An Introduction to

Apostolos N. Papadopoulos
(papadopo@csd.auth.gr)
Assistant Professor
Data Engineering Lab
Department of Informatics
Aristotle University of Thessaloniki
Thessaloniki – Greece
Outline

What is Spark?

Basic features

Resilient Distributed Datasets (RDDs)

Existing libraries

Examples
What is Spark?

In brief, Spark is a UNIFIED platform for cluster computing, enabling efficient big data management and analytics.

It is an Apache Project and its current version is 1.3.1 (released in April 17, 2015).

It is one of the most active projects at Apache:

1.0.0 - May 30, 2014
1.0.1 - July 11, 2014
1.0.2 - August 5, 2014
1.1.0 - September 11, 2014
1.1.1 - November 26, 2014
1.2.0 - December 18, 2014
1.2.1 - February 9, 2014
1.3.0 - March 13, 2015
Who Invented Spark?

Born in Romania

University of Waterloo (B.Sc. Mathematics, Honors Computer Science)
Berkeley (Ph.D. cluster computing, big data)

Now: Assistant Professor @ CSAIL MIT

Matei Zaharia

He also co-designed the MESOS cluster manager and he contributed to Hadoop fair scheduler.
Who Can Benefit from Spark?

Spark is an excellent platform for:

- **Data Scientists**: Spark's collection of data-focused tools helps data scientists to go beyond problems that fit in a single machine.

- **Engineers**: Application development in Spark is far more easy than other alternatives. Spark's unified approach eliminates the need to use many different special-purpose platforms for streaming, machine learning, and graph analytics.

- **Students**: The rich API provided by Spark makes it extremely easy to learn data analysis and program development in Java, Scala or Python.

- **Researchers**: New opportunities exist for designing distributed algorithms and testing their performance in clusters.
Spark vs Hadoop

Spark supports many different types of tasks including SQL queries, streaming applications, machine learning and graph operations.

On the other hand …

Hadoop MR is good for heavy jobs that perform complex tasks in massive amounts of data. However, Spark can do better even in this case due to better memory utilization and optimization alternatives.
Spark vs Hadoop: sorting 1PB

<table>
<thead>
<tr>
<th></th>
<th>Hadoop</th>
<th>Spark 100TB</th>
<th>Spark 1PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Size</td>
<td>102.5 TB</td>
<td>100 TB</td>
<td>1000 TB</td>
</tr>
<tr>
<td>Elapsed Time</td>
<td>72 mins</td>
<td>23 mins</td>
<td>234 mins</td>
</tr>
<tr>
<td># Nodes</td>
<td>2100</td>
<td>206</td>
<td>190</td>
</tr>
<tr>
<td># Cores</td>
<td>50400</td>
<td>6592</td>
<td>6080</td>
</tr>
<tr>
<td># Reducers</td>
<td>10,000</td>
<td>29,000</td>
<td>250,000</td>
</tr>
<tr>
<td>Rate</td>
<td>1.42 TB/min</td>
<td>4.27 TB/min</td>
<td>4.27 TB/min</td>
</tr>
<tr>
<td>Rate/node</td>
<td>0.67 GB/min</td>
<td>20.7 GB/min</td>
<td>22.5 GB/min</td>
</tr>
</tbody>
</table>

Source: Databricks
Spark Basics

Spark is designed to be fast and general purpose.

The main functionality is implemented in Spark Core. Other components exist, that integrate tightly with Spark Core.

Benefits of tight integration:
- improvements in Core propagate to higher components
- it offers one unified environment
Spark Basics: ecosystem

- Local FS
- HDFS
- Hbase
- Hive
- Amazon S3
- Cassandra

INPUT/OUTPUT

- Dataframes
- ML Pipelines
- SQL
- Streaming
- MLlib
- GraphX

CORE

- Standalone Scheduler
- Mesos
- YARN
- Amazon EC2

CLUSTER MANAGER

API

LIBS
Spark Basics: libraries

Currently the following libs exist and they are evolving really-really fast:

- SQL Lib
- Streaming Lib
- Machine Learning Lib (MLlib)
- Graph Lib (GraphX)

We outline all of them but later we will cover details about MLlib and GraphX
Spark SQL

Spark SQL is a library for querying structures datasets as well as distributed datasets.

Spark SQL allows relational queries expressed in SQL, HiveQL, or Scala to be executed using Spark.

Example:

hc = HiveContext(sc)
rows = hc.sql("select id, name, salary from emp")
rows.filter(lambda r: r.salary > 2000).collect()
Spark Streaming

Spark Streaming is a library to ease the development of complex streaming applications.

Data can be inserted into Spark from different sources like Kafka, Flume, Twitter, ZeroMQ, Kinesis or TCP sockets can be processed using complex algorithms expressed with high-level functions like map, reduce, join and window.
MLlib is Spark's scalable machine learning library

Version 1.1 contains the following algorithms:

- linear SVM and logistic regression
- classification and regression tree
- k-means clustering
- recommendation via alternating least squares
- singular value decomposition (SVD)
- linear regression with L1- and L2-regularization
- multinomial naive Bayes
- basic statistics
- feature transformations
Spark GraphX

GraphX provides an API for graph processing and graph-parallel algorithms on-top of Spark.

The current version supports:
- PageRank
- Connected components
- Label propagation
- SVD++
- Strongly connected components
- Triangle counting
- Core decomposition
- ...

![Runtime for PageRank](image)
Distributed Execution in Spark

- Spark Context
- Driver
- Executor
- Worker Node
 - Task
 - Task
Distributed Execution in Spark

Outline of the whole process:

1. The user submits a job with **spark-submit**.
2. **spark-submit** launches the driver program and invokes the **main()** method specified by the user.
3. The **driver program** contacts the **cluster manager** to ask for resources to launch **executors**.
4. The **cluster manager** launches **executors** on behalf of the **driver program**.
5. The **driver process** runs through the user application. Based on the RDD actions and transformations in the program, the **driver** sends work to **executors** in the form of **tasks**.
6. **Tasks** are run on **executor processes** to compute and save results.
7. If the **driver’s main()** method exits or it calls **SparkContext.stop()**, it will terminate the **executors** and release resources from the **cluster manager**.
Data manipulation in Spark is heavily based on RDDs. An RDD is an interface composed of:

- a set of partitions
- a list of dependencies
- a function to compute a partition given its parents
- a partitioner (optional)
- a set of preferred locations per partition (optional)

Simply stated: **an RDD is a distributed collections of items**. In particular: an RDD is a **read-only** (i.e., immutable) collection of items partitioned across a set of machines that can be rebuilt if a partition is destroyed.
Resilient Distributed Datasets (RDDs)

The RDD is the most fundamental concept in Spark since all work in Spark is expressed as:

- creating RDDs
- transforming existing RDDs
- performing actions on RDDs
Creating RDDs

Spark provides two ways to create an RDD:

- **loading** an already existing set of objects
- **parallelizing** a data collection in the driver
Creating RDDs

// define the spark context
val sc = new SparkContext(...)

// hdfsRDD is an RDD from an HDFS file
val hdfsRDD = sc.textFile("hdfs://...")

// localRDD is an RDD from a file in the local file system
val localRDD = sc.textFile("localfile.txt")

// define a List of strings
val myList = List("this", "is", "a", "list", "of", "strings")

// define an RDD by parallelizing the List
val listRDD = sc.parallelize(myList)
RDD Operations

There are **transformations** on RDDs that allow us to create new RDDs: `map`, `filter`, `groupBy`, `reduceByKey`, `partitionBy`, `sortByKey`, `join`, etc.

Also, there are **actions** applied in the RDDs: `reduce`, `collect`, `take`, `count`, `saveAsTextFile`, etc.

Note: computation takes place only in actions and not on transformations! (This is a form of **lazy evaluation**. More on this soon.)
RDD Operations: transformations

val inputRDD = sc.textFile("myfile.txt")

// lines containing the word “apple"
val applesRDD = inputRDD.filter(x => x.contains("apple"))

// lines containing the word “orange"
val orangesRDD = inputRDD.filter(x => x.contains("orange"))

// perform the union
val aoRDD = applesRDD.union(orangesRDD)
RDD Operations: transformations

Graphically speaking:
RDD Operations: actions

An action denotes that **something must be done**

We use the action `count()` to find the number of lines in `unionRDD` containing apples or oranges (or both) and then we print the 5 first lines using the action `take()`

```scala
val numLines = unionRDD.count()
unionRDD.take(5).foreach(println)
```
Lazy Evaluation

The benefits of being lazy

1. more optimization alternatives are possible if we see the **big picture**
2. we can avoid unnecessary computations

Ex:

Assume that from the unionRDD we need only the first 5 lines.

If we are eager, we need to compute the union of the two RDDs, materialize the result and then select the first 5 lines.

If we are lazy, there is no need to even compute the whole union of the two RDDs, since when we find the first 5 lines we may stop.
Lazy Evaluation

At any point we can **force the execution** of transformation by applying a simple action such as `count()`. This may be needed for debugging and testing.
Basic RDD Transformations

Assume that our RDD contains the list \{1, 2, 3\}.

map() \quad rdd.map(x => x + 2) \quad \{3, 4, 5\}

flatMap() \quad rdd.flatMap(x => List(x-1,x,x+1)) \quad \{0,1,2,1,2,3,2,3,4\}

filter() \quad rdd.filter(x => x>1) \quad \{2,3\}

distinct() \quad rdd.distinct() \quad \{1,2,3\}

sample() \quad rdd.sample(false,0.2) \quad \text{non-predictable}
Two-RDD Transformations

These transformations require two RDDs

union() \[\text{rdd.union(another)}\]
intersection() \[\text{rdd.intersection(another)}\]
subtract() \[\text{rdd.subtract(another)}\]
cartesian() \[\text{rdd.cartesian(another)}\]
Some Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>rdd.collect()</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>count()</td>
<td>rdd.count()</td>
<td>3</td>
</tr>
<tr>
<td>countByValue()</td>
<td>rdd.countByValue()</td>
<td>{(1, 1), (2, 1), (3, 1)}</td>
</tr>
<tr>
<td>take()</td>
<td>rdd.take(2)</td>
<td>{1, 2}</td>
</tr>
<tr>
<td>top()</td>
<td>rdd.top(2)</td>
<td>{3, 2}</td>
</tr>
<tr>
<td>reduce()</td>
<td>rdd.reduce((x, y) => x+y)</td>
<td>6</td>
</tr>
<tr>
<td>foreach()</td>
<td>rdd.foreach(func)</td>
<td></td>
</tr>
</tbody>
</table>
RDDs and DAGs

A set of RDDs corresponds is transformed to a Directed Acyclic Graph (DAG)

Input: RDD and partitions to compute
Output: output from actions on those partitions

Roles:
> Build stages of tasks
> Submit them to lower level scheduler (e.g. YARN, Mesos, Standalone) as ready
> Lower level scheduler will schedule data based on locality
> Resubmit failed stages if outputs are lost
DAG Scheduling
DAG Scheduling

A.join(B).filter(...).filter(...)

RDD objects

DAG scheduler

split graph into stages of tasks
submit each stage
Persistence

In many cases we want to use the same RDD multiple times without recomputing it.

Ex:

```scala
val result = rdd.map(x => x+1)
println(result.count())
println(result.collect().mkString("",""))
```

We can ask Spark to keep (persist) the data.
val result = rdd.map(x => x+1)
result.persist(StorageLevel.DISK_ONLY)
println(result.count())
println(result.collect().mkString(","))

Persistence levels:
MEMORY_ONLY
MEMORY_ONLY_SER (objects are serialized)
MEMORY_AND_DISK
MEMORY_AND_DISK_SER (objects are serialized)
DISK_ONLY

If we try to put to many things in RAM Spark starts flushing data disk using a Least Recently Used policy.
Spark Examples

Spark supports

- Java
- Python
- **Scala**

We are going to use the **Scala API** in this lecture. We will play with **Spark Core** component and also run examples of **MLlib** and **GraphX** libraries that are very relevant to Graph Data Mining.
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object HelloSpark {
 def main(args: Array[String]): Unit = {
 println("Hello, Spark!")
 }
}

LineCount

object LineCount {
 def main(args: Array[String]) {
 println("Hi, this is the LineCount application for Spark.")

 // Create spark configuration and spark context
 val conf = new SparkConf().setAppName("LineCount App")
 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir") // get the current directory
 val inputFile = "file://" + currentDir + "/leonardo.txt"

 val myData = sc.textFile(inputFile, 2).cache()
 val num1 = myData.filter(line => line.contains("the")).count()
 val num2 = myData.filter(line => line.contains("and")).count()
 val totalLines = myData.map(line => 1).count
 println("Total lines: %s, lines with "the": %s, lines with "and":
 \%s".format(totalLines, num1, num2))

 sc.stop()
 }
}
import org.apache.spark.SparkContext._
import org.apache.spark.{SparkConf, SparkContext}

object WordCount {

 def main(args: Array[String]): Unit = {

 val sparkConf = new SparkConf().setMaster("local[2]").setAppName("WordCount") // config
 val sc = new SparkContext(sparkConf) // create spark context

 val currentDir = System.getProperty("user.dir") // get the current directory
 val inputFile = "file://" + currentDir + "/leonardo.txt"
 val outputDir = "file://" + currentDir + "/output"
 val txtFile = sc.textFile(inputFile)

 txtFile.flatMap(line => line.split(" ")) // split each line based on spaces
 .map(word => (word,1)) // map each word into a word,1 pair
 .reduceByKey(_+_)) // reduce
 .saveAsTextFile(outputDir) // save the output

 sc.stop()
 }
}
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

 public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 context.write(word, one);
 }
 }
 }

 public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {
 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 context.write(key, new IntWritable(sum));
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "wordcount");
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 }
}
object PageRank {

def main(args: Array[String]) {
 val iters = 10 // number of iterations for pagerank computation
 val currentDir = System.getProperty("user.dir") // get the current directory
 val inputFile = "file://" + currentDir + "/webgraph.txt"
 val outputDir = "file://" + currentDir + "/output"

 val sparkConf = new SparkConf().setAppName("PageRank")
 val sc = new SparkContext(sparkConf)
 val lines = sc.textFile(inputFile, 1)

 val links = lines.map { s => val parts = s.split("\s+")(parts(0), parts(1))}.distinct().groupByKey().cache()
 var ranks = links.mapValues(v => 1.0)
 for (i <- 1 to iters) {
 println("Iteration: "+ i)
 val contribs = links.join(ranks).values.flatMap{ case (urls, rank) => val size = urls.size urls.map(url =>
 (url, rank / size)) }
 ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _)
 }

 val output = ranks.collect()
 output.foreach(tup => println(tup._1 + " has rank: " + tup._2 + "."))

 sc.stop()
}
More on MLlib

MLlib provides some additional data types common in Machine Learning

Vector (a math vector, either sparse or dense)

LabeledPoint (useful in classification and regression)

Rating (useful in recommendation algorithms)

Several **Models** (used in training algorithms)
import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.mllib.linalg.SingularValueDecomposition

val mat: RowMatrix = ...

// Compute the top 20 singular values and corresponding singular vectors.
val svd: SingularValueDecomposition[RowMatrix, Matrix] = mat.computeSVD(20, computeU = true)

val U: RowMatrix = svd.U // The U factor is a RowMatrix.
val s: Vector = svd.s // The singular values are stored in a local dense vector.
val V: Matrix = svd.V // The V factor is a local dense matrix.
More on GraphX

The basic concept in GraphX is the property graph

The **property graph** is a directed multigraph with user defined objects attached to each vertex and edge.

GraphX optimizes the representation of vertex and edge types when they are plain old data-types (e.g., int) reducing in memory footprint by storing them in **specialized arrays**.
More on GraphX

“While graph-parallel systems are optimized for iterative diffusion algorithms like PageRank they are not well suited to more basic tasks like constructing the graph, modifying its structure, or expressing computation that spans multiple graphs”

Source: http://ampcamp.berkeley.edu
More on GraphX

This means that for some tasks Spark may not show the best performance in comparison to other dedicated graph processing systems.

Ex:

PageRank on Live-Journal network (available @snap)

GraphLab is 60 times faster than Hadoop

GraphLab is 16 times faster than Spark
More on GraphX

Source: http://spark.apache.org
More on GraphX

To use GraphX we need to import

```scala
import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
```
val vertexArray = Array((1L, ("Alice", 28)),
(2L, ("Bob", 27)),
(3L, ("Charlie", 65)),
(4L, ("David", 42)),
(5L, ("Ed", 55)),
(6L, ("Fran", 50)))

val edgeArray = Array(
Edge(2L, 1L, 7),
Edge(2L, 4L, 2),
Edge(3L, 2L, 4),
Edge(3L, 6L, 3),
Edge(4L, 1L, 1),
Edge(5L, 2L, 2),
Edge(5L, 3L, 8),
Edge(5L, 6L, 3)
)
More on GraphX

Parallelizing nodes and edges

```scala
val vertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)
val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)
```

Now we have `vertexRDD` for the nodes and `edgeRDD` for the edges.
More on GraphX

Last step: define the graph object

```scala
val graph: Graph[((String, Int), Int)] = Graph(vertexRDD, edgeRDD)
```
object PageRank {
 def main(args: Array[String]): Unit = {
 val conf = new SparkConf().setAppName("PageRank App")
 val sc = new SparkContext(conf)
 val currentDir = System.getProperty("user.dir")
 val edgeFile = "file://" + currentDir + "/followers.txt"

 val graph = GraphLoader.edgeListFile(sc, edgeFile)

 // run pagerank
 val ranks = graph.pageRank(0.0001).vertices

 println(ranks.collect().mkString("\n")) // print result
 }
}
This graph has two connected components:

cc1 = \{1, 2, 4\}

cc2 = \{3, 5, 6, 7\}

Output:
(1,1) (2,1) (4,1)
(3,3) (5,3) (6,3) (7,3)
Connected Components

object ConnectedComponents {

 def main(args: Array[String]): Unit = {
 val conf = new SparkConf().setAppName("ConnectedComponents App")
 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir")
 val edgeFile = "file://" + currentDir + "/graph.txt"
 val graph = GraphLoader.edgeListFile(sc, edgeFile)

 // find the connected components
 val cc = graph.connectedComponents().vertices

 println(cc.collect().mkString("\n")) // print the result
 }
}
Counting Triangles

Triangles are very important in Network Analysis:
- dense subgraph mining (communities, trusses)
- triangular connectivity
- network measurements (e.g. clustering coefficient)

Example
Counting Triangles

object TriangleCounting {
 def main(args: Array[String]): Unit = {
 val conf = new SparkConf().setAppName("TriangleCounting App")
 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir")
 val edgeFile = "file://" + currentDir + "/enron.txt"

 val graph = GraphLoader
 .edgeListFile(sc, edgeFile, true)
 .partitionBy(PartitionStrategy.RandomVertexCut)

 // Find number of triangles for each vertex
 val triCounts = graph.triangleCount().vertices

 println(triCounts.collect().mkString("\n"))
 }
}
Spark SQL Example

We have a JSON file (planets.json) containing information about the planets of our solar system

```json
{"name": "Mercury", "sundist": "57910", "radius": "2440"}
{"name": "Venus", "sundist": "108200", "radius": "6052"}
{"name": "Earth", "sundist": "149600", "radius": "6378"}
{"name": "Mars", "sundist": "227940", "radius": "3397"}
{"name": "Jupiter", "sundist": "778330", "radius": "71492"}
{"name": "Saturn", "sundist": "1429400", "radius": "60268"}
{"name": "Uranus", "sundist": "2870990", "radius": "25559"}
{"name": "Neptune", "sundist": "4504300", "radius": "24766"}
{"name": "Pluto", "sundist": "5913520", "radius": "1150"}
```
Spark SQL Example

The JSON schema looks like this:

```
root
|--- name: string (nullable = true)
|--- radius: string (nullable = true)
|--- sundist: string (nullable = true)
```
Spark SQL Example

We need to do the following:

1. extract the schema from `planets.json`
2. load the data
3. execute a SQL query
Spark SQL Example

object Planets {
 def main(args: Array[String]) {

 // Create spark configuration and spark context
 val conf = new SparkConf().setAppName("Planets App")
 val sc = new SparkContext(conf)
 val sqlContext = new org.apache.spark.sql.SQLContext(sc)

 val currentDir = System.getProperty("user.dir") // get the current directory
 val inputFile = "file://" + currentDir + "/planets.json"

 val planets = sqlContext.jsonFile(inputFile)
 planets.printSchema()
 planets.registerTempTable("planets")

 val smallPlanets = sqlContext.sql("SELECT name,sundist,radius FROM planets WHERE radius < 10000")
 smallPlanets.foreach(println)

 sc.stop()
 }
}
Some Spark Users

Databricks

AsiaInfo

Groupon

Amplab

Amazon

Bizo

Yahoo!

Autodesk
Resources

The best way to begin learning Spark is to study the material in the project's website

https://spark.apache.org

From this website you have access to Spark Summits and other events which contain useful video lectures for all Spark components.
Resources

Books to learn Spark

- **Learning Spark**
 - Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia

- **Advanced Analytics with Spark**
 - Sandy Ryza, Uri Laserson, Sean Owen & Josh Wills

- **Fast Data Processing with Spark**
 - Holden Karau
Resources

Where to find more graph data?

Take a look at
http://snap.stanford.edu
Thank you

Questions ?