
Decentralized execution of linear workflows over Web Services

Efthymia Tsamoura, Anastasios Gounaris and Yannis Manolopoulos

Department of Informatics, Aristotle University of Thessaloniki, Greece

Abstract

The development of workflow management systems (WfMSs) for the effective and efficient management of work-
flows in wide-area infrastructures has received a lot of attention in recent years. Existing WfMSs provide tools that
simplify the workflow composition and enactment actions, while they support the execution of complex tasks on
remote computational resources usually through calls to web services (WSs). Nowadays, an increasing number of
WfMSs employ pipelining during the workflow execution. In this work, we focus on improving the performance of
long running workflows consisting of multiple pipelined calls to remote WSs when the execution takes place in a
totally decentralized manner. The novelty of our algorithm lies in the fact that it considers the network heterogeneity,
and although the optimization problem becomes more complex, it is capable of finding an optimal solution in short
time. Our proposal is evaluated through a real prototype deployed on PlanetLab, and the experimental results are
particularly encouraging.

Key words: workflow optimization, web services ordering, decentralized execution, heterogeneous communication
costs, pipeline execution model, bottleneck cost metric

1. Introduction

The rapid spread of wide-area distributed infrastructures, such as the grid [1], has provided the opportunity to
scientific communities ranging from high-energy physics to astronomy and biology to perform computational and
data intensive experiments that were prohibitively expensive in the past. Such experiments are typically expressed
as workflows [2]; as a result, the development of mechanisms that provide effective and efficient orchestration and
management of workflows has become more than necessary [3]. This need has motivated the development of sev-
eral scientific workflow management systems (WfMSs), such as Taverna [4], Triana [5], Kepler [6], DAGMan [7],
UNICORE [8] and GridFlow [9].

Current WfMSs provide tools that simplify the workflow composition and enactment actions. Effective workflow
management capabilities, such as data provenance and user interaction, are also supported, while fault tolerance mech-
anisms are employed in order to identify and effectively handle failures. Furthermore, WfMSs may provide access to
remote data resources and perform complex tasks employing remote computational resources usually through calls to
web services (WSs). Nevertheless, one of the main problems in workflow execution, especially when remote calls to
WSs are involved, is that of poor performance in terms of throughput and response time. In this article, we focus on
improving the performance of long running workflows consisting of multiple calls to remote WSs, which is a common
scenario in e-science (e.g., [10]).

The performance of workflow execution is influenced by several factors including resource allocation, subtask
scheduling and the manner in which the constituent services communicate. Scheduling issues are particularly relevant
in workflows in which changing the order of WSs results in logically equivalent workflows with different performance
characteristics. When there are only a few alternatives, it may be practical for the workflow designers to manually
construct the optimal workflow. This is in line with the main concept of existing data integration platforms over
the web, such as Yahoo Pipes [11] and IBM DAMIA [12]. Both of them enable a Web 2.0 approach to compose
data intensive queries over distributed data sources, like RSS/Atom feeds and XML files and provide user friendly
tools for workflow composition; however, users have to explicitly specify the query processing logic procedurally,
which is not a trivial task especially for unskilled users. However, the number of alternative execution plans increases

Preprint submitted to Elsevier January 16, 2010



exponentially with the number of services, the order of which may change. As such, advanced workflow optimization
algorithms are required.

At a conceptual level, optimizing the order of WS calls in a workflow resembles the optimization in database
query plans. The way in which WSs communicate plays a crucial role. For example, if each WSs processes its
whole input before the next service starts its execution, then the optimal ordering depends on the service cost per
data item and the service selectivity, i.e., the average ratio between output and input data items. In [13], a very
effective algorithm has been proposed to solve this problem. However, typical e-science experiments analyze data in
the range of hundreds megabytes to petabytes and it is common each service to process data items (or tuples following
the database terminology) independently. In this case, it is more efficient to execute the workflow in a pipelined
fashion rather than sequentially. Pipelined execution allows multiple remote services to process different data items
simultaneously and can greatly reduce the response time by increasing the throughput. In fact, the response time in
pipelined execution is determined by the bottleneck WS, i.e., the WS that spends the most time per input tuple, and
Shrivastava et. al. [14] have proposed an efficient algorithm for this problem.

A main limitation of existing WfMSs (e.g., [4]) and state-of-the-art optimization algorithms, such as the one in
[14], is that, even when they provide support for pipelined execution, they assume that each WS passes its results to
the next WS through an intermediary or a coordinator. This flexibility comes at the expense of additional complexity,
given that the heterogeneous transmission times between WSs must be taken into account. In this work we investigate
the scenario in which WSs communicate directly with each other, so that the execution is rendered decentralized.
The main contribution of our work is twofold: (a) the proposal of a novel WS ordering algorithm for improving
the response time of WS workflows executed in a pipelined fashion assuming decentralized execution, and (b) the
performance evaluation through real large scale experiments with a view to obtaining clear insights into the actual
benefits of adopting our algorithm. The real measurements are particularly encouraging, since our algorithm can
improve on network heterogeneity-oblivious approaches by up to an order of magnitude.

The remainder of this article is structured as follows. Section 2 discusses the related work. The problem we deal
with and the proposed algorithm are presented in Section 3. The evaluation results appear in Section 4, and Section 5
concludes the paper.

2. Related work

Our work relates to the broader areas of distributed query optimization and pipelined operator ordering. Dis-
tributed query optimization algorithms differ from their centralized counterparts in that communication cost must be
considered and there is a trade-off between total work optimization and the harder problem of response time optimiza-
tion [15]. Proposals for the latter case either employ more sophisticated dynamic programming techniques (e.g., [16])
or resort to heuristics.

In [14], an efficient optimization algorithm is presented for optimizing pipelined workflows. A drawback of this
algorithm is that it assumes that the output of a service is fed to the subsequent service indirectly through a central
management component, and cannot be extended to cases where arbitrarily distributed services communicate directly
with each other. However, it is capable of building execution plans where the output of a service is fed to multiple
services simultaneously when the service selectivities are higher than 1. Our work addresses the afore-mentioned
limitation by proposing an efficient branch and bound algorithm for the linear optimal ordering of services when
the services communicate directly with each other and the communication costs between the services may differ. It
can be deemed as an extension to [14] accounting for decentralized execution, except that we are interested in linear
orderings only, regardless of the selectivity values.

In the area of pipelined operator ordering, the proposals in [17, 18] introduce faster algorithms that produce
multiple plans to be executed concurrently with a view to maximizing the dataflow. Along with the definition of the
set of interleaving plans, the proportion of tuples routed to each plan is decided as well, in order to maximize the
aggregate processing rate. As in our case, all the plans are linear, i.e., each WS has at most one input service and
one output. In [19], the goal is to develop solutions for the ordering of operators that are tailored to online, dynamic
scenarios. The aforementioned proposals refer to the problem of minimizing the response time. The approximate
algorithm in [19] applies to the problem of minimizing the total work.

A common feature of all these algorithms is that they assume homogeneous communication links, which is not the
case in our work. The network heterogeneity is taken into account in [20], where the aim is to minimize the aggregate

2



communication cost rather than the response time, and in [21], where the aim is to share data transmission across
multiple tasks. To the best of our knowledge, our proposal is the first that aims at minimizing the workflow execution
time when the execution is both pipelined and decentralized and the network heterogeneity is explicitly taken into
account.

3. Optimal linear plan construction algorithm

3.1. Problem Statement

Our goal is to build a WS invocation ordering with minimum response time, where data is exchanged directly
between services through heterogeneous links. As stated in the introduction, the response time of a query plan is
controlled by the bottleneck service. Let C = WS 0WS 1 . . .WS N−1 be a linear plan of N services. Let ci be the average
time needed by WS i to process an input tuple, σi the selectivity of WS i and ti, j the time needed to transfer a tuple
from WS i to WS j. We assume that ci, σi and ti, j are constants and independent of the input attribute values. Then, for
every input tuple to C, the average number of tuples that a service WS i needs to process is given by:

Ri(C) =
∏

j|WS j∈Pi(C)

σ j (1)

where Pi(C) is the set of WSs that are invoked before WS i in the plan C. The average time per input tuple that WS i

spends to process it and to send the results to a subsequent service WS i+1 is Ri(C)(ci + σiti,i+1). We will refer to the
cost Ti, j = ci + σiti, j, as the aggregate cost of WS i with respect to WS j. Recall, that the cost of plan C is determined
by the service that spends the most time per input tuple. Thus, the bottleneck cost of a services plan C is given by:

cost(C) = max
0≤i<N

(
Ri(C)Ti,i+1

)
(2)

We define tN−1,N = 0. If ti, j is equal for all service pairs, the problem can be solved in polynomial time, as shown in
[14]. Here we deal with the generic –and more realistic– case, where ti, j values may differ.

3.2. Algorithm Description

The proposed algorithm is based on the branch-and-bound optimization approach. It proceeds in two phases,
namely the expansion and the pruning one. During expansion, new WSs are appended to a partial plan C, while
during the latter phase, WSs are pruned from C with a view to exploring additional orderings.

The decision whether to append new services or prune existing ones from a partial plan C is guided by two cost
metrics, ε and ε respectively. The former corresponds to the bottleneck cost of C, and is given by Eq. (2) while the
latter is the maximum possible cost that may be incurred by WSs not currently included in C:

ε = max
l,r



(∏
j|WS j∈C σ j

)
Tl,r, WS l < C, WS r < C(∏l−1

j=0 σ j

)
Tl,r, WS l : last service in C, WS r < C

 (3)

The algorithm proceeds as follows. It starts with an empty plan C, to which we append the services WS l and WS r

that incur the minimum aggregate cost Tl,r. After that, a new plan C = WS lWS r is formed having bottleneck cost Tl,r.
New services may be appended one at a time. In every iteration of the algorithm, we heuristically select the service
having the minimum aggregate cost with respect to the last service.

The above procedure, i.e. appending new services to the current plan C, finishes when the condition ε ≤ ε is met.
That condition implies that the ordering of the services that are not yet included in C does not affect its bottleneck
cost. As a consequence, all plans with prefix the partial plan C have the same bottleneck cost. So, a candidate optimal
solution S is found that consists of the current plan C followed by the rest services in any order1. The bottleneck cost
ρ of the best plan found so far S is set to ρ = ε.

1In our implementation the rest services are placed by ascending selectivity order.

3



i \ j 1 2 3 4 5 6 7 8 9 10
1 - 10.43 21.89 13.80 29.01 15.35 23.56 21.65 14.63 20.30
2 16.58 - 28.82 21.28 34.15 33.30 42.69 33.97 24.19 32.30
3 34.88 31.96 - 23.21 32.33 32.06 32.51 29.58 42.60 15.23
4 20.52 20.86 20.87 - 31.48 34.93 33.71 32.58 28.62 33.32
5 22.47 21.05 19.94 20.73 - 20.97 19.52 19.31 19.45 17.37
6 18.19 23.51 21.26 25.09 23.76 - 20.50 21.93 22.73 27.31
7 39.60 50.49 34.66 41.50 32.27 32.47 - 31.38 40.49 42.13
8 24.33 27.74 19.41 27.62 18.86 23.41 19.10 - 30.95 13.22
9 14.32 15.46 22.59 18.27 16.89 19.39 20.66 21.96 - 18.97
10 27.08 30.48 10.34 33.14 13.90 39.98 34.23 18.22 28.98 -

Table 1: Aggregate cost matrix T.

WS i 1 2 3 4 5 6 7 8 9 10
σi 0.61 0.79 0.92 0.73 0.17 0.40 0.93 0.91 0.41 0.89

Table 2: Selectivities of WSs inW.

Having found a candidate solution, we explore other plans with potentially lower bottleneck costs. An efficient
strategy is to prune the WSs in C after the bottleneck service, including the latter. Let C = WS 0WS 1 . . .WS n and WS i

be the bottleneck WS of C, where 0 ≤ i ≤ n < N. Then C is pruned as follows:

C =

{ ∅, i = 0,
WS 0WS 1 . . .WS i−1, 0 < i ≤ n < N (4)

The intuition behind Eq. (4) is as follows. WS i+1 is the WS such that WS i has the minimum cost Ti,i+1. Thus, the
cost that may be incurred by any other WS appended to WS i, will be higher than the current bottleneck cost (which is
Ti,i+1 in our case). It is clear that it is worthless to investigate plans with prefix WS 0...WS i.

After the pruning, we append new services to the new plan C, following the steps described above, i.e. the WS
having the minimum aggregate cost with respect to the last service in C is appended. In order not to rebuild plans that
have already been investigated during previous iterations of the algorithm, before C is pruned, its prefix plan up to the
bottleneck WS, is inserted in a list V. Then, every time we want to append a new service WS r to a plan C, the plan
produced after the concatenation of C and WS r must not appear inV. If any of the plans stored inV is prefix of this
new plan CWS r, WS r is replaced by the next service.

The pruning step is also triggered when the bottleneck cost ε of a partial plan C is higher than or equal to the
bottleneck cost of the best services plan S found so far, i.e. ε ≥ ρ. The algorithm can safely terminate when the less
expensive pair of WSs that is not prefix of any plan already visited, cannot improve the current minimum bottleneck
cost ρ, which means that the best possible linear plan not yet visited has at least as high bottleneck cost ε as ρ.

To summarize, the proposed algorithm consists of the following simple steps. Starting with an empty plan C and
an empty optimal linear plan S with infinity bottleneck cost, in every iteration of the algorithm, the parameters ε and
ε are computed. If the bottleneck cost ε of C is lower than ε, then a new service is appended to C as described above.
If the bottleneck cost ε of the current plan C is higher than or equal to the bottleneck cost ρ of the best plan found so
far S, then C is pruned following the Eq. (4). Finally, whenever the condition ε ≤ ε is met, a new solution is found.
The last solution is the optimal one. The detailed description of the algorithm, along with the proofs of correctness
and optimality can be found in [22]. In [22], it also shown how precedence constraints between services (i.e., some
services must always execute before others) can be considered through trivial extensions.

3.3. An example

LetW = {WS 1, . . . ,WS 10} be a set of 10 services with corresponding aggregate costs and selectivities shown in
Table 1 and 2, respectively. Fig. 1 shows the partial plans at the end of each iteration.

Initially, the plans C and S are empty and the bottleneck cost of S is set to∞. The algorithm starts by identifying
the WS pair, which incurs the minimum bottleneck cost. The corresponding WSs are WS 10WS 3. After that, C =

WS 10WS 3. In the second iteration, since ε = 10.3425 < ε = σ10 × σ3 × T7,2 = 41.5973 and ε < ρ = ∞, a new WS
is appended to C, the one having the minimum aggregate cost with respect to WS 3; that service is WS 4. In the third

4



1
st

iteration (at the beginning ε = 0, ε = 50.4958, ρ = ∞ )

WS10 WS3

2
nd

iteration (at the beginning ε = 10.3425, ε = 41.5973, ρ = ∞ )

WS10 WS3 WS4

3
rd

iteration (at the beginning ε = 20.7436, ε = 30.7074, ρ = ∞ )

WS10 WS3 WS4 WS1

4
th

iteration (at the beginning ε = 20.7436, ε = 18.8983, ρ = ∞ )

WS10

5
th

iteration (at the beginning ε = 0, ε = 45.1255, ρ = 20.7436 )

WS10 WS5

6
th

iteration (at the beginning ε = 13.9069, ε = 20.0812, ρ = 20.7436 )

WS10 WS5 WS8

7
th

iteration (at the beginning ε = 17.2575, ε = 7.29314, ρ = 20.7436 )

WS10

8
th

iteration (at the beginning ε = 0, ε = 45.1255, ρ = 17.2575 )

WS10 WS8

9
th

iteration (at the beginning ε = 18.2236, ε = 41.3758, ρ = 17.2575 )

C = ∅

10
th

iteration (at the beginning ε = 0, ε = 50.4958, ρ = 17.2575 )

WS1 WS2

11
th

iteration(at the beginning ε = 10.4372, ε = 26.2738, ρ = 17.2575 )

WS1 WS2 WS4

12
th

iteration(at the beginning ε = 13.0996, ε = 17.0269, ρ = 17.2575 )

WS1 WS2 WS4 WS3

13
th

iteration (at the beginning ε = 13.0996, ε = 15.33, ρ = 17.2575 )

WS1 WS2 WS4 WS3 WS10

14
th

iteration (at the beginning ε = 13.0996, ε = 13.2628, ρ = 17.2575 )

WS1 WS2 WS4 WS3 WS10 WS5

15
th

iteration (at the beginning ε = 13.0996, ε = 6.21801, ρ = 17.2575 )
WS1

Figure 1: An example of the proposed algorithm.

iteration, since ε = 20.7436 < ε = σ10 × σ3 × σ4 × T7,2 = 30.7074 and ε < ρ = ∞ the service WS 1 is appended to C
forming the partial plan C = WS 10WS 3WS 4WS 1. Now, since ε = 20.7436 > ε = σ10×σ3×σ4×σ1×T7,2 = 18.8983,
and ε < ρ = ∞, a solution is found. Thus, S is set to C, ρ = 20.7436 and C is pruned following the Eq.(4). After the
pruning C = WS 10 (the bottleneck WS is WS 3). The termination condition is not triggered given that there exists a
two service prefix that has not been investigated and its cost is lower than ρ: T1,2 = 10.43.

In the fifth iteration2, since ε = 0 < ε = 45.1255 and ε = 0 < ρ = 20.7436, a new WS is appended to C = WS 10;
that is WS 5. A new WS is also appended in the sixth iteration forming the partial plan C = WS 10WS 5WS 8. In
the seventh iteration, since ε = 17.2575 > ε = 7.29314 and ε < ρ = 20.7436, another solution is found: S =

WS 10WS 5WS 8, and its bottleneck cost updates ρ; subsequently, C is pruned following Eq.(4) so that C = WS 10.

2The bottleneck cost of a single service plan is 0
5



In the above iterations, the algorithm does not terminate because the cost T1,2 is lower than the ρ values. In the
eight iteration, WS 8 is appended to C = WS 10, while in the ninth iteration, the partial plan is set to C = ∅, as
ε = 18.2236 > ρ = 17.2575 and the bottleneck WS is the first one, i.e., WS 10. As a result, any other plan starting with
WS 10 can be safely ignored.

Since the plan C is empty, the algorithm searches for the WSs pair with the minimum aggregate cost. In our
example, this pair consists of WS 1 and WS 2. Note that the requirement none of the plans stored in V to have
prefix the plan WS 1WS 2 is met. In the iterations 11-14 new WSs are appended to C, forming the partial plan C =

WS 1WS 2WS 4WS 3WS 10WS 5. In the fifteenth iteration, a new solution is found, since ε = 13.0996 > ε = 6.21801
and ε < ρ = 17.2575. Thus, S = WS 1WS 2WS 4WS 3WS 10WS 5, the bottleneck service is WS 2 and ρ is set to 13.0996.
After the pruning C = WS 1, and the algorithm safely ignore plans starting with WS 1WS 2. This causes the algorithm
to terminate, since the cost of the less expensive WS pair except those beginning with WS 10 or WS 1WS 2, which is
WS 8WS 10, is higher than ρ: T8,10 = 13.2293 > ρ = 13.0996. So the algorithm terminates, after having essentially
explored all the 10! orderings in just 15 iterations.

4. Evaluation

In the current section, we experimentally evaluate the proposed algorithm, which will be referred to as Optimal
Linear Plan Constructor (OLPC), using the real-world distributed infrastructure of PlanetLab-EU [23]. The evaluation
is conducted to investigate firstly the algorithm’s performance, and secondly, the algorithm’s efficiency. The perfor-
mance of the algorithm is evaluated through the comparison of the response times of a wide range of query plans
produced by OLPC and the Greedy algorithm in [14], which performs service ordering but considers only the com-
putation cost and selectivity of each WS. The efficiency is measured in terms of the absolute time needed to construct
the plans and of the number of iterations that the proposed algorithm performs. The experiments presented hereby
complement further simulation results in [22], which show that our algorithm is very efficient. Although simulations
allow us to investigate the behavior of our algorithm under a wide range of parameters, most of which would not be
feasible to measure in real world experiments, we must also prove that our algorithm behaves well compared to other
simpler approaches under the specific level of network heterogeneity encountered in world-scale experiments.

OLPC always produces the optimal serial WS plan. The experiments that follow deal with the extent to which the
response times of the Greedy plans are higher than the response times of the OLPC plans. This is done with the help
of the response time ratio metric ρ′/ρ, where ρ and ρ′ denote the response time of a plan built by OLPC and Greedy,
respectively. Recall that the response time of a plan is given by Eq. (2). We restrict the experiments to WSs that have
selectivity no greater than 1, since, for this case both algorithms build linear plans.

Our prototype setting is as follows. The services are deployed on twenty-six hosts placed in eleven European and
Asian counties, namely Greece, Italy, France, Germany, Poland, Spain, Portugal, UK, Sweden, Israel and Thailand.
On each remote host we have installed an Apache Tomcat 6.0.9 server and the Axis engine for (de-)serializing the
SOAP messages exchanged among the services. The WSs are developed in Java and have an interface of the form
WS i(tuple). The input tuples consist of a tuple identifier and a single data attribute. Each service is implemented
using two threads; a consumer and a producer one. The consumer thread receives input tuples from another service
and places them in a queue. The producer thread takes tuples from the queue and sends them to the next service in
the pipeline. In our implementation, WSs communicate synchronously. Thus, a service cannot send tuples to another
one, unless the destination service sends back an acknowledgment message. This message shows that the destination
service has successfully placed the previously sent tuple in its queue. In our implementation the service queues can
hold up to 500 tuples. Apart from that, each service has a selectivity σi uniformly distributed between 0.3 and 1
and utilizes a random number generator in order to decide when to drop an input tuple or to send it to a next service
in the pipelined plan. In wide area applications, the cost to transfer data typically dominates the processing cost.
Consequently, we consider that each WS does not perform any operations on input data and that all tuples contain a
string of 512 KB. According to the above, each service WS i tries to send directly an input tuple to another service in
cases where the output of the random number generator is greater than σi; otherwise it simple drops it.

In the first set of experiments, we create ten different workflows with 6 random WSs each. Each workflow pro-
cesses 500 tuples of 512KB, i.e. approximately 500MB of data. WSs cannot be allocated at the same host. Since
PlanetLab is highly dynamic, the communication costs are identified through profiling, which takes place immediately
before the execution of each workflow. During profiling, we send fifteen tuples between any pair of WSs, e.g. WS i

6



1 2 3 4 5 6 7 8 9 10 average
0

10

20

30

40

50

workflow id

R
es

p
o
n
se

ti
m

e
ra

ti
o

 

 

Response time ratio using Eq. (2)

Actual response time ratio

Figure 2: Results for 10 workflows with 6 services each.

1 2 3 4 5 6 7 8 9 10 average
0

2

4

6

8

10

12

14

16

18

20

22

workflow id

R
es

p
o
n
se

ti
m

e
ra

ti
o

 

 

Response time ratio using Eq. (2)

Actual response time ratio

Figure 3: Results for 10 workflows with 10 services each.

1 2 3 4 5 6 7 8 9 10 average
0

5

10

15

20

workflow id

R
es

p
o
n
se

ti
m

e
ra

ti
o

 

 

Response time ratio using Eq. (2)

Actual response time ratio

Figure 4: Results for 10 workflows with 14 services each.

and WS j, and we set ti j equal to the median of the fifteen communication times3. After that, the OLPC and Greedy

3We have observed that the WSs installed on the aforementioned PlanetLab hosts (de-)serialize a SOAP message in less than 0.5 seconds, which
7



workflow type \ id 1 2 3 4 5 6 7 8 9 10 avg
6 WSs 10 13 3 2 5 17 3 3 3 39 9.8
10 WSs 5 4 6 3 8 12 9 15 3 4 6.9
14 WSs 3 19 7 4 3 6 5 5 8 4 6.4

Table 3: Number of iterations performed by OLPC.

algorithms are executed in order to build WS plans. Greedy does not actually utilize the communication cost infor-
mation obtained through profiling. Since the processing cost is not only negligible but also equal for each service, the
plans built by the Greedy algorithm are linear orderings by increasing selectivity value; if the costs differed, then the
ordering would be by increasing cost [14].

The results are shown in Figure 24. The figure shows (i) the estimated response time ratio ρ′/ρ of the Greedy
and the OLPC plans after optimization (left bars); and (ii) the actual response time ratio after having executed the
plans on PlanetLab (right bars). Two main observations can be drawn. Firstly, these results confirm the simulation
results that the performance improvement can be substantial (up to an order of magnitude). Secondly, there may be
non-negligible differences between the estimated response times and the actual response times. These differences are
mainly attributed to the runtime variations of the communication cost values. In other words, the communication costs
that were estimated through profiling, have changed during the execution of the plans on PlanetLab. This calls for
adaptive optimization algorithms, which we plan to investigate in future work. Greedy is more robust to such changes,
since it ignores communication costs.

In cases where the response time deviations between the Greedy and the OLPC plans are high, the bottleneck
services of the Greedy plans communicate with their descendants through expensive links, e.g. the bottleneck service
and its immediate one are deployed on PlanetLab hosts located in different continents. For example, in the fifth
workflow, the bottleneck service of the plan built by Greedy is deployed on a host in Israel, while its descendant is
deployed in Greece.

The same experiment is repeated for workflows with 10 and 14 WSs. The results are shown in Figures 3 and 4,
respectively. In general, the response times deviations between the two algorithms increase as the number of services
increases; the main reason is that the probability to choose hosts placed in different continents becomes higher.

The number of iterations that were performed by the proposed algorithm in order to reach a solution for the
different experiments are presented in Table 3. The number of iterations grows slowly with the number of services.
In addition, the mean execution time of the proposed algorithm per plan is only 0.3 sec. on a machine with a dual
core 2GHz processor with 2GB RAM, which can be deemed as negligible. These results constitute a strong proof
of the efficiency of the algorithm. In the future, we plan to investigate the average case complexity of the algorithm
analytically.

5. Conclusions

In this work, we deal with the optimization of decentralized workflows consisting of calls to remote services.
More specifically, we present an algorithm for finding the optimal ordering of pipelined services when the services
communicate directly with each other through heterogeneous links and the different orderings produce similar results.
The optimization goal is to minimize the query response time, which, due to parallelism, depends on the bottleneck
service. Our algorithm is capable of finding the optimal ordering and it is of high practical significance since it is
fast. We also present experiments using a world-scale infrastructure, which provide strong insights into the actual
performance benefits of the proposed algorithm. The main conclusion is that, in real cases, our algorithm can lead in
considerable performance benefits compared to approaches that do not consider the network heterogeneity.

is added to the communication cost.
4First, we have verified that Eq. (2) can capture the actual response time.

8



References

[1] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, 2nd Edition, Morgan Kaufmann Publishers, San Francisco,
CA, USA, 2003.

[2] A. Mayer, S. McGough, N. Furmento, M. G. W. Lee, S. Newhouse, J. Darlington, Workflow expression: Comparison of spatial and temporal
approaches in workflow, in: Grid Systems Workshop, GGF-10, 2004.

[3] G. Bell, T. Hey, A. Szalay, Computer science: Beyond the data deluge, Science (New York, N.Y.) 323 (5919) (2009) 1297–1298.
[4] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. Pocock, A. Wipat, P. Li, Taverna: a tool for the

composition and enactment of bioinformatics workflows, Bioinformatics 20 (17) (2004) 3045–3054.
[5] M. S. I. Taylor, I. Wang, Resource management of triana p2p services, in: Grid Resource Management, 2003.
[6] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the

kepler system, Concurrency and Computation: Practice & Experience, Special Issue on Scientific Workflows 18 (10) (2005) 1039–1065.
[7] T. Tannenbaum, D. Wright, K. Miller, M. Livny, Condor - a distributed job scheduler, Beowulf Cluster Computing with Linux.
[8] J. Almond, D. Snelling, Unicore: Secure and uniform access to distributed resources via the world wide web, White Paper (1998) 43–82.
[9] J. Cao, S. A. Jarvis, S. Saini, Gridflow: Workflow management for grid computing, in: In 3rd International Symposium on Cluster Computing

and the Grid (CCGrid), IEEE CS Press, 2003.
[10] D. De Roure, C. Goble, R. Stevens, The design and realisation of the myexperiment virtual research environment for social sharing of

workflows, Future Generation Computer Systems 25 (2008) 561–567.
[11] Yahoo pipes. http://pipes.yahoo.com/pipes/.
[12] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau, Y.-H. Ng, D. Simmen, A. Singh, Damia: a data mashup fabric for

intranet applications, in: Proc. of the Conference on Very Large Databases (VLDB), 2007, pp. 1370–1373.
[13] R. Krishnamurthy, H. Boral, C. Zaniolo, Optimization of nonrecursive queries, in: Proc. of VLDB, 1986, pp. 128–137.
[14] U. Srivastava, K. Munagala, J. Widom, R. Motwani, Query optimization over web services, in: Proc. of the 32nd Conference on Very Large

Databases (VLDB), 2006, pp. 355 – 366.
[15] S. Ganguly, W. Hasan, R. Krishnamurthy, Query optimization for parallel execution., in: M. Stonebraker (Ed.), Proc. of SIGMOD, 1992, pp.

9–18.
[16] D. Kossmann, K. Stocker, Iterative dynamic programming: a new class of query optimization algorithms., ACM Trans. Database Syst. 25 (1)

(2000) 43–82.
[17] A. Despande, L. Hellerstein, Flow algorithms for parallel query optimization, in: Proc. of the 24th International Conference on Data Engi-

neering (ICDE), 2008, pp. 754 – 763.
[18] A. Condon, A. Despande, L. Hellerstein, N. Wu, Algorithms for distributional and adversarial pipelined filter ordering problems, ACM

Transactions on algorithms 5 (2) (2009) 24 – 34.
[19] S. Babu, R. Matwani, K. Munagala, Adaptive ordering of pipelined stream filters, in: Proc. of the International Conference on Management

of Data (SIGMOD), 2004, pp. 407–418.
[20] X. Wang, R. C. Burns, A. Terzis, A. Deshpande, Network-aware join processing in global-scale database federations, in: ICDE, 2008, pp.

586–595.
[21] J. Li, A. Deshpande, S. Khuller, Minimizing communication cost in distributed multi-query processing, in: ICDE, 2009, pp. 772–783.
[22] E. Tsamoura, A. Gounaris, Y. Manolopoulos, Optimal service ordering in decentralized queries over web services, in: Submitted for publica-

tion.
[23] D. Culler, Planetlab: An open, community driven infrastructure for experimental planetary-scale services, in: USENIX Symposium on

Internet Technologies and Systems, 2003.

9


