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ABSTRACT

Collaborative Filtering (CF) Systems have been studied ex-
tensively for more than a decade to confront the “informa-
tion overload” problem. Nearest-neighbor CF is based ei-
ther on common user or item similarities, to form the user’s
neighborhood. The effectiveness of the aforementioned ap-
proaches would be augmented, if we could combine them.
In this paper, we use biclustering to disclose this duality be-
tween users and items, by grouping them in both dimensions
simultaneously. We propose a novel nearest-biclusters algo-
rithm, which uses a new similarity measure that achieves
partial matching of users’ preferences. Performance eval-
uation results are offered, which show that the proposed
method improves substantially the performance of the CF
process. We attain more than 30% and 10% improvement
in terms of precision and recall, respectively.
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1. INTRODUCTION

Information Filtering has become a necessary technology
to attack the “information overload” problem. In our every-
day experience, while searching on a topic (e.g., products,
movies, etc.), we often rely on suggestions from others, more
experienced on it. In the Web, however, the plethora of
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available suggestions renders it difficult to detect the trust-
worthy ones. The solution is to shift from individual to
collective suggestions. Collaborative Filtering (CF) applies
information retrieval and data mining techniques to provide
recommendations based on suggestions of users with similar
preferences. CF is a very popular method in recommender
systems and e-commerce applications.

1.1 Motivation

Two families of CF algorithms have been proposed in the
literature: (a) nearest-neighbors (a.k.a. memory-based) al-
gorithms, which recommend according to the preferences of
nearest neighbors; and (b) model-based algorithms, which
recommend by first developing a model of user ratings. Re-
lated research has reported that nearest-neighbor algorithms
present good performance in terms of accuracy. Neverthe-
less, their main drawback is that they cannot handle scala-
bility to large volumes of data. On the other hand, model-
based algorithms, once they have build the model, present
good scalability. However, they have the overhead to build
and update the model, and they cannot cover as diverse
a user range as the nearest-neighbor algorithms do [28].
Therefore, a first goal is to develop nearest-neighbor algo-
rithms that combine good accuracy with the advantage of
scalability that model-based algorithms present.

Regarding nearest-neighbor algorithms, there exist two
main approaches: (a) user-based (UB) CF, which forms neigh-
borhoods based on similarity between users; and (b) item-
based (IB) CF, which forms neighborhoods based on similar-
ities between items. However, both UB and IB are one-sided
approaches, in the sense that they examine similarities ei-
ther only between users or only between items, respectively.
This way, they ignore the clear duality that exists between
users and items. Furthermore, UB and IB algorithms cannot
detect partial matching of preferences, because their sim-
ilarity measures consider the entire set of items or users,
respectively. However, two users may share similar prefer-
ences only for a subset of items. For instance, consider two
users that share similar preferences for science-fiction books
and differentiate in all other kinds of literature. In this case,
their partial matching for science-fiction, which can help to
provide useful recommendations between them for this kind
of books, will be missed by existing approaches. Therefore,
by measuring similarity with respect to the entire set of
items, we miss partial matchings between two users, since



the differences in the remaining items prevails over the sub-
set of items in which their preferences match. Analogous
reasoning applies for the IB case. Thus, a second goal is
to develop nearest-neighbor algorithms that will be able to
consider the duality between users and items, and at the
same time, to capture partial matching of preferences.

Finally, the fact that a user usually has various different
preferences, has to be taken into account for the process of
assigning him to clusters. Therefore, such a user has to be
included in more than one clusters. Notice that this cannot
be achieved by most of the traditional clustering algorithms,
which place each item/user in exactly one cluster. In con-
clusion, a third goal is to adopt an approach that does not
follow the aforementioned restriction and can cover the en-
tire range of the user’s preferences.

1.2 Contribution

To attain the first described goal, i.e., to develop scal-
able nearest-neighbor algorithms, we propose the grouping
of different users or items into a number of clusters, based
on their rating patterns. This way, similar searching is per-
formed efficiently, because we use consolidated information
(that is, the clusters) and not individual users or items.

To address the second described goal, i.e., to disclose the
duality between users and items, we propose the generation
of groups of users and items at the same time. The simul-
taneous clustering of users and items discovers biclusters,
which correspond to groups of users which exhibit highly
correlated ratings on groups of items. Biclusters allow the
computation of similarity between a test user and a biclus-
ter only on the items that are included in the bicluster.
Thus, partial matching of preferences is taken into account
too. Moreover, a user can be matched with several nearest
biclusters, thus to receive recommendations that cover the
range of his various preferences.

To face the third described goal, i.e., to include a user in
more than one clusters, we allow a degree of overlap between
biclusters. Thus, if a user presents different item preferences,
by using overlapping biclusters, he can be included in more
clusters in order to cover all his different preferences.

The contributions of this paper are summarized as follows:

e To disclose the duality between users and items and
to capture the range of the user’s preferences, we in-
troduce for the first time, to our knowledge, the ap-
plication of an exact biclustering algorithm to the CF
area.

e We propose a novel nearest-biclusters algorithm, which
uses a new similarity measure that achieves partial
matching of users’ preferences.

e Our extensive experimental results illustrate the effec-
tiveness and efficiency of the proposed algorithm over
existing approaches.

The rest of this paper is organized as follows. Section 2
summarizes the related work, whereas Section 3 contains
the analysis of the CF issues. The proposed approach is
described in Section 4. Experimental results are given in
Section 5. Finally, Section 6 concludes this paper.

2. RELATED WORK

In 1992, the Tapestry system [6] introduced Collaborative
Filtering (CF). In 1994, the GroupLens system [21] imple-
mented a CF algorithm based on common users preferences.
Nowadays, it is known as user-based CF algorithm, because
it employs users’ similarities for the formation of the neigh-
borhood of nearest users. Since then, many improvements of
user-based algorithm have been suggested, e.g., [8, 18, 23].

In 2001, another CF algorithm was proposed. It is based
on the items’ similarities for a neighborhood generation [24,
13, 3]. Now, it is denoted as item-based or item-item CF
algorithm, because it employs items’ similarities for the for-
mation of the neighborhood of nearest users.

The concept of biclustering has been used in [17] to per-
form grouping in a matrix by using both rows and columns.
However, biclustering has been used previously in [7] un-
der the name direct clustering. Recently, biclustering (also
known as co-clustering, two-sided clustering, two-way clus-
tering) has been exploited by many researchers in diverse
scientific fields, towards the discovery of useful knowledge
[2, 4, 5, 14, 19]. One of these fields is bioinformatics, and
more specifically, microarray data analysis. The results of
each microarray experiment are represented as a data ma-
trix, with different samples as rows and different genes as
columns. Among the proposed biclustering algorithms we
highlight the following: (i) Cheng and Churchs algorithm [2]
which is based on a mean squared residue score, (ii) the Iter-
ative Signature Algorithm (ISA) which searches for subma-
trices representing fix points [12], (iii) the Order-Preserving
Submatrix Algorithm (OPSM), which tries to identify large
submatrices for which the induced linear order of the columns
is identical for all rows [1],(iv) the Samba Algorithm, which
is a graph theoretic approach in combination with a statis-
tical model [26, 25], and (v) the Bimax algorithm, an exact
biclustering algorithm based on a divide-and-conquer strat-
egy, that is capable of finding all maximal bicliques in a
corresponding graph-based matrix representation [20].

In the CF area, there is no related work that has applied a
specific biclustering algorithm to provide recommendations.
Madeira and Oliveira [15] have reported in their survey, the
existence of works that have used two-sided clustering in the
CF field. In these models [27, 11], there is a hidden vari-
able for each user and item, respectively, that represents the
cluster of that user or item. For each user-item pair, there is
a variable that denotes their relation. The existence of the
relation depends on the cluster of the person, and the cluster
of item, hence the notion of two-sided clustering. These are
latent class models using statistical estimation of the model
parameters and clustering is performed separately for users
and items. In contrast, our approach is based on the ap-
plication of specific biclustering algorithms' that perform
simultaneous clustering of users and items.

'For implementation issues, we use the Bimax biclustering
algorithm, however any other algorithm can be used equally
well, as our approach is independent of the specific biclus-
tering algorithm that is used.



3. EXAMINED ISSUES

In this section, we provide details for the issues we exam-
ine about CF algorithms. Table 1 summarizes the symbols
that are used in the sequel.

Neighborhood size: The number, k, of nearest neighbors

used for the neighborhood formation is important, be-
cause it can affect substantially the system’s accuracy.
In most related works [8, 22|, k has been examined in
the range of values between 10 and 100. The optimum
k depends on the data characteristics (e.g., sparsity).
Therefore, CF algorithms should be evaluated against
varying k, in order to tune it.

Positive rating threshold: Recommendation for a test

user is performed by generating the top-/V list of items
that appear most frequently in his formed neighbor-
hood (this method is denoted as Most-Frequent item-
recommendation). Nevertheless, it is evident that rec-
ommendations should be “positive”, as it is not success
to recommend an item that will be rated with, e.g., 1
in 1-5 scale. Thus, “negatively” rated items should

Symbol | Definition

k number of nearest neighbors or biclusters

N size of recommendation list

P threshold for positive ratings

A domain of all items

u domain of all users
U,V some users

1,7 some items

1, set of items rated by user u

U; set of users rated item ¢
Tui the rating of user u on item 3

Tu mean rating value for user u

T mean rating value for item ¢

n minimum allowed number of users in a bicluster
m minimum allowed number of items in a bicluster
B set of all biclusters

b a bicluster

Iy set of items of bicluster b

Uy set of users of bicluster b

Table 1: Symbols and definitions.

Scalability: Scalability is important, because in real-world

applications the number of users/items is very large.
As the number of users/items grows, CF algorithms
face performance problems. Therefore, CF algorithms
should be evaluated in terms of their responding time
in providing recommendations.

Similarity measure: The most extensively used simi-

larity measures are based on correlation and cosine-
similarity [9, 24]. Specifically, user-based CF algo-
rithms mainly use Pearson’s Correlation (Equation 1),
whereas for item-based CF algorithms, the Adjusted
Cosine Measure is preferred (Equation 2) [16, 24]. The
Adjusted Cosine Measure is a variation of the simple
cosine formula, that normalizes bias from subjective
ratings of different users. As default options, for user-
based CF we use the Pearson Correlation, whereas for
item-based we use the Adjusted Cosine Similarity, be-
cause they presented the best behavior overall.
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not contribute to the increase of accuracy. We use
a rating-threshold, P, to recommended items whose
rating is not less than this value. If we do not use a
P, value, then the results become misleading.

Training/Test data size: There is a clear dependence
between the training set’s size and the accuracy of CF
algorithms [24]. Through our experimental study we
verified this conclusion. Though most related research
uses a size around 80%, there exist works that use
significantly smaller sizes [16]. Therefore, CF algo-
rithms should be evaluated against varying training
data sizes.

Recommendation list’s size: The size, N, of the rec-
ommendation list corresponds to a tradeoff: With in-
creasing N, the absolute number of relevant items (i.e.,
recall) is expected to increase, but their ratio to the
total size of the recommendation list (i.e., precision)
is expected to decrease. (Recall and precision metrics
are detailed in the following.) In related work [13, 24],
N usually takes values between 10 and 50.

Evaluation Metrics: Several metrics have been used for
the evaluation of CF algorithms, for instance the Mean
Absolute Error (MAE) or the Receiving Operating
Characteristic (ROC) curve [9, 10]. MAE represents
the absolute differences between the real and the pre-
dicted values and is an extensively used metric. From
our experimental study (Section 5) we understood that
MAE is able to characterize the accuracy of prediction,
but is not indicative for the accuracy of recommenda-
tion. Since in real-world recommender systems the
experience of users mainly depends on the accuracy
of recommendation, MAE may not be the preferred
measure. For this reason we focus on widely accepted
metrics from information retrieval.



For a test user that receives a top-N recommendation
list, let R denote the number of relevant recommended
items (the items of the top-NV list that are rated higher
than P by the test user). We define the following:

e Precision is the ratio of R to N.

e Recall is the ratio of R to the total number of
relevant items for the test user (all items rated
higher than P- by him).

Notice that with the previous definitions, when an item
in the top-N list is not rated at all by the test user,
we consider it as irrelevant and it counts negatively to
precision (as we divide by N) [16]. In the following
we also use Fi, because it combines both the previous
metrics:

F1 = 2 - recall - precision/(recall + precision).

4. NEAREST BICLUSTER APPROACH

4.1 Outline of the Proposed Approach
Our approach consists of three stages.
e Stage 1: the data preprocessing/discretization step.
e Stage 2: the biclustering process.

e Stage 3: the nearest-biclusters algorithm.

The proposed approach, initially, applies a data prepro-
cessing/discretization step. The motivation is to preserve
only the positive ratings. Consequently, we proceed to the
biclustering process, where we create simultaneously groups
consisting of users and items. Finally, we implement the
k nearest-biclusters algorithm. We calculate similarity be-
tween each test user and the generated bicluster. Thus, we
create the test users’ neighborhood, consisted of the k£ near-
est biclusters. Then, we provide for each test user a Top-N
recommendation list based on the most frequent items in his
neighborhood.

To ease the discussion, we will use the running example
illustrated in Figure 1, where [1_7 are items and U;_g are
users. As shown, the example data set is divided into train-
ing and test set. The null cells (no rating) are presented
with dash.

4.2 The DataPreprocessing/Discretization Step

Data preprocessing is applied to make data more suitable
for data mining. According to the positive rating threshold,
we have introduced in Section 3, recommendations should
be “positive”, as it is not success to recommend an item that
will be rated with, e.g., 1 in 1-5 scale. Thus, “negatively”
rated items should not contribute to the increase of accuracy.
This is the reason that we are interested only for the positive
ratings, as shown in Figure 2.

Furthermore, as biclustering groups items and users si-
multaneously, it allows to identify sets of users sharing com-
mon preferences across subsets of items. In our approach,

Ui | 5 2 - 1 - -
Us | 2 - 4 1 4 3 -
Us | 4 - 2 - 2 - 5
Uy | - 3 1 4 - 5 2
Us | - 2 4 2 5 1 -
Us| 5 1 - 1 - 3
U; | - 2 5 - 4 1

Us | 1 4 - 5 4 3 -

11 12 13 [4 [5 [6 ]7
Ug |5 - 4 - 1 - 2

Figure 1: Running example: (a) training Set; (b)
test Set.

Il 12 I3 14 15 16 I7
v. |5 - - - - - -
Us | - -4 - 4 3 -
Us |4 - - - - - 5
Uy | - 3 - 4 - 5 -
Us | - - 4 - 5
Us|5 - - - - - 3
vr| - - 5 - 4 - -
Us | - 4 - 5 4 3 -

Figure 2: Training Set with rating values > P;.

the main goal is to find —as large as it can be— subsets of
users that have rated positively (above P: rating threshold)
items. Therefore, the problem can be discretized to binary
values by setting as discretization threshold the P, rating
threshold. The binarized data are shown in Figure 3.

L L Is Is Is Is I
ti:{1 0 0O 0O 0O 0 O
v-{0 o0 1 0 1 1 O
us{1 0 0 0 0 0 1
s 0 1 0 1 0 1 O
us|{ 0 0 1 0 1 0 O
Us|1 0 O O O 0 1
v-{0 0 1 0 1 0 O
us{ 0O 1 0 1 1 1 O

Figure 3: Binary discretization of the Training Set.

Notice that binarization of data is optional and can be
omitted, in case we use a biclustering algorithm which dis-
covers biclusters with coherent values on both users and
items. In our case, as it is shown in the next subsection,
we use Bimax algorithm which finds clusters with constant
values and the binarization step is required. In a future
work, we will examine more types of biclustering algorithms,
which will omit the preprocessing step.



4.3 The Biclustering Process

The biclustering process on a data matrix involves the
determination of a set of clusters taking into account both
rows and columns. Each bicluster is defined on a subset
of rows and a subset of columns. Moreover, two biclusters
may overlap, which means that several rows or columns of
the matrix may participate in multiple biclusters. Another
important characteristic of biclusters is that each bicluster
should be maximal, i.e., it should not be fully contained in
another determined bicluster.

For the biclustering step, we have adopted a simple bi-
nary inclusion-maximal biclustering algorithm denoted as
Bimax [20], which is executed off-line. It is an exact bi-
clustering algorithm based on a divide-and-conquer strat-
egy that is capable of finding all maximal biclusters in a
corresponding graph-based matrix representation.

For the Bimax algorithm, a bicluster b(Uy, I,) corresponds
to a subset of users U, C U that jointly present positively
rating behavior across a subset of items I, C Z. In other
words, the pair (Us, ) defines a submatrix for which all
elements equal to 1.

The main goal of the Bimax algorithm is to find all bi-
clusters that are inclusion-mazximal, i.e, that are not entirely
contained in any other bicluster. The required input to Bi-
max is the minimum number of users and the minimum
number of items per bicluster. It is obvious that the Bimax
algorithm finds a large number of overlapping biclusters. To
avoid this we can perform a secondary filtering procedure to
reduce this number to the desired overlapping degree.

L L Iy I, I, I, I
Us |0 0 0 0 0 1 I
Us |0 0 0 0 0 il L
Us|0 0 01 110 0
U;{ 0 0 01 110 0
U | 0 0 i1 111130 0
Ui 1 T 115110 0 0
Ustl 1110 0 0 0
U,{0 0 00 01 0

Figure 4: Applying biclustering to the Training Set.

In Figure 4, we have applied the Bimax algorithm to the
running example. Four biclusters are found (depicted with
dashed rectangles), with minimum number of users equal to
2 (i.e., |[Uy| > 2) and the minimum number of items equal to
2 (i.e., [Ip| > 2). These bilcusters are summarized as follows:

bi: Uy, = {Us,Us}, I, = {L, I}
ba: Uy, = {Us,U7,Us}, Iy, = {I5,13}
bs: Uy, = {U2,Us}, Iy, = {Is, Is}
bs: Uy, = {Us,Us}, Iy, = {14, I, I}

We have to notice that there is overlapping between bi-
clusters. Specifically, between biclusters 2 and 3 in item
Is. Also, we have overlapping between biclusters 3 and 4 in
item Is. We can allow this overlapping (it reaches 16,6%)

or we can forbid it. If we forbid it, then we will abolish the
existence of the third bicluster because it is smaller than
the other two. In order not to miss important biclusters,
we allow overlapping. However, overlapping introduces a
trade-off: (a) with few biclusters the effectiveness reduces,
as several biclusters may be missed; (b) with a high number
of biclusters efficiency reduces; as we have to examine many
possible matchings. In our experimental results we show the
tuning of the allowed overlapping factor.

4.4 The Nearest Bicluster Algorithm

In order to provide recommendations, we have to find the
biclusters containing users with preferences that have strong
partial similarity with the test user. This stage is executed
on-line and consists of two basic operations:

e The formation of test users’ neighborhood, i.e., to find
the k nearest biclusters.

e The generation of the top-N recommendation list.

To find the k nearest biclusters, we measure the similar-
ity of the test user and each of the biclusters. The central
difference with the past work is that we are interested for
the similarity of test user and a bicluster only on the items
that are included in the bicluster and not on all items that
he has rated. As described, this allows for the detection of
partial similarities. The similarity between the test user and
each bicluster is calculated by dividing the items they have
in common to the sum of items they have in common and
not in common. In Equation 3, we calculate the similarity
between a user u and bicluster b as follows:

- [ (1 I
sim(u,b) = 3
w0 = LI+ I = 1] ®)
It is obvious that similarity values range between [0,1].
The algorithm for the formation of the similarity matrix

between a test user and the biclusters is shown in Figure 5.

In the next phase, we proceed to the generation of the
top-N recommendation list. For this purpose, we have to
find the appearance frequency of each item and recommend
the N most frequent. In Equation 4, we define as Weighted
Frequency (WF) of an item ¢ in a bicluster b, the product be-
tween |Up| and the similarity sim(u,b). This way we weight
the contribution of each bicluster with its size in addition to
its similarity with the test user:

WEF(i,b) = sim(u,b) * |Us| (4)

Finally, we apply the Most Frequent Item Recommenda-
tion (proposing those items that appear most frequently in
the test user’s formed neighborhood). Thus, we add the
item weighted frequencies, we sort them, and propose the
top-N items in the constructed list, which is customized to
each test user preferences. The algorithm for the top-N gen-
eration list, is shown in Figure 6.



Array k-NearestBiclusters(nB, IB[nB][nI], Ul[nl])
begin
//int nI number of items
//int nB number of biclusters
//int ¢I, ncl common items/items not in common
//Array IB[nB][nl] stores items per bicluster (binary)
//Array Ul[nI| stores the user ratings
//Array SIM[nB] stores user-biclusters similarities
for b=1 to nB

cI=0; ncI=0; SIM[b] = 0;

for i=1 to nl
if (IB[b][¢] = 1) and (UI[z] > P1)

cl =cl + 1;
if (IB[b][7] = 1) and (UI[¢] < P7)
nel=ncl+1;

SIM[b] = eI/ (cI + ncl);

sort(SIM); //descending order
return (SIMJ[0..k-1]);
end

Figure 5: The algorithm for the formation of test
users’ biclusters neighborhood.

Array TOPN(nI, nnB, topN, UB[nB], SIM[k])
begin
//int nI number of test users/items
//int topN number of items in recommendation list
//int nnB number of nearest biclusters
//Array IB[nB][nl] stores items per bicluster(binary)
//Array WF[nI] stores items’ Weighted Frequency
//Array SIM[nB] stores users-biclusters similarities
//Array UB[nB] stores the number of users per bicluster
//Array TOPN[topN] stores the recommendation list
for j=1to nl
WEF|[j].value = 0;
WE[j].position = j;

for b=1 to nnB

for j=1 to nl
//if an item belongs to the bicluster
if (IB[SIM[b].position][j] > 0)
WEF[j].value += UBJ[b] * SIM[b];

sort(WF); //descending order of WF values

for i=1 to topN
if (WF[i].value > 0)
TOPN[i]= WF[i].position;
end

Figure 6: Generation of top-N recommendation list.

In our running example, assume that we keep all four
biclusters (allow overlapping) and we are interested for 2
nearest biclusters (k = 2). As it is shown, Uy has rated
positively only two items (I1,I3). So, his similarity with each
of the biclusters is (0.5, 0.5, 0, 0), respectively. Thus, test
user’s nearest neighbors come from the first two biclusters,
and the recommended items for him will be items I7 and I5.

5. EXPERIMENTAL CONFIGURATION

In the sequel, we study the performance of the described
nearest bicluster approach, against existing CF algorithms,
by means of a thorough experimental evaluation. Hence-
forth, the proposed algorithm is denoted as Nearest Biclus-
ters, the user-based algorithm as UB and the item-based
algorithm as IB. Factors that are treated as parameters, are
the following: the neighborhood size (k, default value 20),
the size of the recommendation list (N, default value 20),
and the size of training set and the test data set (default
value 75% and 25%, respectively). The metrics we use are
precision, recall, and F;.

We performed experiments with several real data sets that
have been used as benchmark in prior work. In this paper
we present results for the MovieLens data set with 100,000
ratings assigned by 943 users on 1,682 movies. The range
of ratings is between 1(bad)-5(excellent) of the numerical
scale. Our findings have been verified with the other real
data sets (e.g., MovieLens 1M, EachMovie), for which the
measurements are similar and will be included in an ex-
tended version of the paper. Finally, P, is set to 3 and the
value of an unrated item is considered equal to zero.

5.1 Results for Tuning Nearest Biclusters

As already discussed in Section 4.3, the only input of the
Bimax algorithm is the minimum allowed number of users
in a bicluster, n, and the minimum allowed number of items
in a bicluster, m. In order to discover the best biclusters
(in terms of effectiveness and efficiency), it is important to
fine-tune these two input variables. So, we examine the
performance of F; metric vs. different values for n and m.

Figure 7a illustrates Fy for varying n (in this measure-
ment we set m = 10). As n is the minimum allowed number
of users in a bicluster, Figure 7a also depicts (through the
numbers over the bars) the average numbers of users in a
bicluster, which as expected increase with increasing n. As
shown, the best performance is attained for n = 4. In the
following, we keep this as the default value. Nevertheless,
notice that performance is, in general, robust against vary-
ing n. In particular, for n < 6 the resulting F is high. In
contrast, for higher n, Fi decreases. The reason is that with
higher n we result with an inadequate number of biclusters
to provide qualitative recommendations. The conclusion is
that, small values for n are preferred, a fact that eases the
tuning process.

Similarly, we examined Fi for varying m. The results for
Fy are depicted in Figure 7b (n = 4). As previously, in the
same figure we also illustrate the resulting average numbers
of items in a bilcuster. The best performance is attained
for m = 10 (henceforth kept as default value), whereas F;
decreases for higher or lower m values. The reason is as
follows: for very small values of m, there are not enough
items in each bicluster to capture the similarity of users’
preferences (i.e., matching is easily attained), thus the qual-
ity of recommendation decreases; on the other hand, for very
large values of m, the number of discovered biclusters is not
adequate to provide recommendations.

In Section 4.3, we mentioned that Bimax finds all biclus-
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biclusters.

ters that are not entirely contained in any other bicluster. It
is obvious that this characteristic generates overlapping bi-
clusters. The number of overlapping biclusters can be enor-
mously large. To avoid this, we can perform a secondary
filtering procedure to reduce the number of biclusters with
respect to the desired overlapping degree. In Figure 8 we can
see F1 vs. varying overlapping degree (given as a percentage
of common items/users between the biclusters). The figure
also depicts (numbers over the bars) the resulting number
of biclusters for each overlapping degree. With decreasing
overlapping degree, F} decreases too. On the other hand,

by keeping a high level of overlap between the biclusters, we
harm efficiency —in terms of execution time— of the Near-
est Biclusters algorithm (for its on-line part). As shown,
by permitting 100% of overlapping, the number of gener-
ated biclusters is 85,723. It is obvious that this number
impacts the efficiency of the recommendation process. The
best combination of effectiveness and efficiency can be at-
tained by having an overlapping equal to 35% (results to
1,214 biclusters), where the resulting Fi is 0.36 (very close
to the 100% overlapping result).

5.2 Comparative Results for Effectiveness

We now move on to the comparison of Nearest Bicluster
algorithm with the UB and IB. The results for precision and
recall vs. k are displayed in Figure 9a and b, respectively.
As shown, the UB performs worst than IB for small values
of k. The performance of the two algorithms converges to
the same value as k increases. The reason is that with a
high k, the resulting neighborhoods for both UB and IB are
similar, since they include almost all items. Thus, the top-IV
recommendation lists are about the same, as they are formed
just by the most frequent items. In particular, both UB and
IB reach an optimum performance for a specific k. In the
examined range of k values, the performance of UB and
IB increases with increasing k and outside this range (not
displayed), it stabilizes and never exceeds 40% precision and
15% recall.

Nearest Biclusters significantly outperforms UB and IB.
The difference in precision is larger than 30%, whereas with
respect to recall, it exceeds 10% (we refer to the optimum
values resulting from the tuning of k). The reason is that
Nearest Biclusters takes into account partial matching of
preferences between users and the possibility of overlapping
between their interests. In contrast, UB and IB are based on
individual users and items, respectively, and do not consider
the aforementioned characteristics.

5.3 Comparative Results for Efficiency

Regarding efficiency, we measured the wall-clock time for
the on-line parts of UB, IB and Nearest Biclusters algo-
rithms. The on-line parts concern the time it takes to create
a recommendation list, given what is known about a user.
Notice that there is an off-line part for the IB and Nearest
Biclusters, which demands additional computational time,
needed to build the items’ similarity matrix and find the
biclusters, respectively. However, these computations are
executed off-line. Thus, we do not count them in the rec-
ommendation time. Our experiments were performed on a
3 GHz Pentium IV with 1 GB of memory running the Win-
dows XP operating system. The results vs. k are presented
in Figure 10. In particular, we present the average time
in milliseconds that takes to provide recommendations to a
test user.

As shown, IB needs less time to provide recommendations
than UB. Notice that the required time for IB to provide
recommendation for a test user is almost stable, whereas
the time for UB increases with increasing k. The reason is
that UB finds, firstly, user neighbors in the neighborhood
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matrix and then counts presences of items in the user-item
matrix. In contrast, with IB, the whole task is completed in
the item-neighborhood matrix, which is generated off-line.
Thus, in terms of execution time, IB is superior to UB.

In all cases, however, Nearest Biclusters needs even less
time than IB to provide recommendations. This is due to
the fact that the biclusters are also created off-line and, sec-
ondly, the number of biclusters in our experiment (1,214)
is less than the number (1,682) of items’ of the similarity

matrix in the IB case. As it is already presented in Sec-
tion 5.1, by decreasing the percentages of overlap between
biclusters, accuracy decreases too. On the other hand, by
keeping a high level of overlap between biclusters, we harm
the efficiency. Thus, to combine effectiveness and efficiency,
a prerequisite is a fine-tuning of the overlapping biclusters.

5.4 Examination of Additional Factors

In this section we examine the impact of additional fac-

tors. In our measurements we again consider UB, IB, and
Nearest Biclusters algorithms.
Recommendation list’s size: We examine the impact of
N. The results of our experiments are depicted in Figure 11.
As expected, with increasing N, recall increases and preci-
sion decreases. Notice that the best performance of UB and
IB corresponds to the worst performance of Nearest Biclus-
ters. The relative differences between the algorithms are co-
herent with those in our previous measurements. We have
to mentioned that in real applications, N should be kept
low, because it is impractical for a user to see all recommen-
dations when their number is large.
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Figure 11: Comparison vs. N: (a) precision, (b)
recall.

Training/Test data size: Now we test the impact of the
size of the training set, which is expressed as percentage
of the total data set size. The results for F; are given in



Figure 12. As expected, when the training set is small,
performance downgrades for all algorithms. Therefore, we
should be careful enough when we evaluate CF algorithms
so as to use an adequately large training sets. Similar to
the previous measurements, in all cases Nearest Biclusters
is better than IB and UB. The performance of both UB and
IB reaches a peak around 75%, after which it reduces. It
is outstanding that Nearest Biclusters trained with the 15%
of the data set, attains much better F; than UB and IB
when they are trained with 75%. Also, we see that after a
threshold of the training set size, the increase in accuracy for
algorithms is less steep. However, the effect of overfitting is
less significant compared to general classification problems.
In contrast, low training set sizes negatively impact accu-
racy. Therefore, the fair evaluation of CF algorithms should
be based on adequately large training sets.
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Figure 12: Comparison vs. training set size.

6. CONCLUSIONS

We proposed the application of an exact biclustering algo-
rithm in the CF area, to disclose the duality between users
and items and to capture the range of the user’s preferences.
In addition, we propose a novel nearest-biclusters algorithm,
which uses a new similarity measure that achieves partial
matching of users’ preferences and allows overlapping inter-
ests between users.

We performed experimental comparison of the nearest bi-
clusters algorithm against well known CF algorithms, like
user-based or item-based methods. Our extensive experi-
mental results illustrate the effectiveness and efficiency of
the proposed algorithm over the existing approaches.

We highlight the following conclusions from our examina-
tion:

e Our approach shows significant improvements over ex-
isting CF algorithms, in terms of effectiveness, because
it exploits the duality of users and items through bi-
clustering and partial matching of users’ preferences.
In particular, we attain more than 30% improvement
and recall more than 10% in terms of precision and
recall, respectively.

e Our approach shows improvements over existing CF
algorithms, in terms of efficiency. The Nearest Biclus-
ters algorithm needs even less time than item based
approach to provide recommendations.

e In our experiments we have seen that only a 15% of the
training set is adequate to provide accurate results.

e We introduced a similarity measure for the biclusters’
neighborhood formation and proposed the Weighted
Frequency for the generation of the top-N recommen-
dation list of items.

Summarizing the aforementioned conclusions, we see that,
the proposed Nearest Biclusters algorithm through a simple,
yet effective, biclustering algorithms(Bimax) and the par-
tial matching of users’ preferences, achieves better results
in terms of effectiveness and efficiency than traditional CF
algorithms. For this reason, in our future work we will ex-
amine other biclustering algorithms as well. Moreover, we
will also examine different similarity measures between a
user and a bicluster.
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