt
for the elasticity policy and we employ a mature model-

Clouds are able to adapt to the actual user requirebased verification technique, namely probabilistic model
ments utilizing on-demand resource provisioning, whichchecking [9].

is commonly referred to as elasticity. We adopt the stan- In brief, our approach is twofold. First, we present expres-
dard elasticity definition proposed inl[1]Elasticity is the sive models of elasticity actions and second, we leverage
degree to which a system is able to adapt to workloacthem for devising concrete policies that can take elastic-
changes by provisioning and de-provisioning resources irty decisions. The mathematical modeling framework we
an autonomic manner, such that at each point in time thebuild upon is Markov Decision Processes (MDPs), because
available resources match the current demand as closely a8IDPs can capture both the non-deterministic and proba-
possible” Elasticity may be manifested in different forms bilistic aspects of the problem. Given the current stat@-no
and can refer to the size, the location or the number otleterminism is due to the applicability of several possible
virtual machines (VMs) employed. Examples of these threeelasticity actions, which may lead to different future syst
elasticity types are the allocation of more memory to a VMstates. In addition, the probabilistic behaviour allowstas
(vertical scaling), moving a VM to a less loaded physicaltake into account the effects of the unpredictable environ-
machine (migration) and increasing the number of VMsment's evolution, which may result in reaching different
(horizontal scaling) of an application cluster, respesifiv states even for the same action applied under the same
We exclusively focus on automated elasticity approaches;urrent conditions.
and we especially target elasticity in the form of horizon- We use the PRISM probabilistic model checker tool
tally scaling the number of application VMs. Increasing or[10], because it supports both the specification of MDP
decreasing the number of VMs is a key element in adaptingystem models at a high-level and the easy specification
to dynamically changing volumes of user requests, e.g., asf probabilistic reachability and reward-based propesrtie
typically occurs in cloud databases, which is the scenariwia the PCTL logic languagé [9], which are amenable to
we use in our evaluation. model checking. We introduce properties that, on the model
There have been numerous proposals for elasticity, whickevel, yield optimal decisions for system reconfigurations
differ in several dimensions including the form of the aiming to maximize the system utility, under user-specified

probabilistic guarantees. We show how our decision makindpigher utility than simple reactive techniques, where bigh
policy can be incorporated into existing systems. Finally,utility is linked with lower over-provisioning in our work.
we compare our policy proposals against the policies of the Next we discuss how we model the elasticity actions
Amazon’s EC2 manager and the novel Tiramola sy@tem and present exact approaches to taking elasticity desision
which supports elastic scaling of NoSQL databasés [2]. Iin general, we periodically monitor the incoming load and
summary, the main contributions ae: the system state; also, we periodically activate the dmtisi
1) We present a concrete approach to employing continuPolicy, and we call such an activation an elasticity stepe Th
ous online quantitative verification for taking runtime monitoring frequency is either equal to or higher than the
elasticity decisions, with a view to making them decision making frequency. An elasticity step is furtheitsp
more dependable. Our approach is well-founded andn the following three sub-phases:
is based on extensible, automatically generated and 1) Dynamically instantiate a model according to the
dynamically instantiated MDP models. current incoming load and the log measurements.
2) We present modeling variations and related elasticity 2) Verify the model online to reach elasticity decisions.
decision policies that aim to maximize user-defined 3) Take elasticity actions. Suspend the run of the next
utility functions; moreover, our decisions are subject elasticity step until the system stabilizes.

to quantitative analysis. The first subphase is the most important one. The model
3) We conduct elasticity experiments using real log tracess dynamically instantiated so that, in each step, it can
from an elastic NoSQL cluster under constantly evolv-describe the expected behaviour according to the current
ing external load, which is a particularly demand- environmental conditions. In our implementation, we assum
ing elasticity evaluation scenarid [12]. Based on thethat those conditions are defined by the (external) incoming
results, we show that we can improve on under-oad A of requests. We assume that the system that sets the
provisioning using probabilistic model checking-basedelasticity decision policy keeps log measurements in order
elasticity policies while avoiding over-provisioning. to be able to evaluate the utility functions given the cutren
The remainder of this paper is structured as follows. Invalue of A as explained below. Also, the elasticity loop is
Section[]l, we present our approach to elasticity decisiorsuspended for some period after each action to allow the
making. We introduce the underlying MDP models and thesystem to stabilize. In applications with stateless VMss th
elasticity policies that are built on top of their runtime period is very short; however, for applications running VMs
instantiations. We also explain how the PRISM tool can bewith partitioned databases, this period can be 5-10 minutes
used for this purpose. Next, we discuss how our approacfor even higher), since each new VM needs to receive data
can be incorporated into existing systems. We evaluate odfrom running VMs in order to become operational. Finally,
decision making solutions in Sectién]lV, we refer to the elasticity decisions are typically bounded according terus
related work in Sectiof vV and we present future extensionspecified limits, so that not too many VMs are added or
of our work and conclusions in Sectién]VI. removed in a single step. When the upper bound takes into
account the maximum load change in a step (as we do in this
work), there is no compromise regarding elasticity efficien
[13], while it offers protection from over-reacting; theatk
Probabilistic model checking is a formal verification tech- for 3 lower bound may also stem from the replication factor
nique for the modeling and analysis of stochastic systemg NoSQL databases, which implicitly specifies how many

[10]. In our work, probabilistic models are used in the nodes can be removed in a single step without possible data
decision making process, to specify, drive and analysedclou|gss.

resource elasticity. By utilizing probabilistic modelse\are o
able to capture the uncertainty in systems’ elasticity.rieo A Elasticity Models
to additionally infuse non-determinism for representihg t MDPs provide a mathematical framework for modeling
multiple possible elasticity actions, we resort to MDP mod-decision making in situations, where outcomes are partly
els, which form the basis of our approach. On top of ourrandom and partly under the control of a decision maker
MDP models, we build policies for elasticity decisions with [14]. This condition fits well into our problem domain,
the help of the PRISM probabilistic model checker][10]. where we need a) to take decisions by choosing among
While our main objective is to render elasticity decision multiple options, i.e, adding or removing or maintaining
policies more dependable, through the avoidance of undethe number of active VMs and b) to maximize a utility
provisioning, our principled approach is capable of yietdi function that quantifies the value of each system state,whic
) _ _ is constantly evolving and hard, if not impossible, to be
Cluaestpaper award in 2013 IEEE/ACM lInternational Confeeermn 5ccrately predicted. MDP model verification is used in this
uster, Cloud and Grid Computing.
27 preliminary extended version with fewer modeling and giesi ~ WOTK to guide the elasticity. In the remainder of this settio
options but complementary experiments is[in|[11]. we present the main rationale of our modeling approach.

Il. ELASTICITY BASED ON PROBABILISTIC MODEL
CHECKING

original
S
3

Sl

no_op

transformed

no_op

Figure 1: MDP model overview.

number of VMs, so that, each state corresponds to a distinct
representative expected behaviour for the specific number
of active VMs. Moreover, we extend the model so that
it explicitly covers the probabilities of encountering bac
of the new states. As it is presented in Figlie 1(right),
there are two model states,(, s,,) for a single sizex,

and the transitions are enriched with the probabilities of
encountering each of those two states through the same
action; prob = prob; + proby in the figure. Thus, when a
MDP solver examines possible actions to maximize the total
reward, it can better capture the fact that the behaviouref t
system is non-deterministic and unpredictable. Neveztisgl
the higher expressivity of the model comes at the expense
of larger state space size, compared to the simpler model.
However, according to Sectign TV}D, the additional ovexhea
is negligible. More details about the number of states per

MDPs are specified by defining their states, actionsym number are given in Sectidn I-B2, where the notion of
transition probabilities and rewards. In our model, eachc|ysters of log measurements is added to our model.

state corresponds to a different cluster size, where th
size equals to the number of active VMsns_num. For
readability reasons, we denote a states@s,s_num- There
are three types of possible actions on every statexdt)
for VM additions, 2)rem for removals, and 3).0_op for

no operation. For every distinct humber of VM additions
or removals (exadd;, rems) there is a separate action, and
the corresponding transitions between two states thrdugh t
same action have aggregate probability 1.

e
B. Policies for Elasticity Decisions

There are several options to analyze the MDPs. We dis-
tinguish between indirect (based on reinforcement leg)nin
and direct methods (based on dynamic programming).

Indirect methods are exemplified by the Tiramola ap-
proach, which relies on online training and convergence
of action-value functions, which, in turn allows to attain
optimal policies through greedy actions and a Q-learning-

The MDP associates a reward value to each state arlthsed reinforcement learning approach. Exact details are

action. State and action rewards are calculated based on us
specified utility functions. When the model is verified at+un
time, the utility at states,,,s_n.») essentially describes the
expected behaviour of the system when therevate_num
active VMs.

Figure [1(left) illustrates a simplified instance of the

erovided in [2].

The direct methods analyze MDPs per se. In our approach
we use the PRISM tool to this end, because, as will
explained later, we do not only solve it online but we also
perform online property verification.

1) On solving MDPs directly:A challenge in the direct

MDP model, where the states represent the number O¥IDP solutions is to define conditions to terminate the veri-
active VMs. The edges represent the possible actions: Ification process in order to allow for meaningful quantiati

addnew_vms_num (blue arrOW), zyemremoved_vms_num (red
arrow), and 3)no_op (black arrow). In this example, the

maximum number of VMs allowed to be added or removed

in every step is 2, while the current number of active VMs
is 3 (s3 state). The action type is labelled on top of every
transition (add,. /rem, /no_opl).

The model of Figuré]l assumes that each state is ass

verification (i.e., ensuring finite rewards). We propose two

distinct ways to perform this task:

o Bounded By Action BBA): In our model, the verifi-
cation can be terminated on every state if that state is
reached through ao_op action, because the latter de-
notes that no change in VMs is beneficial. In addition,

0- once the first action is andd (resp.rem) one, we

ciated with a single reward value, but it can easily become
more elaborated to reflect additional aspects. Let us now
assume that the reward function depends on system latency
and throughput. However, for the same number of VMs, the
latency and throughput may vary significantly, due to fastor
that are external to our model. This leads to an undesirable
situation, where the state reward does not reflect the actual
system behaviour well, and there is a high probability that
the system may end up in a state that significantly diverges
from the expected one. To ameliorate this, we can increase
the number of model states that correspond to a specific

allow only VM additions (resp. removals), i.e., we do
not allow mixed add and remove state transitions, which
are harmful in practice. Consequently, every accessible
state is visited and its reward is computed at most once.
Bounded By StepsBBS: According to this option,
when a pre-specified number of transitions (steps) is
reached, the verification terminates. Every possible ac-
tion is allowed in every step, including multiple actions
of the same type (e.gno_op — mno_op). This is

the most broadly used way to terminate verification in
traditional model checking.

The solution of an MDP consists of finding a sequence Kemeans Clsterng (<=3, 10VMs, load=9500(eg/sec)

@
3

of transitions that lead to reward maximization. In our ap- 1o
proach, we assign rewards only to states; assigning rewards N =
to actions is left for future work. Based on the selected 2% J . * e
verification termination condition presented above, tregee EOH P LI S
two ways of reward manipulation: ‘:E ol . ‘ ‘A .
« Instantaneous rewardsf the BBA way is used, then . Lo, s . ‘ *

instantaneous rewards for every distinct reachable state * *

are computed; those instantaneous rewards imply that oo ngﬁ‘ g B ow

the reward of only the final state reached is of signifi-

cance[[9]. Figure 2: Clustering Detailed

« Cumulative rewardsif the BBSway is employed, then] o
a cumulative state reward is used to derive the totalOW: i-€., user requests are answered in time that does not
reward of an examined path. On every step the statéxceed a given threshold, thehr can closely follow\.
reward of the current state is accumulated to a singlérhe current work examines the following utility function
reward. This approach implies that the optimal solution(2lthough the methodology presented above is independent
is a sequence of states and puts emphasis on the whdé specific utility functions):
transition patlﬁ 1+ 1/vms_num if lat <z

2) State Reward Specification and Utility Functiors: -

E)L;r ?npgggsf:r’ng!t:t%? ;?nvn?a;(rjspgrs? ?:(e)::\é(iat?o:s,mwﬂgiertlr?% In this function,z is the user-specified latency threshold,

milarity is defined ding to th ¢ | load. M hich should not be exceeded. The above utility func-
simrarity IS defined according to the externaljoad. MOr€y,, 5qqresses the need for both under-provisioning and

spemﬂcally, we take the appr(_)ach 0 [2] as a baseline: Irbver-provisioning. Given that latency violations are due
each elasticity step where we instantiate a model, we grou under-provisioning;: penalizes the fact of activating

Iog.m_easur(-ements for a specific number of active VMs byfewer VMs than those needed. When the system is not
their incoming load), and then those measurements are

ted into ak lUst hich returd i it under-provisioned, by placing the number of VMs to the
'I?h Into ? -mfeta;]nskj:_us ertelr, which retur sc?n elr p(t)m S thdenominator, we penalize over-provisioning. The model is

€ center ot the biggest 'og measurements ClUSIEr IS e, o nsiple and it can accommodate additional variables, (e.
one which is selected as the most representative point f

tate. H h hi h a stat FU utilization) and utility functions.
cvery state. Tlowever, when reaching such a state as a resu Interestingly, the specification of model state rewards can

of an elasticity action, the real state encountered may b e further refined taking into account the specific utility

closer to one of the remaining center points. To overcome oo employed. For example, instead of runningieans

this concern, we can extend the model so that it exphmtlyto all log measurements in order to derive the log clusters,

coverst_all tTet r(i:]urne_él ce?ttirs_ W'tlh '?mb_ag:!'t'es thf"‘t art?w one could map all log measurements that contain latency
proportional to the size ot their clusters, tnis requires iolations to a single cluster and then rdameans for

: T) Vv
modeling option in Figur€ll(right). Based on the extendedk — 1 clusters on the rest of the log measurements. The

model, we can define one state for each of tgusters of transition probabilities to each of those clusters for agje

log measurements. In this work,is set to 3. ction would be equal to the number of log measurements

The_ngxt ste_p is to map each such _cIuster_Fo a rev‘_'ard?ontained in that cluster. This type of model states makes a
and this is achieved through a user-defined utility function

) I . clearer distinction between desirable and undesirabtessta
To comply with the rest of the model, utility functions are

d despite of bei tility function- ific, it facilies t
functions of the number of active VMs and are used to derive\g espite of being utility function-specific, it facibés to

0 if lat > x.

h ds i h del | o N robabilistically guarantee under-provisioning, as expd
the state rewards in each model instantiation. NUMeroug o A more detailed example is shown in Figllte 2, where

utility functions can be_ used in elasticity scenarios, 521_6_ [the current load is 9.5K, the number of VMs is 10 and the
for a few of them. In this work, we want to focus on a utility latency threshold is 45ms; the log entries close to thatevalu

fu_nction that penalizes bOt_h unde_r- and over-provisioningare clustered in three groups, one for each of the three model
Since our example scenario considers NoSQL data storeg, 1o corresponding to 10VMs

tk}r téfor thrciug.hp.l;_t) ar;dat (fortllatetncy) vart|.ables ?re two 3) Prediction: As explained above, the state rewards are

'(I)'h € ”t\;\?s S'?r_" Ican prct)pelrl les 1o ﬁl:ag_ 'WH;‘;F Orkmatncedynamically computed in each elasticity step according to
ese wo metrics are aclually correlated. wiehis kep the existing log measurements for the current external load
3 . . . A. It is straightforward to extend our model states with
Cumulative rewards without a discount factor cannot be usddss

the number of steps is bounded; otherwise the maximum regaes to information about the time step expected to visit each state

infinity. (no diagrams are illustrated due to space limits) and then,

define the reward of model states according togreglicted tions like the following:*What is the maximum probability
external load at that time step. This is beneficial when thef the latency to be less than 30 milliseconds after state
load is rapidly evolving, and as such, the actual reward ok; is reached?; which, in PRISM, can be formulated in
the same model state may be highly different at differenthis way: Pmax =? [F latency < 30 & vms_num = 7],
time points. An ARIMA-based predictor can be built to whereF implies the satisfaction of the reachability property
predict future load values, as in_[15]. Note that such aJ9]. Another example question i&¥hat is the probability
modeling flavour can also account for the delays in enactinghat the system will remain in the decided state (assuming
an elasticity decision. For example, when adding a VM fromthat the current environmental conditions do not change)?
a given state, the time step information of the resultingSimilarly, we can ask about minimum probabilities and
model state will consider the time overhead incurred to ad@&ny other metrics used in the model (e.g., throughput). In
a new VM and that VM to become fully operational (i.e., summary, we can pose any query involving maximum and
to receive data in a NoSQL cluster). minimum probabilities and/or rewards. In this way, the user
4) Complete Decision Policy Specification and Quanti-can be more informed about the reason the selected decision
tative Analysis:We propose two decision policies that are was taken and has the ability to examine any metrics of
both formalized (as being based to a formal MDP modelthe system, provided that they are employed in the utility
and dependable (as being the result of online verification)functions and thus are captured by the model.
Probabilistic Computation Tree Logic (PCTL), encapsulate
in the PRISM tool, allows for probabilistic quantificatiof o
described properties. The proposed policies differin tag w Our elasticity decision approach can be encapsulated
PCTL is employed as described befbw in every elastic manager provided that the latter meets

« SIMPLE (direct MDP solutionBBA, Instantaneous the following requirements: it is capable (i) of collecting
rewards): With the help of PCTL, for each state of an log measurements that are used for the training and the
instantiated model, we extract the maximum expectednstantiation of the models and (ii) of enforcing the elaisti

instantaneous reward for reaching that state, which i§l€cisions taken. _
based on a direct solution of the MDP. Then, we choose N our prototype implementation, our PRISM-based de-

the most profitable state, i.e., the whole problem is scision technique is incorporated within TiramBlayhich is
max-max one. Finally, we either try to move the system?® modular, cloud-enabled, open-source system that enables

to that state, o if this is not possible, e.g., if the amountélastic scaling of NoSQL clusters according to user-defined
of VMs required to be added exceeds the user-specifieBOHCieS and incoming load. It allows seamless interaction

bounds of additions in a single step, we select the actioith multiple 1aaS platforms, requesting/releasing VM re-
that leads to the closest state to the target state. sources and orchestrating them inside a NoSQL cluster. Our

« ADVANCED (direct MDP solutionBBS, Cumulative approach is also compatible with cloud managers like the
rewards, probabilistic guarantees)tn this decision ©nes used by Amazon. In that, case, the log measurements
policy, we employ cumulative rewards. Then we ask for&r€ provided through Amazon’s EC(ZIoudWatc’hand the
the maximum expected reward after a specified numbef€cisions can be enforced through Amazon's EQZo
of stepsl. The result of the model verification process Scalmgserw_ce. Note that the main current_elastlcny policy
is a graph of possible sequences of actions. We colle@f Amazon is rule-based; in the next section, we compare
all the first actions (i.e. the actions that begin from thethe efficiency of rule-based decision policies against.ours
current state) and using a second PCTL expression,

we detect the one which has the minimum expected _] o -
probability to lead to a latency violation, i.e., to visit The main purpose of this section is to assess the efficiency

a state with O reward according to the utility function Of the decision policies enabled by our approaches. Since

presented earlier. This policy behaves better when wdere can be too many combinations of models and decision

follow the modeling approach where for each numberP0licy configurations, we compare only a representative

of active VMs, there is a single cluster that exclusively Subset of decision policies:

covers all violating log measurements (termedv&y. « RE which aims to reproduce pure reactive rule-based

Using PCTL formulae, the users can input additional decision pplicigs, V_/here glasticity actions are triggered

high-level queries about the probability of the amount of DY constraint violations, like those enabled by Amazon
additional resource metrics taking into considerationliadp EC2.

actions and reached states. For example, we can pose ques® RL which employs the model in Figutd 1(left), the
Q-learning reinforcement learning approach and the

state’s reward is computed according to the center of the

Ill. | NCORPORATIONINTO EXISTING SYSTEMS

IV. EVALUATION OF DECISIONPOLICIES

4An elasticity policy very close to SIMPLE has been proposedfLifi
as MDP2 along with additional flavours that we omit here for brevity;
ADVANCEDiIs novel. SPublicly available from http://code.google.com/p/tiralal

http://code.google.com/p/tiramola/

biggest cluster of log measurements, (thus reproducing ~okeanos Dataset Latency Distrbution
the approach in[]2], which represents the state-of-the-
art in NoSQL elasticity).

« SIMPLE which employs the model in Figuté 1 with 3

model states per number of active VMs unless stated . .
. . . S0t o e e ,%00% % 2
gtglesrvl\\//:se and a direct MDP solver is used through g “:.’é@q.”'w.@m
: , - '&'.'";:'f:g!.":" """ formmmemees
« ADVANCED which employs the model in Figuld 1 ﬁgz&"
with 3 model states per number of active VMs unless “ *
stated otherwise and provides probabilistic guarantees e

as explained earlier. The number of stégs set to 3.

~okeanos Dataset Latency Distribution

A. Experimental Setup

We first collected logs from a real infrastructure, and
then we ran emulated experiments based on those logs.
The reason behind this is to allow for a completely fair g
comparison between the various techniques. In order to
collect real data, we conducted log measurement experi-
ments using the okeanos laaS infrastructure [16], and the
YCSB benchmark. For our NoSQL cluster, we have used
4 client VMs as load generators with 2 VCPUs and 4GB
of RAM and 5GB storage each, and up to 18 cassandra Figure 3: Latencies for 8 (top) and 18 (bottom) VMs
server VMs (minimum 8 VMs) with 2 VCPUs, 2GB of RAM
and 20GB storage each. The server VMs were created and The load applied during elasticity experiments is a 5
booted before the experimental procedure. In all cases, theeriod sinusoidal workload varying from 4000 (reqg/sec) to
OS was “Debian Base” (7.4) running Linux 3.12.6 kernel 16000 (req/sec) coupled with with 2 plateau periods at 13000
the java VM runtime from the SUN JRE v1.781, and (reg/sec) for 1000 time units each. In every up-scale agction
ganlia monitor v3.3.8 [17]. Cassandra v2.0.9 with 256 attu up to 3 VMs can be added, while during down-scaling, up
nodes per host and a replication factor of one is installedo 2 VMs are allowed to be removed in a single step.
and configured on every server VM. A (heavily modified) The latency threshold in the utility function is set to
version of YCSB-0.1.4 ran on every client VM to produce 45ms; later, we examine further thresholds. Additionally,
the load; the modifications were made to support databaser RE, a lower latency threshold is set to 20 ms to trigger
metrics reporting on ganglia. a remove action. Figurel 3 presents the latency distribution

The workload consists of asynchronous read requests im two characteristic states of the collected dataset, aher
uniform distribution. We have created varying sinusoidalthe dotted line shows the latency threshold. For the lowest
load from 4000 (reg/sec) up to 16000 (reg/sec). We collecteamount of load, there are few latency values that violate the
measurements every 30 secs, and in each sine period, theéheeshold (mostly caused by the cold cache of the system
were 360 measurements. at the beginning of the measurement collection) and the

The collected measurements are used firstly, to populatgystem can handle load up to about 8000 reqg/sec. For the
the initial logs of each policy, and secondly, to emulatead re maximum number of active VMs (18), except from a few
situation. Through emulation, we managed to fairly tesheac outlier measurements, the system can handle the full amount
policy on an equal basis, which could not be done if eactof the incoming load.
policy ran separately in a real cluster. In our emulation, a .
time unit corresponds to the measurement collection period: EXPerimental Results
i.e., 30 secs. We allow an elasticity action to take place In Figure[4, we present the adaptation of the number
every 10 time units, to emulate a system that may modifyof VMs to the incoming load for each policy. All the
the VMs every 5 mins (or 10 mins is cases of add actionpolicies can broadly follow the load variation, however
to allow the system to stabilize). Later, we examine moreRE (Figure[4a4) does that in a less close fashion, as it
frequent options and we allow for decisions every 30secstakes the lowest number of state change actions (addi-
As the emulated load is generated based on the logs, whidions/removals) (4.62% of the total actions). This helps in
also act as training set, we consider that the system is wellvoiding under-provisioning and it experiences violasiam
trained; note that some policies liIRL are more sensitive only 2% violations of the steps; however it increases over-
than others to the quality of training [13]. provisioning as will be discussed later. The other policies

8
o

1600

14000|

120004 |

load

10000}

'
8000F

v v ,
b 10 M ' 1
6000} 1 Vol]
! WH N 9
3 I I
400 8 8
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000
steps steps
change state actions (%): 4.62 change state actions (%): 29.08
violations (%): 2.03 violations (%): 14.50
(a) RE (b) RL-MB
1600 T SIMPLE T 18 1600 ADVANCEP

14000

120008 |

load

10000

i
80001 f

I
6000 ¥
'

VL
Vol
|\
Vs

5 ‘
4 8 40 L 8
12000 14000 0 2000 4000 6000 8000 10000 12000 14000
steps steps
change state actions (%): 24.43 change state actions (%): 26.21
violations (%): 9.76 violations (%): 10.08

Y 3
9|
0 2000 4000 6000 8000 10000

(c) SIMPLE (d) ADVANCED

Figure 4: Variation of the external load and the number oivactMs

Aggregated Latency Violations

regarding avoiding under-provisioning as the percentdge o
violations is 2.03%, whileRL achieves the worst with
14.5% violations, i.e., it suffers from under-provisiogin
The other two policiesSIMPLE and ADVANCED exhibit

an almost equal amount of latency violations, that is 9.76%
and 10.08% respectively. For these numbers, we excluded
the time steps in which the system tries to stabilize after
an add action, but the pattern does not change if those time

steps are considered.

" " oecon oty Over-provisioning is quantified with the help of the utility
Figure 5: Aggregated Latency Violations function that penalizes the unnecessary use of extra ma-
chines. According to Tablgé RL, SIMPLEandADVANCED
policies achieve significantly higher average utility tHR
The values in the table are normalized to the range [0,1].
The actual values range from 1+(1/18) = 1.056 to 1+(1/8)

Table I: Average normalized utility = 1.125. Combining the values in that table and in Figure
B, we see thaSIMPLE and ADVANCEDcan strike a better
apply more state change actions to cope with the constantlyalance between under-provisioning and over-provisignin
evolving load changeRL(Figure[4b) performs changes in Next we explain how the model extensions discussed
29.08% of the stepsSIMPLEFigure[4t) in 24.43% , and in Sectiond 1I-B2 and I-BB further improvADVANCED
ADVANCEFigure[4dl) in 26.21%. The instability on the These are (i) to employ a utility function-specific MDP
minimum amount of load (4000 (reg/sec)) in every decisionmodel state through'C, as presented in Section 1I-B2 and
policy is explained by the outlier values presented in Fégur (ii) to employ a prediction modulePRE). Figurd® examines
B the following combinations: (i)ADV+VC for ADVANCED
We quantify under-provisioning by counting the numbercombined with a model state exclusively for violations, and
of steps where a latency violation occurs, as shown ir(ii) ADV+VC+PREfor additionally incorporating prediction
Figure[®. RE policy seems to achieve the best behaviourof future external load values. The prediction error bound

Decision Policy || RE | RL-MB | SIMPLE | ADVANCED
avg. utility 0.35| 0.64 0.61 0.63

N Aggregated Latency Violations N Aggregated Latency Violations

(%) of violations.

(%) of violations.

2.54%]

o 0.35%

ADVANCED ADV+VC ADV+VC+PRE RL-MB SIMPLE ~ ADVANCED ADV-+VC ADV+VC+PRE
Decision Policy Decision Policy

Figure 6: Aggregated Latency Violations f&f(DVANCED Figure 8: Results for higher decision frequency
enhancements

Decision Policy RE RL-MB | SIMPLE | ADVANCED
avg. utility 0.34 0.71 0.61 0.61

ADV+VC
v

q
14000f)

Table II: Average normalized utility for higher decision
1 frequency

12000
2 i
8 10000
i

8000(f 1

N

C. Sensitivity Analysis

i
60001{ s
'

The policies and the evaluation setting described previ-
ously contain several fixed parameters. In this part of the
experiments, we aim to provide string insights into how
changing those parameters affects the results. We focus on
(i) the decision frequency, (ii) the prediction accuraayda
(i) the latency threshold.

1) Decision Frequencyin our experiments so far, deci-
sion making is activated every 10 time units or 5 emulated
minutes, i.e., even if no action is decided at a specific point
Ik A(HE | | the next consideration takes place after 10 time units. We
now allow for making decisions at each time step (unless

e this step falls into a stabilization period). Figlile 8 shakes
e behaviour of each policy and, with the help of Figures 5 and
Figure 7: Variation of the external load and the number ofg, we can see that our two proposals benefit the most in terms
active VMs forADV+VC (top) andADV+VC+PRE(bottom) of the latency violations. For the example, the percentdge o
violations for the ADVANCEDpolicy drops by 48%. This
for the k" future step is0.05k times the minimum load. comes at the expense of a slight decrease in normalized
Both enhancements lead to a great decrease in the occatility. As shown in Tablell, the utility ofRL is increased
sions of under-provisioning, which are nearly eliminatedby 10%, but the decrease in latency violations is only 23%.
for ADV+VC+PRE However, this comes at the expenseFigure[8 also considers thADVANCED extensions. For
of lower normalized utility (0.45). Figuré]7 shows the ADV+VC policy, the percentage of violations drops by 73%
behaviour of those decision policy alternatives. We hase al (from 2.54% to 0.68%) and the average normalized utility is
examined the combination of tH8IMPLE decision policy slightly increased (from 0.46 to 0.47). TWV+VC+PRE
with a model state corresponding to a log measuremerpolicy is less affected by the change in the frequency of
cluster with violations: the percentage of latency vidati the decisions. Overall, our policies exhibit efficient élas
drops to 2.41% from 9.76%, but the average utility dropsbehaviour at both high and low decision making frequencies.
similarly to ADV+VC+PRE 2) Prediction Accuracy:Here we assess the impact of

A final note is that, in this setting, it is not surprising the accuracy of the prediction. As we have already men-
that RL yields the highest utility, becaudeL is based on tioned, the prediction error bound for thé&” future step is
an optimally solved MDP and we assumed full and accurat®.05k times the minimum load. In this section we present
training of the Q-learning approach. Howev&i. cannot experimental results for both accurate and more inaccurate
reach the level of under-provisioning avoidance SIMIPLE predictions. For the latter, the error bound is doubledufég
and ADVANCED do, which is attributed to the modeling [@ summarizes the latency violations for tABV+VC+PRE
extensions presented and the probabilistic guarantees. policy. The difference from the accurate setting is small.

B
8
2000 4000 6000 8000 10000 12000 14000 16000

change state actions (%): 8.47
violations (%): 2.54

]

b

Y

ADV+VC+PRE
v

14000
12000

®
3 10000
'
80001

i
'
60001! #
'

Aggregated Latency Violations

V. RELATED WORK

Our proposal is, to the best of our knowledge, the first
advocator of online quantitative verification to drive albu
elasticity. In this section, we mention other represewati
approaches to the same problem and we discuss further
differences with our proposal.

Using MDPs combined with reinforcement learning-based
policies to decide the number of VMs has been proposed
in [2], [13]. Compared to those proposals, we allow for
Decision Polcy i direct MDP solvers, dynamically instantiated models and
quantitative analysis.

The authors in[18] combine cloud elasticity with anomaly
prevention. This proposal utilizes a prediction technique
based on system metrics to vertically scale the resources of

(%) of violations

Figure 9: Results for different prediction accuracies

~okeanos Dataset Latency Distribution

_ %E the VMs or to decide for VM migration, i.e., they consider

: different forms of elasticity, as is also the case lin [4],

-------- T L LR L LR LLEE L eEy [5]. In our work we employ prediction; however, analyzing

. M the efficiency and effectiveness of prediction techniques

= . N e o '-'.-.."'..-51:'\.‘5::“"' is an interesting direction that we leave for future work.
"g‘;,%:.:‘:.g-':.p.;‘.:.{.%."'-: : Complementarily to us/ [19]/ [15] deal with heterogeneity
?,i.,..; AR A issues, while we assume that all VMs are of the same type.
Yoo o 0 A significant number of proposals use rule-based tech-
nigues to guide the elasticity, e.g., [20], [21]. The former

)) presents an enhanced rule-based technique with predictive
Figure 10: Different Latency Thresholds for 18 VMs capapilities. In[[21], a technique is proposed that adéess
the implications of an elastic action across multiple di-
For even more inaccurate setting, the violations incrdase, mensions, providing for examp|e the cost imp”cation of
they are still less than 0.5%. This implies that our proposal 3 horizontal scaling action. None of those techniques is
are robust to prediction inaccuracies. accompanied by online probabilistic verification of eleisyi
3) Latency ThresholdUntil now, the latency threshold properties. For elasticity in cloud data stores, there are
is set to 45 ms based on the Iatency distribution of thesevera| proposa|si such as [22'] [23]J [E,] [3] Apart from
dataset for the maximum amount of active VMs (18). Aspeing limited to a specific setting, they tend to focus on

Figure[3 (bottom) depicts, this is the minimum possiblesatisfaction of strict SLOs, instead of maximizing utility
threshold to allow the maximum number of VMs to operate Finally, model checking and runtime quantitative verifi-
without violations. In this section we conduct experimentscation for cloud solutions other than horizontal scaling ha
with lower and higher latency thresholds, namely 40 mspeen proposed if [24] and [25]. The former, utilizes PRISM
and 50 ms, respectively; see Figure| 10, where we cafy guide service adaptation, while the latter presents a

observe that for the lower threshold (40 ms, red dotted line}technique to predict the minimum cost of cloud deployments
even the maximum number of VMs is not capable of fully ysing PCTL over MDP models.

avoiding violations. Due to space constraints, we do not

present detailed results. However, the same trend as in the VI. SUMMARY AND FUTURE WORK

previous cases appearsDVANCEDstrikes a better balance This work presented a formal, probabilistic model
between latency violations and utility, and its extensionschecking-based approach to resizing an application clus-

further improve on this trade-off. ter of VMs so that elasticity decisions are amenable to
o) quantitative analysis. We presented MDP elasticity models
D. Decision Making Overhead and associated elasticity policies that rely on the dynamic

Using an Intel i7 4700M CPU (4 cores, 8 threads) with instantiation of such models. We also conducted experisnent
8GM RAM, on average, th&L decision policy takes 0.013 using real datasets, and we presented results showing that
secs to reach a decision, while our most expensive policwe can significantly decrease the frequency of user-defined
that invokes PRISM, namelfDV+VC+PRE takes 5.8 secs. threshold violations and attain high utility values; these
RE decides almost instantly (0.0002 secs). However, thespects are directly related to under-provisioning and-ove
difference of two orders of magnitude in the running time provisioning, respectively.
between th&kL and our proposals is insignificant in practice, In this work we have shown but not fully exploited the
where we typically take elasticity actions every 5 or 10 mins potential of MDP models, which we plan to do in the

future. MDP models can naturally capture complementary10] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: preba
non-deterministic aspects of elasticity in real systerashs
as provision for failure or long delays to enforce an elas-

ticity decision and support for additional forms of elagic

like vertical resizing (e.g. resizing of CPU,RAM resources
and/or taking into consideration different VM types. Other
directions for future work include the consideration of

additional utility functions that are more directly assded

with common usage and charging policies on clouds (e.g.,

to consider the charging-by-hour model to reason about
over-provisioning), mitigating the impact of outdated log
measurements in cases where there are significant shif
in the system behaviour, and more thorough experimental

analysis.
AcknowledgmentsThis research has been co-financed!1¥
by the European Union (European Social Fund - ESF)

and Greek national funds through the Operational Program

(11]

(12]

s

“Education and Lifelong Learning of the National Strategic [15]

Reference Framework (NSRF) - Research Funding Program:

Thales. Investing in knowledge society through the Eurapea

Social Fund.”

(1]

(2]

REFERENCES

N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in
cloud computing: What it is, and what it is not,” iAroc.
of ICAC'13 2013, pp. 23-27.

D. Tsoumakos, |. Konstantinou, C. Boumpouka, S. Siqutas
and N. Koziris, “Automated, elastic resource provisionfog
nosql clusters using tiramola,” iI€CGrid'13, 2013, pp. 34—
41.

[3] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.

Kozuch, “Autoscale: Dynamic, robust capacity management[l

for multi-tier data centers, ACM Transactions on Computer
Systems (TOCSYol. 30, no. 4, p. 14, 2012.

(16]

(17]

(18]

9]

[4] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale:[20]

Elastic resource scaling for multi-tenant cloud systents,”
SOCG 2011, pp. 5:1-5:14.

[5] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic [21]

(6]

resource scaling for cloud systems,”@NSM 2010, pp. 9-
16.

B. Trushkowsky, P. Bod?k, A. Fox, M. J. Franklin, M. 1.
Jordan, and D. A. Patterson, “The SCADS director: Scaling
a distributed storage system under stringent performance
requirements.” ilFAST, 2011, pp. 163-176.

(22]

(23]

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic

(8]

computing.”IEEE Computervol. 36, no. 1, pp. 41-50, 2003.

24]

R. Calinescu, C. Ghezzi, M. Z. Kwiatkowska, and R. Miran-
dola, “Self-adaptive software needs quantitative vertiice
at runtime,”Commun. ACMvol. 55, no. 9, pp. 69-77, 2012.

[9] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, [25]

“Automated verification technigues for probabilistic systs,”
in Formal Methods for Eternal Networked Software Systems
(SFM'11), 2011, pp. 53-113.

bilistic model checking for performance and reliabilityadn
ysis,” SIGMETRICSvol. 36, no. 4, pp. 40-45, 2009.

A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros,
D. Tsoumakos, |. Konstantinou, and S. Sioutas, “Cloud
elasticity using probabilistic model checkingCoRR vol.
abs/1405.4699, 2014.

J. Kuhlenkamp, M. Klems, and O. Ross, “Benchmarking
scalability and elasticity of distributed database systém
2014, pp. 1219-1230.

X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and
|. Truck, “From data center resource allocation to control
theory and back,” iHEEE CLOUD, 2010, pp. 410-417.

M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic ProgrammingJohn Wiley & Sons, Inc.,
1994,

Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,
“Harmony: Dynamic heterogeneity-aware resource promisio
ing in the cloud,” inICDCS 2013, pp. 510-519.

V. Koukis, C. Venetsanopoulos, and N. Kozirisy6keanos:
Building a cloud, cluster by clusterlEEE Internet Comput-
ing, vol. 17, no. 3, pp. 67-71, 2013.

M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: design, implementationd a
experience,Parallel Computing vol. 30, no. 7, pp. 817-840,
2004.

Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and
D. Rajan, “Prepare: Predictive performance anomaly preven
tion for virtualized cloud systems,” ilCDCS 2012, pp. 285—
294.

H. Fernandez, G. Pierre, and T. Kielmann, “Autoscalngp
applications in heterogeneous cloud infrastructuresPrioc.
of the IEEE Int. Conf. on Cloud Engineering (IC2E2014.

L. Moore, K. Bean, and T. Ellahi, “A coordinated reaetiv
and predictive approach to cloud elasticity,” @LOUD
COMPUTING 20132013, pp. 87-92.

G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “Mul
level elasticity control of cloud services,” IRSOG 2013, pp.
429-436.

A. Al-Shishtawy and V. Vlassov, “Elastman: elasticityan-
ager for elastic key-value stores in the cloud,”GAC, 2013,

p. 7.

H. Lim, S. Babu, and J. S. Chase, “Automated control for
elastic storage,” inCAC, 2010, pp. 1-10.

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola
and G. Tamburrelli, “Dynamic qos management and optimiza-
tion in service-based systemdEEE Trans. Software Eng.
vol. 37, no. 3, pp. 387-409, 2011.

D. Perez-Palacin, R. Calinescu, and J. Merseguer,
“Log2cloud: Log-based prediction of cost-performance
trade-offs for cloud deployments,” iACM SAG 2013, pp.
397-404.

	Introduction
	Elasticity based on probabilistic model checking
	Elasticity Models
	Policies for Elasticity Decisions
	On solving MDPs directly
	State Reward Specification and Utility Functions
	Prediction
	Complete Decision Policy Specification and Quantitative Analysis

	Incorporation Into Existing Systems
	Evaluation of Decision Policies
	Experimental Setup
	Experimental Results
	Sensitivity Analysis
	Decision Frequency
	Prediction Accuracy
	Latency Threshold

	Decision Making Overhead

	Related Work
	Summary and Future Work
	References

