
Chapter 1

Access Methods

Apostolos N. Papadopoulos

Department of Informatics, Aristotle University of Thessaloniki, Greece

Kostas Tsichlas

Department of Informatics, Aristotle University of Thessaloniki, Greece

Anastasios Gounaris

Department of Informatics, Aristotle University of Thessaloniki, Greece

Yannis Manolopoulos

Department of Informatics, Aristotle University of Thessaloniki, Greece

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Underlying Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Blocks and Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Fundamental Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Fundamental Access Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1.1 The B-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1.2 B-tree Variations and Extensions . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1.3 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Spatial Access Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2.1 The R-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2.2 R-tree Bulk Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2.3 R-tree Variations and Extensions . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Managing Time-Evolving Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Cache-Oblivious Access Methods and Algorithms . . . . . . . . . . . . . . . . 17
1.4.2 On-line and Adaptive Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Research Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Defining Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Further Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1 Introduction

We are witnessing a tremendous growth in the size of the data gathered,
stored and processed by various kinds of information systems. Therefore, no
matter how big memories become, there is always the need to store data in

1



2 Book title goes here

secondary or even tertiary storage to facilitate access. Even if the data set can
fit in main memory, there is still a need to organize data to enable efficient
processing. In this chapter, we discuss the most important issues related to
the design of efficient access methods (i.e., indexing schemes), which are the
fundamental tools in database systems for efficient query processing. For the
rest of the discussion we are going to use the terms access method and index
interchangeably.

Take, for example, a large data set containing information about millions of
astronomical objects (e.g., stars, planets, comets). An astronomer may require
some information out of this data set. Therefore, the most natural way to
proceed is to store the data set in a database management system (DBMS)
in order to enjoy SQL-like query formulation. For example, a possible query
in natural language is: “show me all stars which are at most 1000 light-years
away from the sun”. To answer such a query efficiently, one should avoid the
exhaustive examination of the whole data set. Otherwise, the execution of
each query will occupy the system for a long period of time, which is not
practical and leads to performance degradation.

For the rest of the discussion, we are mainly interested in disk-based
access methods, where the data set as well as the auxiliary data structures
to facilitate access reside on magnetic disks. The challenge in this case is to
perform as few disk accesses as possible, because each random access to the
disk (i.e., reading or writing a block) costs about 5 to 8 milliseconds, which
is significantly slower than processing in main memory. Moreover, we assume
that our data is represented by records of the form < a1, a2, ..., am >, where
each ai denotes an attribute value. Attribute values may be simple, an integer
for example, or may correspond to more complex objects like points in 3D
space or other geometric shapes. When needed, we are going to make clear
the kind of data supported by each access method. For example, some access
methods are good in organizing uni-dimensional objects (e.g., price, salary,
population), whereas others have been specifically designed to handle points
or rectangles in 2D or 3D space, text, DNA sequences, time-series, to name a
few.

1.2 Underlying Principles

In contrast to memory-resident data structures, handling large data collec-
tions requires the corresponding access method (or at least a large part of it)
to reside on secondary storage. Although flash memories are currently widely
used, the magnetic disk continues to be the predominant secondary storage
medium, used extensively by large information systems. The fundamental disk
limitation is that accessing data on a disk is hundreds of times slower than
accessing it in main memory. In fact, this limitation was the driving force



Access Methods 3

underlying the development of efficient access methods trying to reduce the
impact of this limitation as much as possible. In this section, we discuss briefly
some key issues in access methods.

1.2.1 Blocks and Records

The fundamental characteristic of an access method is that the data is
accessed in chunks called pages or blocks. In particular, whenever a data
item x is requested, instead of fetching only x, the system reads a whole set of
data items that are located near item x. In our context, near means within the
same block. Each block can accommodate a number of data items. Usually,
all blocks are of the same size B. Typical block sizes are 4Kb, 8Kb, 16Kb
or larger. Obviously, the larger the block size the more data items can fit in
every block. Moreover, the number of items that fit in each block depends also
on the size of each data item. One of the primary concerns in the design of
efficient access methods is storing data items that are likely to be requested
together in the same block (or nearby blocks). Thus, the target is to fetch into
memory more useful data by issuing only one block access. Since this is not
feasible in all cases, a more practical goal is to reduce the number of accesses
(reads or writes) as much as possible.

There are two fundamental types of block accesses that are usually sup-
ported by access methods: a random access involves fetching a randomly
selected block from the disk, whereas a sequential access just fetches the
next block. Usually, a random access is more costly because of the way mag-
netic disks operate. To facilitate a random access, the disk heads must be
positioned right on top of the track that contains the requested block, thus
requiring a significant amount of time, called seek time. In fact, seek time is
the predominant cost of an I/O disk operation. On the other hand, a sequen-
tial access just reads blocks one by one in a get-next fashion, thus requiring
less seek time. However, to facilitate sequential access blocks must be located
in nearby positions on the disk to minimize the required seek operations. In
general, sequential access is more restrictive and easier to obtain than random
access. In addition, random access is more useful because of the flexibility of-
fered to access any block any time.

Next, we describe briefly how records are organized inside each block. We
limit our discussion for the case where records are of fixed size denoted
as R. Therefore, the maximum number of records that can fit in a block of
size B is simply bB/Rc. There are two basic alternatives we may follow to
organize these records inside the block. The first approach is to force that all
free space will be placed at the end of the block. This means that whenever
we delete a record, its place will be taken by the last record in the block.
The second alternative is to use a small index in the block header recording
information about which record slot is occupied and which one is free. The
second alternative avoids moving records inside the block but reduces the
capacity of the block because of the index used. In case variable size records



4 Book title goes here

are allowed, we expect that less storage will be required but processing time
may increase due to some extra bookkeeping required to locate each record.

1.2.2 Fundamental Operations

Although access methods have different capabilities depending on their
design and the problem they call to support, they all are primarily built to
support a set of fundamental operations. The most significant one is search-
ing. In the simplest case, a search operation takes as input a value and returns
some information back to the caller. For example: “what is the perimeter of
the Earth?”, “display the ids of the customers located in Greece”, “what is the
salary of John Smith?” or “Is Jack Sparrow one of our customers?”. All these
queries can be formulated as simple search operations. However, to support
these queries as efficiently as possible the corresponding access method should
provide access to the appropriate record attributes. For example, to find the
perimeter of the Earth, the access method must be searchable by the name
of an astronomical object. Otherwise, the only way to spot the answer is to
resort to sequential scanning of the whole data set. Similarly, to display the
customers residing in Greece, our access method must be able to search by
the name of the country.

There are other search-oriented queries that are clearly much more com-
plex. For example “find the names of the cities with a population at least 1
million and at most 5 millions”. Clearly, this query involves searching in an
interval of populations rather than focusing on a single population value. To
support such a query efficiently the access method must be equipped with the
necessary tools. Note also, that according to the application, searching may
take other forms as well. For example, if the access method organizes points
in the 2D space, then we may search by a region asking for all points falling
in the region of interest. In any case, to facilitate efficient search, the access
method must be organized in such a way that queries can be easily handled,
avoiding scanning the whole database.

Two operations that change the contents of an access method is the in-
sertion of new objects and the deletion of existing ones. If the access method
does not support these operations, it is characterized as static, if both are
supported it is called dynamic, whereas if only insertions are supported then
it is called semi-dynamic. In the static case, the access method will be built
once and there is no need to support insertions/deletions. The dynamic case
is the most interesting and challenging one, since most of the real-life appli-
cations operate over data sets that change continuously, and potentially quite
rapidly. Thus, insertions and deletions must be executed as fast as possible to
allow for efficient maintenance of the access method.

In some cases, there is a need to build an access method when the corre-
sponding data set is known in advance. The simplest solution is to just perform
many invocations of the insertion operation. However, we can do much better
because the data set is known and therefore with appropriate preprocessing



Access Methods 5

the index may be built much faster than by using the conservative one-by-one
insertion approach. The operation of building the index taking into consider-
ation the whole data set is called bulk loading.

1.3 Best Practices

In this section, we study some important indexing schemes that are widely
used both in academia and industry. First, we discuss about the B-tree and
hashing which are the predominant access methods for one-dimensional in-
dexing. Then, we center our focus to spatial access methods and discuss the
R-tree and briefly some of its variations.

1.3.1 Fundamental Access Methods

The two dominant categories of fundamental external memory indexing
methods are tree-based methods and hash-based methods. For tree-based
methods, the dominant example is the B-tree [5] while for hash-based meth-
ods linear [38] and extendible [18] hashing are the most common ones. In the
following, we briefly present both methods and their variants/extensions.

1.3.1.1 The B-Tree

The B-tree [5] is a ubiquitous data structure when it comes to external
memory indexing, and it is a generalization of balanced binary search trees.
The intuition behind this generalization is that reading a block should provide
the maximum information to guide the search. The use of binary trees may
result in all nodes on a search path to reside in distinct blocks, which incurs
an O(log2 n) overhead while our goal is to impose that the number of blocks
to read in order to find an element is O(logB n) (i.e., logarithmic with respect
to the data set cardinality). The B-tree with parameters k (corresponding to
the internal node degree) and c (corresponding to leaf capacity) is defined as
follows:

1. All internal nodes v have degree d(v) such that ` ·k ≤ d(v) ≤ u ·k, where
u > ` > 0. The only exception is the root, whose degree is lower-bounded
by 2.

2. All leaves lie at the same level; that is, the depth of all leaves is equal.

3. All leaves l have size |l| such that `′ · c ≤ |l| ≤ c, where 0 < `′ < 1.

The maximum height of the tree is
⌊
log`·k

n
`′c + 1

⌋
while its minimum

height is
⌈
logu·k

n
c

⌉
. Depending on the satellite information of each element,



6 Book title goes here

the size of the pointers as well as any other needed information within each
block we may set accordingly constants k, c, `, `′ and u. Additionally, these
parameters are also affected by the desired properties of the tree. Henceforth,
for simplicity and without loss of generality, we assume that k = c = B, u = 1
and ` = `′ = 1/2.

In the classic B-tree, internal nodes may store elements (records) apart
from pointers to children. This results in the decrease of parameter k and thus
the height of the tree is increased. In practice, and to avoid this drawback, the
B+-trees [15] are extensively used. These trees store elements only at leaves
while internal nodes store routing information related to the navigation during
search within the tree. In this way, the parameter k is increased considerably
and the height of the tree is reduced.

To perform a search for an element x, the search starts from the root and
moves through children pointers to other internal nodes towards the leaves
of the tree. When a leaf l is found, it is brought into main memory and a
sequential or binary search is performed to find and return the element x or
to report failure. One can also return the predecessor or the successor of the
element x (which is x if it exists in the tree) but one more I/O may be needed.
To support range search queries, the B+-tree is usually changed so that all
leaves constitute a linked list. As a result, for the range query [x1, x2], first
the leaf is located that contains the successor of x1 and then a linear scan of
all leaves whose value is within the range [x1, x2] is performed with the help
of the linked list of leaves. Before moving to update operations we first briefly
discuss the re-balancing operations. The B+-tree (in fact all such trees) can
be restored after an update operation by means of splits, fusions and shares.

A node v is split when there is no available space within the node. In this
case, half the information contained in v (pointers and routing information in
internal nodes or elements at leaves) is transferred to a new node v′ and thus
both nodes have enough free space for future insertions. However, the father of
v has its children increased by one which means that there may be a cascading
split possibly reaching even the root. A node v requires fusion with a sibling
node v′ when the used space within v is less than 1

2B due to a deletion. In this
case, if the combined size of v and v′ is > B then some information is carried
over from v′ to v. In this case we have a share operation which is a terminal
re-balancing operation in the sense that the number of children of the father
of v and v′ remains the same. Otherwise, all information of v is transferred
to v′ and v is deleted. The father of v′ has its children reduced by one and so
there may be cascading fusions towards the root.

An insertion operation invokes a search for the proper leaf l in which the
new element must be inserted to respect the sorted order of elements in the
B+-trees. If l has available space then the new element is inserted and the
insertion terminates. If it does not have available space, then the leaf is split
into two leaves l and l′ and the new element is inserted to either l or l′,
depending on its value. Then, based on whether the father of l and l′ needs
split, the process continuous until an internal node with free space is reached



Access Methods 7

or until the root is split. A deletion operation is similar with the exception
that it invokes a fusion operation for re-balancing. In Figure 1.1 an example
of a B+-tree is depicted.

A variant of the B+-tree is the B∗-tree [15], which balances adjacent in-
ternal nodes to keep them more densely packed. This variant requires that
` = `′ = 2

3 instead of 1
2 . To maintain this, instead of immediately splitting up

a node when it gets full, its elements are shared with an adjacent node. As
soon as the adjacent node gets full, then the two nodes are split into three
nodes.

In total, search and update operations can be carried out in O(logB n)
I/Os while a range search query can be carried out in O(logB n + t

B ) I/Os,
where t is the number of reported elements.

1.3.1.2 B-tree Variations and Extensions

There are numerous variants and extensions of B-trees, and we only report
some of them. Most of these, if not all, are quite complicated to implement
and can be used in practice only in particular scenarios. The Lazy B-tree [33]
support updates with O(1) worst-case re-balancings (not counting the search
cost) by carefully scheduling these operations over the tree. The ISB-tree [33]
uses interpolation search in order to achieve a O(logB log n) expected I/Os for
searching and updating provided that the distribution of the elements belongs
to a large family of distributions with particular properties. It is simple to

19 32

20 328 10 17 19 42 58

58

(a) An example of a B+-tree (B = 4) (b) Adding 9 and performing a split

(c) Removing 42 and performing a fusion

19 32

8 10 17 19 42 58

58

9

10

(d) Removing 19 and performing a share

20 32

19

8 10 17 19 58

58

9

10

20 32

20

8 10 17 20 58

58

9

10

32

FIGURE 1.1: An example of update operations for the B+-tree is depicted.
Internal nodes contain only routing information.



8 Book title goes here

extend basic B+-trees to maintain a pointer to the parent of each node as
well as to maintain that all nodes at each level are connected in a doubly
linked list. Applying these changes, the B+-tree can support efficiently finger
searches [12] such that the number of I/Os for searching becomes O(logBd),
where d is the number of leaves between a leaf l designated as the finger
and the leaf l′ we are searching for. When searching for nearby leaves this is
a significant improvement over searching for l′ from the root. One can also
combine B-trees with hashing [43] to speed-up operations.

There are numerous extensions of B-trees that provide additional function-
alities and properties. The weight-balanced B-tree [4] has the weight property
that normal B-trees lack. For an internal node v let w(v) be its weight, which
is the number of elements stored in the subtree of v. The weight property
states that an internal node v is rebalanced only after Θ(w(v)) updates have
been performed at its subtree since the last update. This property is very
important to reduce complexities when the B-tree has secondary structures
attached to internal nodes [4]. A partial persistent B-tree [7] is a B-tree that
maintains its history attaining the same complexities with normal B-trees.
Efficient fully persistent B-trees have very recently been designed [11] and al-
low updates in the past instances of the B-tree giving rise to different history
paths. String B-trees [19] have been designed to support efficiently search and
update operations on a set of strings (and its suffixes) in external memory.
Cache-oblivious B-trees [9] have been designed that do not need to know ba-
sic parameters of the memory hierarchy (like B) in order to attain the same
complexities as normal B-trees, which make heavy use of the knowledge of
these parameters. Finally, buffer trees [3] are B-trees that allow for efficient
execution of batch updates (or queries). This is accomplished by lazily flush-
ing towards the leaves all updates (or queries) in the batch. In this way, each
update can be supported in O( 1

B logM/B
n
B ) I/Os.

1.3.1.3 Hashing

Another much used technique for indexing is hashing. Hashing is faster
than B-trees by sacrificing in functionality. The functionality of hashing is
limited when compared to B-trees because elements are stored unsorted and
thus there is no way to support range queries or find the successor/predecessor
of an element. In hashing, the basic idea is to map each object to a number
corresponding to the location inside an array by means of a hash function. It is
not our intention to describe hash functions and thus we refer the interested
reader to [16] and the references therein for more information on practical
hash functions.

The largest problem with hashing is collision resolution, which happens
when two different elements hash to the same location. The hash function
hashes elements within buckets, which in this case is a block. When the bucket
becomes full then either a new overflow bucket is introduced for the same
hashed value or a re-hashing is performed. All buckets without the overflowing



Access Methods 9

4 8 9 5

13

h1(x) = x mod 4

overflow buckets

6

7

11

split

(a) Fill factor 8

12
< 0.7 (b) Insert 17, fill factor 9

12
> 0.7

8 9 5

13

17

6

7

11

split

4

h2(x) = x mod (2 · 4)

9 5

13

17

6

7

11

4 8

split

(c) fill factor 9

15
< 0.7

00 01 10 11 00 01 10 11 000 01 10 11 100

FIGURE 1.2: Assuming that the critical fill factor is 0.7, then when 17 is
inserted in (a), an overflow bucket is introduced (b) since the bucket corre-
sponding to bits 01 has no space. After the insertion, the fill factor is > 0.7
and as such we construct a new hash function h2(x) and introduce a new
bucket (c). h2(x) is applied to grey buckets (3 bits) while h1(x) is applied to
white buckets (2 bits) only.

buckets constitute the primary area. Two well known techniques are linear
hashing [38] and extendible hashing [18]. The first method extends the
hash-table by one when the fill factor of the hash-table (the number of elements
divided by the size of the primary area) goes over a critical value. The second
one extends the primary area as soon as an overflowing bucket is about to be
constructed.

In linear hashing, data is placed in a bucket according to the last k bits
or the last k + 1 bits of the hash function value of the element. A pointer
split keeps track of this boundary. The insertion of a new element may cause
the fill factor to go over the critical value, in which case the bucket on the
boundary corresponding to k bits is split into two buckets corresponding to
k + 1 bits. The number of buckets with k bits is decreased by one. When all
buckets correspond to k + 1 bits, another expansion is initiated constructing
new buckets with k + 2 bits. Note that there is no relationship between the
bucket in which the insertion is performed and the bucket that is being split.
In addition, linear hashing uses overflow buckets although it is expected that
these buckets will be just a few. The time complexity for a search and update
is O(1) expected. In Figure 1.2 an example of an insertion is depicted.

On the other hand, extendible hashing does not make use of overflow
buckets. It uses a directory that may index up to 2d buckets, where d, the
number of bits, is chosen so that at most B elements exist in each bucket.
A bucket may be pointed by many such pointers from the directory since
they may be indexed by using less than d bits. An insertion either causes
the directory to double or some of entries of the directory are changed. For
example, a bucket pointed by eight entries will be split and both new buckets
are pointed by four entries. In case a bucket is pointed only by one entry and
needs to be split then the directory needs to be doubled. The advantage of
extendible hashing is that it never has more than two disk accesses for any



10 Book title goes here

00

01

10

11

LSBs

2
4 12 32 16

1 5 21 13

10

7 15 19

2

2

2

2

global depth

local depth

Insert 20

000

LSBs

3
32 16

1 5 21 13

10

7 15 19

3

2

2

2

global depth

local depth

4 12 20

3

001

010

011

100

101

110

111

FIGURE 1.3: An example of reorganization for extendible hashing. After
the insertion of 20 the first bucket overflows and we construct a new table of
global depth 3; that is with 23 entries. Only the overflowing bucket is split
and has local depth 3, thus needing 3 bits to navigate. The buckets that did
not overflow need only 2 bits and thus 2 pointers point to them.

record since there are no overflow buckets to traverse. The main problems
with this variation on hashing are total space utilization and the need for
massive reorganization (of the table). In Figure 1.3 an example of such an
reorganization for an insertion is is depicted.

There are many other hashing schemes with their own advantages and
disadvantages. Cuckoo hashing [45] is one such scheme which is very promising
because of its simplicity. The basic idea is to use two hash functions instead
of only one and thus provide two possible locations in the hash-table for each
element. When a new element is inserted, it is stored in one of the two possible
locations provided by the hash functions. If both of these locations are not
empty, then one of them is kicked out. This new displaced element is put into
its alternative position and the process continues until a vacant position has
been found or until many such repetitions have been performed. In the last
case, the table is rebuilt with new hash functions. Searching for an element
requires inspection of just two locations in the hash-table, which takes constant
time in the worst case.

1.3.2 Spatial Access Methods

The indexing schemes discussed previously support only one dimension.
However, in applications such as Geographic Information Systems (GIS), ob-
jects are associated with spatial information (e.g., latitude/longitude coordi-
nates). In such a case, it is important to organize the data taking into con-



Access Methods 11

sideration the spatial information. Although there are numerous proposals to
handle spatial objects, in this chapter we will focus on the R-tree index [24],
which is one of the most successful and influential spatial access methods,
invented to organize large collections of rectangles for VLSI design.

1.3.2.1 The R-tree

R-trees are hierarchical access methods based on B+-trees. They are used
for the dynamic organization of a set of d-dimensional geometric objects rep-
resenting them by the minimum bounding d-dimensional rectangles (for sim-
plicity, MBRs in the sequel). Each node of the R-tree corresponds to the MBR
that bounds its children. The leaves of the tree contain pointers to the database
objects instead of pointers to children nodes. The nodes are implemented as
disk blocks. It must be noted that the MBRs that surround different nodes
may overlap each other. Besides, an MBR can be included (in the geometrical
sense) in many nodes, but it can be associated to only one of them. This means
that a spatial search may visit many nodes before confirming the existence of
a given MBR. An R-tree of order (m,M) has the following characteristics:

• Each leaf node (unless it is the root) can host up to M entries, whereas
the minimum allowed number of entries is m ≤ M/2. Each entry is of
the form (mbr, oid), such that mbr is the MBR that spatially contains
the object and oid is the object’s identifier.

• The number of entries that each internal node can store is again between
m ≤ M/2 and M . Each entry is of the form (mbr, p), where p is a pointer
to a child of the node and mbr is the MBR that spatially contains the
MBRs contained in this child.

• The minimum allowed number of entries in the root node is 2.

• All leaves of the R-tree are located at the same level.

An R-tree example is shown in Figure 1.4 for the set of objects shown on
the left. It is evident that MBRs R1 and R2 are disjoint, whereas R3 has an
overlap with both R1 and R2. In this example we have assumed that each
node can accommodate at most three entries. In a real implementation, the
capacity of each node is determined by the block size and the size of each
entry which is directly related to the number of dimensions.

The R-tree has been designed for dynamic data sets and, therefore, it
supports insertions and deletions. To insert a new object’s MBR, the tree is
traversed top-down, and at each node a decision is made to select a branch
to follow next. This is repeated until we reach the leaf level. The decision
we make at each node is based on the criterion of area enlargement. This
means that the new MBR is assigned to the entry which requires the least
area enlargement to accommodate it. Other variations of the R-tree, such as
the R∗-tree [8] use different criteria to select the most convenient path from



12 Book title goes here

�������
�������
�������
�������

�������
�������
�������
�������

R2

R1

R3

R1 R2 R3

c d

e

f

g

ih

a b c d e f h i

ba

g

FIGURE 1.4: R-tree example.

the root to the leaf level. Upon reaching a leaf L, the new MBR is inserted, if
L can accommodate it (there is at least one available slot). Otherwise, there
is a node overflow and a node split occurs, meaning that a new node L′ is
reserved. Then, the old entries of L (including the new entry) are distributed
to two nodes L and L′. Note that a split at a leaf may cause consecutive splits
in the upper levels. If there is a split at the root then the height of the tree
increases by one.

The split operation must be executed carefully to maintain the good prop-
erties of the tree. The primary concern while splitting is to keep the overlap
between the two nodes as low as possible. This is because the higher the
overlap the larger the number of nodes that will be accessed during a search
operation. In the original R-tree proposal, three split policies have been stud-
ied, namely, exponential, quadratic and linear.

Exponential split. All possible groupings are exhaustively tested and the
best one, with respect to the minimization of the MBR enlargement, is
chosen.

Quadratic split. Choose two objects as seeds for the two nodes, where these
objects if put together create as much empty space as possible. Then,
until there are no remaining objects, insert the object for which the
difference of dead space if assigned to each of the two nodes is maximized
in the node that requires less enlargement of its respective MBR.

Linear split. Choose two objects as seeds for the two nodes, where these
objects are as far apart as possible. Then, consider each remaining ob-
ject in a random order and assign it to the node requiring the smallest
enlargement of its respective MBR.

The quadratic split policy is the best choice that balances efficiency and ef-
fectiveness and, therefore, it is widely used in R-tree implementations.

In a deletion, an entry is removed from the leaf level of the tree, which
may cause a node underflow. In this case, re-insertion of entries is applied
to reduce the space requirements of the tree. In general, a deletion has the



Access Methods 13

Algorithm RangeSearch (Node N , Region Q)
Input: root mode N , query region Q
Output: answer set A

1. if (N is not a leaf node)
2. examine each entry E of N to find those E.mbr that intersect Q
3. foreach such entry E call RangeSearch(E.ptr,Q)
4. else // N is a leaf node
5. examine all entries E and find those for which E.mbr intersects Q
6. add these entries to the answer set A
7. endif

FIGURE 1.5: The R-tree range search algorithm.

opposite effect than that of an insertion. In both cases, the path from the root
to the leaf level that was affected by the operation must be adjusted properly
to reflect the changes performed in the tree. Thus, the deletion of an entry
may cause a series of deletions that propagate up to the root of the R-tree.
If the root has only one child then it is removed and the height of the tree
decreases be one.

In the sequel, we examine briefly how search is performed in an R-tree. We
will center our focus to range queries, where the user defines a query region Q
and the answer to the query contains the spatial objects that intersect Q. For
example, in Figure 1.4, the query region is shown filled, whereas the answer to
the query is composed of the objects b and e. The outline of the algorithm that
processes range queries in an R-tree is given in Figure 1.5. For a node entry
E,E.mbr denotes the corresponding MBR and E.p the corresponding pointer
to the next level. If the node is a leaf, then E.p denotes the corresponding
object identifier (oid). We note that the rectangles that are found by range
searching constitute the candidates of the filtering step. The actual geometric
objects intersected by the query rectangle have to be found in a refinement
step by retrieving the objects of the candidate rectangles and testing their
intersection.

1.3.2.2 R-tree Bulk Loading

Recall that bulk loading is the process of building an index by taking
into consideration the data set which is known in advance. Thus, usually this
operation is applied for static data sets or when insertions and deletions are
rare. In most of the cases, when bulk loading is applied, the leaf level of the



14 Book title goes here

tree is created first. Then, the upper tree levels can be built one by one until
we reach the root.

The first bulk-loading algorithm for R-trees proposed in [47] first sorts the
data objects by using the x coordinate of their center. If objects are points
rather than rectangles, then the x coordinate of the point is used. By using
the sorted order, the leaves may be formed by placing the first M entries in
the first leaf, until no more data is available. This way, all leaves will be 100%
full, except maybe of the last leaf which may contain less.

Another contribution to this problem is reported in [30]. The algorithm is
similar to that of [47] in that again a sorting is performed in order to build
the leaf level of the tree. Sorting is performed by using the Hilbert value of
the data objects’ centroids. According to the performance evaluation given in
[30] this approach shows the best overall performance with respect to the cost
of performing queries.

STR (Sort-Tile-Recursive) is a bulk-loading algorithm for R-trees proposed
by Leutenegger et al. [32]. Let n be a number of rectangles in two-dimensional
space. The basic idea of the method is to tile the address space by using V
vertical slices, so that each slice contains enough rectangles to create approx-
imately

√
n/M nodes, where M is the R-tree node capacity. Initially, the

number of leaf nodes is determined, which is L = dn/Me. Let V =
√
L. The

rectangles are sorted with respect to the x-coordinate of the centroids, and V
slices are created. Each slice contains V ·M rectangles, which are consecutive
in the sorted list. In each slice, the objects are sorted by the y-coordinate of
the centroids and are packed into nodes (placing M objects in a node). Exper-
imental evaluation performed in [32] has demonstrated that the STR method
is generally better than previously proposed bulk-loading methods. However,
in some cases the Hilbert packing approach performs marginally better.

1.3.2.3 R-tree Variations and Extensions

Several R-tree variations have been proposed in the literature, to improve
the performance of queries. Here we discuss briefly three successful variations
that show better performance than the original proposal by Guttman. These
variations differ in several aspects like the way insertions and deletions are
performed, the optimization criteria being used, the split policy applied and
the storage utilization.

The R+-tree. R+-trees were proposed as an alternative that avoids visit-
ing multiple paths during point location queries, aiming at the improvement
of query performance [51]. Moreover, MBR overlapping of internal modes is
avoided. This is achieved by using the clipping technique. In other words,
R+-trees do not allow overlapping of MBRs at the same tree level. In turn,
to achieve this, inserted objects have to be divided in two or more MBRs,
which means that a specific object’s entries may be duplicated and redun-
dantly stored in several nodes. Therefore, a potential limitation of R+-trees is
the increased space requirements due to redundancy.



Access Methods 15

The R∗-tree. R∗-trees [8] were proposed in 1990 but are still very well re-
ceived and widely accepted in the literature as a prevailing performance-wise
structure that is often used as a basis for performance comparisons. As al-
ready discussed, the R-tree is based solely on the area minimization of each
MBR. On the other hand, the R∗-tree goes beyond this criterion and exam-
ines the following: (i) minimization of the area covered by each MBR, (ii)
minimization of the overlap between MBRs, (iii) minimization of MBR mar-
gins (perimeters) and (iv) maximization of storage utilization. The R∗-tree
follows an engineering approach to find the best possible combinations of the
aforementioned criteria. This approach is necessary, because the criteria can
become contradictory. For instance, to keep both the area and overlap low,
the lower allowed number of entries within a node can be reduced. Therefore,
storage utilization may be impacted. Also, by minimizing the margins so as
to have more quadratic shapes, the node overlapping may be increased.

The Hilbert R-tree. The Hilbert R-tree [31] is a hybrid structure based
on the R-tree and the B+-tree. Actually, it is a B+-tree with geometrical ob-
jects being characterized by the Hilbert value of their centroid. The structure
is based on the Hilbert space-filling curve . It has been shown in [42] that
the Hilbert space-filling curve preserves well the proximity of spatial objects.
Entries of internal tree nodes are augmented by the largest Hilbert value of
their descendants. Therefore, an entry e of an internal node is a triple of the
form < mbr,H, p > where mbr is the MBR that encloses all the objects in the
corresponding subtree, H is the maximum Hilbert value of the subtree, and p
is the pointer to the next level. Entries in leaf nodes are exactly the same as
in R-trees, R+-trees, and R∗-trees and are of the form < mbr, oid >, where
mbr is the MBR of the object and oid the corresponding object identifier.

1.3.3 Managing Time-Evolving Data

Time information plays a significant role in many applications. There are
cases where in addition to the data items per se, the access method must main-
tain information regarding the time instance that a particular event occurred.
For example, if one would like to extract statistical information regarding the
sales of a particular product during the last five years, the database must
maintain historical information. As another example, consider an application
that tracks the motion patterns of a specific species. To facilitate this, each
location must be associated with a time-stamp. Thus, by inspecting the lo-
cation in consecutive time-stamps, one may reveal the motion pattern of the
species. For the rest of the discussion, we assume that time is discrete and
each timestamp corresponds to a different time instance.

One of the first access methods that was extended to support time infor-
mation is the B-tree and its variations. The most important extensions are
the following:

The time-split B-tree [39]. This structure is based on the write-once B-tree
access method proposed in [17] and it is used for storing multi-version data



16 Book title goes here

on both optical and magnetic disks. The only operations allowed are insertions
and searches, whereas deletions are not supported. The lack of deletions in
conjunction with the use of two types of node splits (normal and time-based)
are the main reasons for the structure’s space and time efficiency. However,
only exact-match queries are supported efficiently

The fully-persistent B+-tree [36]. In contrast to the time-split B-tree,
the fully persistent B+-tree supports deletions in addition to insertions and
searches. Each record is augmented by two fields tstart and tend, where tstart is
the timestamp of the insertion and tend is the timestamp when the record has
been deleted, updated or copied to another node. This way, the whole history
can be recorded and queries may involve the past or the present status of the
structure.

The multi-version B-tree [6]. This access method is asymptotically opti-
mal and allows insertions and deletions only at the last (current) timestamp,
whereas exact-match and range queries may be issued for the past as well.
The methodology proposed in [6] may be used for other access methods, when
there is a need to transform a simple access method to a multi-version one.

There is also significant research contributions in providing time-aware
spatial access methods. An index that supported space and time is known as
spatiotemporal access method. Spatiotemporal data are characterized by
changes in location or shape with respect to time. Supporting time increases
the number of query types that can be posed by users. A user may focus on a
specific time instance or may be interested in a time interval. Spatiotemporal
queries that focus on a single time instance are termed time-slice queries,
whereas if they focus on a time interval, they are termed time interval
queries. If we combine these choices with spatial predicates and the ability
to query the past, the present, or the future, spatiotemporal queries can be
very complex, and significant effort is required to process them.

A large number of the proposed spatiotemporal access methods are based
on the well-known R-tree structure. Below we discuss briefly some of them.

The 3D R-tree [53]. In this index, time is considered as just another di-
mension. Therefore, a rectangle in 2D becomes a box in 3D. The 3D R-tree
approach assumes that both ends of the interval [tstart, tend) of each rectangle
are known and fixed. If the end time tend is not known, this approach does not
work well, due to the use of large MBRs leading to performance degradation
with respect to queries. In addition, conceptually, time has special character-
istic, i.e., it increases monotonically. This suggests the use of more specialized
access methods.

The partially-persistent R-tree [34]. This index is based on the concept
of partial persistency [35]. It is assumed that in spatiotemporal applications,
updates arrive in time order. Moreover, updates can be performed only on
the last recorded instance of the database, in contrast to general bitemporal
data. The partially-persistent R-tree is a directed acyclic graph of nodes with
a number of root nodes, where each root is responsible for recording a subse-



Access Methods 17

quent part of the ephemeral R-tree evolution. Object records are stored in the
leaf nodes of the PPR-tree and maintain the evolution of the ephemeral R-tree
data objects. As in the case of the fully-persistent B+-tree, each data record
is augmented to include the two lifetime fields tstart and tend. The same ap-
plies to internal tree nodes, which maintain the evolution of the corresponding
directory entries.

The multi-version 3D R-tree [52]. This structure has been designed to
overcome the shortcomings of previously proposed techniques. It consists of
two parts: a multi-version R-tree and an auxiliary 3D R-tree built on the leaves
of the former. The multi-version R-tree is an extension of the multi-version
B-tree proposed by Becker et al. [6]. The intuition behind the proposed access
method is that time-slice queries can be directed to the multi-version R-tree,
whereas time-interval queries can be handled by the 3D R-tree.

1.4 Advanced Topics

In this section, we discuss some advanced topics related to indexing. In
particular, we focus on three important and challenging issues that attract
research interest mainly due to their direct impact on performance and because
they radically change the way that typical indexing schemes work. Namely,
these topics are: (i) cache-oblivious indexing, (ii) on-line indexing and (iii)
adaptive indexing.

1.4.1 Cache-Oblivious Access Methods and Algorithms

In 1999 Frigo et al. [20] introduced a new model for designing and analyzing
algorithms and data structures taking into account memory hierarchies. This
is the cache-oblivious model, which as its name implies, it is oblivious
to the parameters as well to some architectural characteristics of the memory
hierarchy. Data structures designed in this model do not know anything about
the memory hierarchy but have performance which is comparable to data
structures that have been designed with knowledge of the particular memory
hierarchy. In a nutshell, this is accomplished by laying out the data structure
over an array which is cache-oblivious by default. The main problem is how
to design this layout and how to maintain it when it is subjected to update
operations. The main advantage of these indexing schemes (an example is the
cache oblivious B-tree [9]) is not only their simplicity and portability among
different platforms but also their innate ability to work optimally in all levels
of the memory hierarchy.



18 Book title goes here

1.4.2 On-line and Adaptive Indexing

Traditional physical indexing building follows an off-line approach to an-
alyzing workload and creating the data structures to enable efficient query
processing. More specifically, typically, a sample workload is analyzed with a
view to selecting the indices to be built with the help of auto-tuning tools (e.g.,
[14, 2, 56]). This is an expensive process, especially for very large databases.
On-line and adaptive indexing have introduced a paradigm shift, where indices
are created on the fly during query processing. In this way, database systems
avoid a complex and time-consuming process, during which there is no index
support, and can adapt to dynamic workloads. We draw a distinction between
on-line and adaptive indexing following the spirit of [28]. According to that
distinction, on-line indexing monitors the workload and creates (or drops) in-
dices on-line during query execution (e.g., [13, 40]). Adaptive indexing takes
one step further: in adaptive indexing the process of index building is blended
with query execution through extensions to the logic of the operators in the
query execution plan (e.g., [25, 23]). In the sequel, we discuss briefly these two
approaches which differ significantly from the typical bulk-loading process for
index building.

On-line Indexing. The paradigm of on-line indexing solutions departs from
traditional schemes in that the index tuning mechanism is always running. A
notable example of such category is described in [13], where the query engine is
extended with capabilities to capture and analyze evidence information about
the potential usefulness of indices that have not been created thus far. Another
interesting approach is soft-indices [40], which build on top of an index-tuning
mechanism that continuously collects statistical information and periodically
solves the NP-hard problem of index selection. Similarly to adaptive indexing,
the new decisions are enforced during query processing but without affecting
the operator implementation.

Adaptive Indexing. The most representative form of adaptive indexing is
database cracking [25], which is mostly tailored to (in-memory) column-
stores [1]. Database cracking revolves around the concept of continuous phys-
ical re-organization taking place at runtime. Such physical re-organization
is automated, in the sense that does not involve human involvement, does
not contain any off-line preparatory phase, and may not build full indices.
The latter means that the technique is not only adaptive, but also relies
on partial indexing that is refined during workload execution in an incre-
mental manner. To give an example, suppose that a user submits a range
query on the attribute R.A for the first time and the range predicate is
value1 < R.A < value2. According to database cracking, during execution,
a copy of R.A will be created, called the cracker column of R.A. The data
in that cracker column is physically re-organized and is split in three parts:
(i)value1 ≤ R.A; (ii) value1 < R.A < value2; and (iii) R.A ≤ value2. More-
over, an AVL tree, called cracker index is created to maintain the partitioning
information. This process of physical re-organization continues with every



Access Methods 19

query. Overall, each query may benefit from the cracking imposed by previ-
ous queries and the new splits introduced may be of benefit for subsequent
queries. In other words, the access methods are created on the fly and are
query driven, so that they eventually match the workload. Database cracking
is characterized by low initialization overhead, is continuously refined and may
well outperform techniques that build full indices, because the latter need a
very large number of queries in order the amortized cost of full index build-
ing to be outweighed. Cracking can be extended to support updates [26] and
complex queries [27].

Nevertheless, database cracking may converge slowly and is query pattern-
sensitive. Such limitations are mitigated by combining traditional indexing
techniques (B-trees) with database cracking, resulting in the so-called adaptive
merging [23]. The key distinction between the two approaches is that adap-
tive merging relies on merging rather than on partitioning, and that adaptive
merging is applicable to disk-based data as well.

1.5 Research Issues

The field of access methods continues to be one of the most important
topics in database management systems, mainly because of its direct impact
on query performance. Although the field has been active for several decades,
modern applications pose novel challenges that must be addressed carefully
toward efficient processing. Here, we discuss briefly some of these challenges.

High-dimensional data. One of the most important challenges emerges
when the number of attributes (dimensions) increases significantly. R-trees
and related indexing schemes perform quite well for dimensionalities up to
15 or 20. Above this level, the dimensionality curse renders indexing difficult
mainly due to concentration of measure effect. Unfortunately, the cases where
high dimensionalities appear are not few. For example, in multimedia data
management, images are often represented by feature vectors, each contain-
ing hundreds of attributes. There are several proposals in the literature to
improve performance in these cases, trying to reduce the effects of dimension-
ality curse. For example, the X-tree access method proposed in [10], introduces
the concept of supernode and avoids node splits if these cannot lead to a
good partitioning. As another example, Vector Approximation File [55] is an
approximation method that introduces error in query processing. For static
data sets, dimensionality reduction may also be applied to first decrease the
number of dimensions in order to be easier for access methods to organize the
data.

Modern hardware. Hardware is evolving, and although the magnetic disk
is still the prevailing secondary storage medium, new types of media have



20 Book title goes here

been introduced, such as solid-state drives. Also, processors enjoy a dra-
matic change by the ability to include multiple cores in the same chip. These
changes in hardware bring the necessity to change the way we access and or-
ganize the data. For example, solid-state drives do not suffer from the seek
time problem and, therefore, the impact of I/O time on the performance be-
comes less significant. This means that operations that are I/O-bounded with
magnetic disks may become CPU-bounded with modern hardware, due to the
reduction in I/O time. The indexing problem becomes even more challenging
as new processing and storage components like GPUs and FPGAs are being
used more often. The new access methods must take into account the specific
features of new technology.

Parallelism and distribution. The simultaneous use of multiple instances
of resources such as memory, CPU and disks brings a certain level of flexibility
to query processing, but it also creates significant challenges in terms of overall
efficiency. By enabling concurrent execution of tasks we are facing the problem
of coordinating these tasks and also the problem of determining where data
resides. Therefore, parallel and distributed access methods are needed that
are able to scale well with the number of processors. In addition to scalability,
these techniques must avoid bottlenecks. For example, if we simply take an
access method and place each block to a different processor, the processor that
hosts the root will become a hot spot. Although there are many significant
contributions for parallel/distributed indexing (e.g., distributed hash-tables),
modern programming environments such as MapReduce on clusters or multi-
core CPUs and GPUs, call for a reconsideration of some concepts to enable
the maximum possible performance gains and scalability.

On-line and adaptive indexing. On-line and adaptive indexing is technol-
ogy in evolution; thus multiple aspects require further investigation. Among
the most important ones, we highlight the need of investigation of concur-
rency control in database cracking techniques, the most fruitful combination
of off-line, on-line and adaptive techniques, and the application of database
cracking to row stores. Finally, as new indexing methodologies are being pro-
posed, we need a comprehensive benchmark in order to assess the benefits and
weaknesses of each approach; a promising first step towards this direction is
the work in [29].

1.6 Summary

Access methods are necessary toward efficient query processing. The suc-
cess of an access method is characterized by its ability to organize data in
such a way that locality of references is enhanced. This means that data that
are located in the same block are likely to be requested together. In this chap-



Access Methods 21

ter, we discussed some fundamental access methods that enjoy a wide-spread
use by the community due to their simplicity and their excellent performance.
Initially, we discussed some important features of access methods and then we
described B-trees and hashing which are the prevailing indexing schemes for
one-dimensional data and R-trees which is the most successful family for in-
dexing spatial and other types of multi-dimensional data. For R-trees we also
described briefly bulk-loading techniques, which is an important operation for
index creation when the data set is available. Finally, we touched the issues
of on-line and adaptive indexing, which enjoy a growing interest due to the
ability to adapt dynamically based on query workloads. Access methods will
continue to be a fundamental research topic in data management. In the era
of big data, there is a consistent need for fast data management and retrieval,
and thus, indexing schemes are the most important tools in this direction.

Defining Terms

B-tree: A tree-based index that allows queries, insertions and deletions in
logarithmic time.

Bulk loading: The insertion of a known before-hand sequence of objects into
a set of objects.

Cache-oblivious model: A model that supports the design of algorithms
and data structures for memory hierarchies without knowing its defining
parameters.

Cuckoo hashing: Hashing that uses two hash functions to guarantee worst-
case O(1) accesses per search.

Database cracking: A form of continuous physical re-organization taking
place at runtime.

Disk access: Reading (writing) a block from (to) the disk.

Disk-based access method: An access method that is designed specifically
to support access for disk-resident data.

Disk head: The electronic component of the disk responsible for reading and
writing data from and to the magnetic surface.

Dynamic access method: An access method that allows insertions, dele-
tions and updates in the stored data set.

Extendible hashing: A hashing method that doubles the index size to avoid
overflowing.



22 Book title goes here

Fixed-size record: A record with a predetermined length which never
changes.

Hashing: An index method that uses address arithmetic to locate elements.

Linear hashing: A hashing method that extends the main index by one each
time the fill factor is surpassed.

Multi-version data: Data augmented by information about the time of
their insertion, deletion or update.

On-line indexing: An indexing scheme where the index tuning mechanism
is always running.

R-tree: A hierarchical access method that manages multi-dimensional ob-
jects.

Random access: The operation of fetching into main memory a randomly
selected block from disk or other media.

Re-insertion: The operation of re-inserting some elements in a block. El-
ements are first removed from the block and then inserted again in the
usual manner.

Semi-dynamic access method: An access method that supports queries
and insertions of new items; it does not support deletions.

Seek time: Time required for the disk heads to move to the appropriate
track.

Time-slice query: A query posed on a specific timestamp.

Time-interval query: A query that refers to a time interval defined by two
timestamps.

Node split: The operation that takes place when a node overflows, i.e., there
is no room to accommodate a new entry.

Solid-state drive: A data storage device that uses integrated circuits solely
to store data persistently.

Spatiotemporal data: Data containing both spatial and temporal informa-
tion.

Static access method: An access method that does not support insertions,
deletions and updates.

Supernode: A tree node with a capacity which is a multiple of the capacity
of a regular node.

Variable-size record: A record whose length may change due to to changes
in the size of individual attributes.



Access Methods 23

Further Information

There is a plethora of resources that the interested reader may consult to
grasp a better understanding of the topic. Since access methods are related
to physical database design, the book of Lightstone, Teorey, and Nadeau [37]
may be of interest to the reader. For a thorough discussion of B-trees and
related issues we recommend the article of Graefe in [22]. Also, almost every
database-oriented textbook contains one or more chapters devoted to indexing.
For example, Chapters 8-11 of [46] cover indexing issues in detail, in particular
B-trees and hashing, in a very nice way.

For a detailed discussion of spatial access methods the reader is referred
to two books from Samet, [49] and [50]. In [49] the reader will find an in-
depth examination of indexing schemes that are based on space portioning
(e.g., linear quadtrees). Also, in [50], in addition to the very detailed study
of spatial access methods the author presents metric access methods, where
objects reside in a metric space rather than in a vector space. For a thorough
discussion of the R-tree family the reader is referred to the book of Manolopou-
los, Nanopoulos, Papadopoulos and Theodoridis[41]. We also mention a useful
survey paper of Gaede and Günther [21] which covers indexing schemes that
organize multidimensional data.

In many applications, time information is considered very important and
thus it should be recorded. For example, in a fleet management application, we
must know the location of each vehicle and the associated timestamp. There
are many approaches to incorporate time information into an index. Some of
them were briefly discussed in Section 1.3.3. The reader who want to cover
this issue more thoroughly may consult other more specialized resources such
as the survey of Salzberg and Tsotras [48] as well as the article of Nguyen-
Dinh, Aref and Mokbel [44]. In addition to the indexing schemes designed
to support historical queries, some access methods support future queries.
Obviously, to answer a query involving the near future, some information
about the velocities of moving objects is required. The paper by Šaltenis,
Jensen, Leutenegger, Scott and Lopez [54] describes such an index.

The previous resources cover more or less established techniques. For
modern research issues in the area, the best sources are the proceedings of
leading database conferences and journals. In particular, the proceedings of
the major database conferences ACM SIGMOD/PODS, VLDB, IEEE ICDE,
EDBT/ICDT, ACM CIKM and SSDBM contain many papers related to access
methods and indexing. Also, we recommend the journals ACM Transactions
on Database Systems, IEEE Transactions on Knowledge and Data Engineer-
ing, The VLDB Journal and Information Systems where, in most cases, the
published articles are enhanced versions of the corresponding conference pa-
pers.



24 Book title goes here



Bibliography

[1] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. Column
oriented database systems. PVLDB, 2(2):1664–1665, 2009.

[2] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P.
Marathe, Vivek R. Narasayya, and Manoj Syamala. Database tuning
advisor for microsoft sql server 2005. In Proc. VLDB, pages 1110–1121,
2004.

[3] Lars Arge. The buffer tree: A technique for designing batched external
data structures. Algorithmica, 37(1):1–24, 2003.

[4] Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval
management. SIAM J. Comput., 32(6):1488–1508, 2003.

[5] Rudolf Bayer and Edward M. McCreight. Organization and maintenance
of large ordered indices. Acta Informatica, 1:173–189, 1972.

[6] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and
Peter Widmayer. On optimal multiversion access structures. In Proc.
3rd International Symposium on Advances in Spatial Databases, pages
123–141, 1993.

[7] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and
Peter Widmayer. An asymptotically optimal multiversion b-tree. The
VLDB Journal, 5(4):264–275, 1996.

[8] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The r*-tree: an efficient and robust access method for points and
rectangles. In Proc. ACM SIGMOD, pages 322–331, 1990.

[9] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-
oblivious b-trees. SIAM J. Comput., 35(2):341–358, 2005.

[10] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The x-tree:
An index structure for high-dimensional data. In Proc. VLDB, pages
28–39, 1996.

[11] Gerth Stølting Brodal, Konstantinos Tsakalidis, Spyros Sioutas, and
Kostas Tsichlas. Fully persistent b-trees. In SODA, pages 602–614, 2012.

25



26 Book title goes here

[12] Gerth Stlting Brodal, George Lagogiannis, Christos Makris, Athanasios
Tsakalidis, and Kostas Tsichlas. Optimal finger search trees in the pointer
machine. Journal of Computer and System Sciences, 67(2):381 – 418,
2003.

[13] Nicolas Bruno and Surajit Chaudhuri. An online approach to physical
design tuning. In ICDE, pages 826–835, 2007.

[14] Surajit Chaudhuri and Vivek R. Narasayya. Self-tuning database sys-
tems: A decade of progress. In Proc. VLDB, pages 3–14, 2007.

[15] Douglas Comer. Ubiquitous b-tree. ACM Computing Surveys, 11(2):121–
137, 1979.

[16] Martin Dietzfelbinger. Universal hashing and k-wise independent ran-
dom variables via integer arithmetic without primes. In Proc. 13th An-
nual Symposium on Theoretical Aspects of Computer Science, STACS ’96,
pages 569–580, 1996.

[17] Malcolm C Easton. Key-sequence data sets on indelible storage. IBM J.
Res. Dev., 30(3):230–241, 1986.

[18] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond
Strong. Extendible hashing: a fast access method for dynamic files. ACM
Trans. Database Syst., 4(3):315–344, 1979.

[19] Paolo Ferragina and Roberto Grossi. The string b-tree: a new data struc-
ture for string search in external memory and its applications. J. ACM,
46(2):236–280, 1999.

[20] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ra-
machandran. Cache-oblivious algorithms. In IEEE FOCS, pages 285–298,
1999.

[21] Volker Gaede and Oliver Günther. Multidimensional access methods.
ACM Computing Surveys, 30(2):170–231, 1998.

[22] Goetz Graefe. Modern b-tree techniques. Found. Trends databases,
3(4):203–402, 2011.

[23] Goetz Graefe and Harumi A. Kuno. Self-selecting, self-tuning, incremen-
tally optimized indexes. In EDBT, pages 371–381, 2010.

[24] Antonin Guttman. R-trees: a dynamic index structure for spatial search-
ing. In Proc. ACM SIGMOD, pages 47–57, 1984.

[25] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database crack-
ing. In CIDR, pages 68–78, 2007.

[26] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating a
cracked database. In Proc. ACM SIGMOD, pages 413–424, 2007.



Access Methods 27

[27] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-organizing
tuple reconstruction in column-stores. In Proc. ACM SIGMOD, pages
297–308, 2009.

[28] Stratos Idreos, Stefan Manegold, and Goetz Graefe. Adaptive indexing
in modern database kernels. In EDBT, pages 566–569, 2012.

[29] Ivo Jimenez, Jeff LeFevre, Neoklis Polyzotis, Huascar Sanchez, and Karl
Schnaitter. Benchmarking online index-tuning algorithms. IEEE Data
Eng. Bull., 34(4):28–35, 2011.

[30] Ibrahim Kamel and Christos Faloutsos. On packing r-trees. In CIKM,
pages 490–499, 1993.

[31] Ibrahim Kamel and Christos Faloutsos. Hilbert r-tree: An improved r-tree
using fractals. In Proc. VLDB, pages 500–509, 1994.

[32] Ibrahim Kamel and Christos Faloutsos. Str: a simple and efficient algo-
rithm for r-tree packing. In ICDE, pages 497–506, 1999.

[33] Alexis Kaporis, Christos Makris, George Mavritsakis, Spyros Sioutas,
Athanasios Tsakalidis, Kostas Tsichlas, and Christos Zaroliagis. Isb-tree:
A new indexing scheme with efficient expected behaviour. J. of Discrete
Algorithms, 8(4):373–387, 2010.

[34] George Kollios, Vassilis J. Tsotras, Dimitris Gunopoulos, Alex Delis, and
Marios Hadjieleftheriou. Indexing animated objects using spatiotemporal
access methods. IEEE Transactions on Knowledge and Data Engineering,
13(5):441–448, 2001.

[35] Anil Kumar, Vassilis J. Tsotras, and Christos Faloutsos. Designing access
methods for bitemporal databases. IEEE Transactions on Knowledge and
Data Engineering, 10(1):1–20, 1998.

[36] Sitaram Lanka and Eric Mays. Fully persistent b+-trees. In Proc. ACM
SIGMOD, pages 426–435, 1991.

[37] Sam S. Lightstone, Toby J. Teorey, and Tom Nadeau. Physical Database
Design: the database professional’s guide to exploiting indexes, views,
storage, and more. Morgan Kaufmann, 2007.

[38] Witold Litwin. Linear hashing: a new tool for file and table addressing.
In Proc. VLDB, VLDB ’80, pages 212–223, 1980.

[39] David Lomet and Betty Salzberg. Access methods for multiversion data.
In Proc. ACM SIGMOD, pages 315–324, 1989.

[40] Martin Lühring, Kai-Uwe Sattler, Karsten Schmidt, and Eike Schallehn.
Autonomous management of soft indexes. In ICDE Workshops, pages
450–458, 2007.



28 Book title goes here

[41] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopou-
los, and Y. Theodoridis. R-Trees: Theory and Applications. Springer-
Verlag, 2005.

[42] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz.
Analysis of the clustering properties of the hilbert space-filling curve.
IEEE Transactions on Knowledge and Data Engineering, 13(1):124–141,
2001.

[43] Minh Khoa Nguyen, Cosmin Basca, and Abraham Bernstein. B+hash
tree: optimizing query execution times for on-disk semantic web data
structures. In Proc. 6th International Workshop on Scalable Semantic
Web Knowledge Base Systems, SSWS’10, pages 96–111, 2010.

[44] Long-Van Nguyen-Dinh, Walid G. Aref, and Mohamed F. Mokbel. Spa-
tiotemporal access methods: part2 (2003-2010). IEEE Data Eng. Bull.,
33(2):46–55, 2010.

[45] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proc.
9th Annual European Symposium on Algorithms, ESA ’01, pages 121–133,
2001.

[46] Raghu Ramakrishnan and Johannes Gehrke. Database Management Sys-
tems. McGraw-Hill, 2002.

[47] Nick Roussopoulos and Daniel Leifker. Direct spatial search on pictorial
databases using packed r-trees. In Proc. ACM SIGMOD, pages 17–31,
1985.

[48] Betty Salzberg and Vassilis J. Tsotras. Comparison of access methods
for time-evolving data. ACM Computing Surveys, 31(2):158–221, 1999.

[49] Hanan Samet. The design and analysis of spatial data structures.
Addison-Wesley., 1990.

[50] Hanan Samet. Foundations of Multidimensional and Metric Data Struc-
tures. Morgan Kaufmann, 2005.

[51] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree:
A dynamic index for multi-dimensional objects. In Proc. VLDB, pages
507–518, 1987.

[52] Yufei Tao and Dimitris Papadias. Mv3r-tree: A spatio-temporal access
method for timestamp and interval queries. In Proc. VLDB, pages 431–
440, 2001.

[53] Yannis Theodoridis, Michalis Vazirgiannis, and Timos Sellis. Spatio-
temporal indexing for large multimedia applications. In Proc. 3rd IEEE
International Conference on Multimedia Computing and Systems, pages
441–448, 1996.



Access Methods 29

[54] Simonas Šaltenis, Christian S. Jensen, Scott T. Leutenegger, and
Mario A. Lopez. Indexing the positions of continuously moving objects.
In Proc. ACM SIGMOD, pages 331–342, 2000.

[55] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative
analysis and performance study for similarity-search methods in high-
dimensional spaces. In Proc. VLDB, pages 194–205, 1998.

[56] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J.
Storm, Christian Garcia-Arellano, and Scott Fadden. Db2 design advisor:
Integrated automatic physical database design. In Proc. VLDB, pages
1087–1097, 2004.




