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ABSTRACT
The concept of network communities has been studied thoroughly

in the network science literature since it has many important ap-

plications in diverse fields. Recently, the community concept has

been combined with the concept of influence. The aim of this com-

bination is to allow for the detection of communities that have

also a high degree of influence. To achieve this, there is a need to

guarantee that communities are good with respect to their structure

and also influential with respect to attribute values of the nodes

participating in the community. In the literature, there are two main

directions to attack the problem: 𝑖) the online approach, which com-

putes influential communities in increasing influence value order,

and 𝑖𝑖) the index-based approach, which pre-computes influential

communities and stores appropriate information in a tree-based

index structure. Based on these two directions, we propose a new

technique with the following properties: 𝑖) there is no need to pro-

cess the graph each time a new query arrives, and 𝑖𝑖) there is no

need to waste computational resources to maintain parts of the

index that users are not interested in. This is achieved by start-

ing without any index in memory. Then, using online algorithms,

as new queries arrive, we incrementally build parts of the index

that help answering similar future queries. Extensive experimental

results, on real world graphs, demonstrate the efficiency of our

method against existing approaches in most realistic cases.
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1 INTRODUCTION
Community detection is a fundamental problem in network analysis

that has attracted much interest during the last decade [12, 17, 30].

Given a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of nodes and 𝐸 is the

set of edges, the output of a community detection algorithm is a set

of communities𝐶1, ...,𝐶𝑠 , where each𝐶𝑖 is a subset of the number of

nodes𝑉 of the graph. The members of a community form a densely
connected group of nodes. Community detection in graphs has

many similarities with the clustering problem in multi-dimensional

datasets. Therefore, depending on the definition of density, there
are many different alternatives to define communities. For example,

it is natural to expect that the number of edges connecting nodes

of the same community will be significantly larger than the edges

connecting nodes across communities.

Community structures are contained in many real-world net-

works. As a result, community detection has some important appli-

cations [11, 25] such as:

• Friend recommendation. Social media platforms maintain

a friendship network. The aim is to suggest to a user 𝑢 some

candidate friends. We can recommend to 𝑢, persons that

exists in his community but they are not yet friends.

• Event organization. Social events involve groups of users
that are well acquainted. We can recommend same events to

users that belong into same communities.

• Protein complex identification. In biology, a gene is often

regulated by a set of proteins. So, in order to study a gene

we may search for proteins that interact with each other

with a significant degree, which is actually a community of

proteins.

• Advertisement in e-commence. Users that belong to the

same community tend to share common interest. We can pro-

pose advertisements to a user, based on the advertisements

that are checked by his community members.

• Infectious disease control. If a person gets an infection

disease, we should track his community members for a pos-

sible transmission. With this way we can limit the spread of

the disease. When transition spreads across many persons,

the concept of influence may be used to focus on people that

belong to communities with the highest influence. These

people are responsible for major number of new infections

due to their higher influence.

The first priority of a community detection or a community

search algorithm is to discover groups of nodes that have a specific

degree of cohesiveness. However, in many real-world applications

nodes are annotatedwith additional attributes that play a significant

role in the formation of the network structure. For example, in a

social network graph, the information contained in users’ profiles

https://doi.org/10.1145/3538712.3538724
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is essential for friend recommendation or to provide more targeted

advertisements. Therefore, it is reasonable to take node attributes

into account towards the discovery of more important communities,

not only with respect to structure but also with respect to influence.
This process requires the existence of a meaningful influence score.

The introduction of the influence score in each community, sug-

gests that we are dealing with a two-dimensional problem, which

is defined by two variables 𝑟 and 𝑘 . In this setting, 𝑟 expresses the

number of communities in the result, and 𝑘 defines the goodness of
the community with respect to connectivity and structure. Based

on these two numbers, we are interested in the discovery of the

top-𝑟 𝑘-influential communities.

The related literature contains two distinct alternatives for the

computation of top-𝑟 𝑘-influential communities:

• On-line algorithms. The main characteristic of any on-

line algorithm is that computes every query from scratch,

traversing every time the graph. The first on-line algorithm

was presented in [21], which computes all 𝑘-influential com-

munities in increasing influence value order. So, the last 𝑟

identified 𝑘-influential communities are the results. Then,

a Forward and a Backward algorithm was proposed in [6].

Forward is an improvement of [21] whereas Backward de-

tects the 𝑘-influential communities in the reverse order, from

the most important to the least. Finally an instance-optimal

algorithm was presented in [3], which avoids traversing the

entire graph for finding just the top-𝑟 𝑘-influential commu-

nities and outperforms both Backwards and Forward.

• Index-based algorithms. An index-based algorithm that

efficiently retrieves the top-𝑟 𝑘-influential communities was

presented in [21]. The general idea is that first all𝑘-influential

communities are pre-computed for each possible value of

𝑘 and stored in a space-efficient tree structure. Then, using

this index, it is possible to answer any query for top-𝑟 𝑘-

influential communities in linear time with respect to the

size of the top-𝑟 results.

Each previous approach has its own drawback. Algorithms in

[21] are global search (they need to traverse the entire graph).

Backward [6] tried to implement a local search but with a cost of

quadratic time and it is outperformed by Forward when 𝑘 is large.

LocalSearch [3] seems to be the best on-line algorithm (requires

linear time proportional to the size of the subgraph it traverses)

but still is not competitive to the time that an index can answer a

query. On the other hand, the index-based algorithm [21] requires

a pre-processing step and needs large amount of main memory;

thus is not scalable for very large graphs.

Contributions. In this paper, we propose an efficient approach that

can handle multiple queries for top-𝑟 𝑘-influential communities.

Our approach combines online and index-based techniques in order

to eliminate their drawbacks and enhance their advantages. To

achieve this, we begin with no index in main memory. Then as

queries arrive, we utilize online algorithms to build parts of the

index that can help answering similar future queries. This way,

we do not waste computational resources to maintain parts of the

index that users are not interested in, plus we avoid processing the

whole graph every time a new query arrives.

Experimental results shows as our superiority against simple

online algorithms in every case/scenario. The time that we save is

proportional to the total number of queries (𝑞) that are answered.

We notice a faster gain in time when 𝑞 >> 𝑘 , which is also a

more realistic scenario, since queries can be many thousands, but 𝑘

value is usually some hundreds. Nevertheless, against index-based

method, we are not always faster. It depends on especially 𝑘 and

then 𝑟 values. Bigger values results in a time that can exceed far

the time of building the index. Despite, we always need far less

amounts of main memory.

Roadmap. The rest of the work is organized as follows. Section 3

presents the necessary background. The proposed approach is pre-

sented in detail in Section 4. Performance evaluation results are

offered in Section 5 and related work is summarized in Section 2. Fi-

nally, Section 6 concludes our work and discusses briefly interesting

future research directions.

2 RELATEDWORK
In this section, we present briefly research works that are closely

related to our work. In particular, we focus on community search,

cohesive subgraphs and database cracking.

Community Search. This problem is different from community

detection. The concept is that we have a single node or a set of nodes

and the goal is to find the community that nodes belong into. Also,

the minimum cohesiveness of the community should be given by

the user. Different models are proposed based in different concepts

such as 𝑘-core [1, 25], 𝑘-truss [15, 18], edge density [29], edge

connectivity [4, 20],𝛼-adjacency𝛾-quas𝑖-𝑘-cliquemodel [9], spatial-

aware community [10], attributed community [16] and random

walk [26]. All edges of a 𝑘-truss are contained at least in 𝑘 − 2

triangles. Edge density is based in various definitions such as the

average degree of the nodes. A 𝑘-edge connected graph still remains

connected when 𝑘 − 1 edges are removed from it. A graph with 𝑘

nodes and at least𝛾
𝑘 (𝑘−1)

2
edges is called a𝛾-quasi-𝑘-clique. Spatial-

aware communities are communities that all nodes are spatially

close to each other. In some graphs nodes have properties that

are meaningful for the sense of communities. These nodes are

associated with attributes and these graphs are called attributed

graphs. Note that most of these works do not consider the influence

of communities.

Cohesive Subgraph Mining. Computation of cohesive subgraphs

in a graph is an important concept in social network. There are

many definitions of cohesive graphs including k-core [24], k-truss

[27], DN-graph [28], maximal clique [7], edge connectivity [5] and

locally denset subgraph [23] to name a few. A DN-graph regarding

a value 𝜆 is a connected graph in which every two connected nodes

have in common at least 𝜆 neighbors. Maximal clique is a clique of

a graph in which there are not remaining nodes in the graph that

are connected to each clique’s node. Maximal subgraphs are com-

puted based on a threshold value of cohesiveness given by the user.

Various studies on 𝑘-core and 𝑘-truss decomposition satisfy differ-

ent settings, such as in-memory algorithms [2], external memory

algorithms [27] and either MapReduce [8].
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Database Cracking. This technique [19] is based on the hypothesis
that maintenance of an index is part of query processing and not

of updates in database. Each query should not be handled as a

request for some data, but as an advice to speed up future queries

with similar interest. The unexplored areas of database remain non-

indexed until a query becomes interested in these data. All this

process brings up the benefits of self-organization.

3 BACKGROUND
In this section, we present some important background information

to keep the paper self-contained. In particular, we define the prob-

lem formally and describe online as well as index-based approaches.

3.1 Problem Statement
Consider an undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of

vertices and 𝐸 is the set of edges. The degree of each node 𝑢 in

𝐺 (denoted as 𝑑 (𝑢,𝐺)) is defined as the number of its neighbors

in 𝐺 . Consider also a vector 𝑤 that assigns to each node 𝑢 in 𝑉 a

weight. The weight of a node 𝑢 (𝑤𝑢 ) denotes its influence value in

𝐺 and it can be its PageRank value, a centrality score, or any other

meaningful attribute value. A higher value of the attribute suggests

a more influential node.

An induced subgraph of𝐺 , denoted by 𝐻 = (𝑉𝐻 , 𝐸𝐻 ), is a graph
with𝑉𝐻 ⊆ 𝑉 and 𝐸𝐻 = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉𝐻 , (𝑢, 𝑣) ∈ 𝐸}. A 𝑘-core is an

induced subgraph 𝐻 where every node 𝑢 ∈ 𝐻 has a degree at least

𝑘 (i.e., 𝑑 (𝑢,𝐻 ) ≥ 𝑘). Every graph has a unique maximal 𝑘-core 𝐻 ′,
which is a 𝑘-core such that no supergraph 𝐻 of 𝐻 ′ is also a 𝑘-core.

The core number 𝑐𝑢 of a node 𝑢 in a graph 𝐺 is the maximal value

of 𝑘 such that 𝑢 is included in the 𝑘-core of 𝐺 .

In addition, we assume that every node has a distinct weight and

that the weight vector is given apriori (i.e., if 𝑖 ≠ 𝑗 then𝑤𝑖 ≠ 𝑤 𝑗 ).

Given a value 𝜏 , 𝑉𝜏 is a subset of 𝑉 that contains only the nodes

with weight no less than 𝜏 . We denote by 𝐺 [𝑉𝜏 ] the subgraph of 𝐺

induced by 𝑉𝜏 , that contains all edges of𝐺 whose both end-points

are in 𝑉𝜏 . For simplicity we use 𝐺𝜏 to denote the subgraph of 𝐺

induced by vertices of 𝑉𝜏 (i.e. 𝐺𝜏 = 𝐺 [𝑉𝜏 ]).
Before we proceed inmore details, it is necessary to clearly define

the concept of the influence value of an induced subgraph.

Definition 3.1. Given an induced subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) of an
undirected graph 𝐺 = (𝑉 , 𝐸) the influence value of 𝐻 , denoted as

𝑓 (𝐻 ), is defined as the minimum weight of all nodes in 𝐻 .

The above definition of the influence value ensures that there

will not be any nodes with low weight in a large influence value

induced subgraph, ending to a robust to outliers definition.

Despite its influence value, an influential community should

also be a cohesive induced subgraph. Various definitions have been

studied in the literature [13, 15, 25] like 𝑘-core, 𝑘-truss, edge con-

nectivity. The most popular of them seems to be 𝑘-core due to its

simplicity and low-time computability [11]. Below we give the defi-

nition of 𝑘-influential community, where 𝑘 defines the cohesiveness

of the community.

Definition 3.2. Given an undirected graph 𝐺 = (𝑉 , 𝐸) and an

integer 𝑘 , a 𝑘- influential community is an induced subgraph 𝐻 =

(𝑉𝐻 , 𝐸𝐻 ) of 𝐺 that satisfies the following constraints:

• Connectivity: 𝐻 is connected

1
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7 6
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11
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13

Figure 1: An example graph (numbers denote id and weight).

• Cohesiveness: each node 𝑢 in 𝐻 has degree at least 𝑘 .

• Maximal structure: there is no other induced subgraph 𝐻 ′

such that (1) 𝐻 ′ satisfies connectivity and cohesiveness con-

straints; (2)𝐻 ′ contains𝐻𝑘 ; and (3)𝐻
′
has the same influence

value as 𝐻 (i.e., 𝑓 (𝐻 ′) = 𝑓 (𝐻𝑘 )).

Example 3.3. Consider the graph given in Figure 1. We can de-

termine that subgraph 𝑔1 induced by nodes {9, 10, 11, 12} is a 2-

influential community, with influence value 9, as it follows all con-

strains of definition above. In contrast, the subgraph induced by

nodes {9, 10, 12} is not a 2-influential community as the maximal

structure is not satisfied. This is because {9, 10, 12} is contained in

the super graph of {9, 10, 11, 12} that has also the same influence

value. Finally, note that the subgraph induced by nodes {10, 11, 12}
is a 2-influential community. Despite being a subgraph of𝑔1, it has a

higher influence value (10) than 𝑔1 (9), so again all three constrains

are satisfied.

Typically, we are interested in the influential communities whose

influence value is larger than the others. In this paper we focus

on detecting such communities in a graph. Thus, we aim to find

only the top 𝑟 communities of all communities with a specific

cohesiveness value.

Problem 1. Given an undirected graph𝐺 = (𝑉 , 𝐸) a vector with
weights𝑊 and two parameters 𝑘 and 𝑟 , the problem is to detect the
top-𝑟 -𝑘-influential communities with the highest influence value.

For example, consider again the graph in Figure 1. We can verify

that the top 3-2 influential communities are the subgraphs induced

by {10,11,12}, {9,10,11,12} and {7,8,13} with influence value 10,9 and

7 respectively.

3.2 The Online Approach
An on-line solution for detecting the top-𝑟 -𝑘-influential commu-

nities of a graph was proposed in [3]. In order to understand the

approach we need to mention some important lemmas.

Lemma 3.4. Every 𝑘-influential community in 𝐺𝜏2 is also a 𝑘-
influential community in 𝐺𝜏1 if 𝜏1 ≤ 𝜏2. It is true that 𝐺𝜏1 is a
supergraph of 𝐺𝜏2.

Lemma 3.5. If 𝑔 is a 𝑘-influential community in 𝐺𝜏1 and 𝜏1 ≤ 𝜏2

and the influence value of g is no smaller than 𝜏2, then 𝑔 is also an
𝑘-influential community in 𝐺𝜏2.
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Algorithm 1 Compute 𝜏∗
Input: Graph 𝐺 , number 𝑟 of influential communities and the

cohesiveness value 𝑘 .

Output: 𝜏∗ s.t. 𝐺𝜏∗ contains at least 𝑟 -𝑘- influential communities.

1: 𝑢 ← (𝑘 + 𝑟 )𝑡ℎ largest weight node in 𝐺

2: 𝑖 ← 1

3: 𝜏𝑖 ← 𝑤 (𝑢)
4: while CountIC(𝐺𝜏𝑖 ) < 𝑘 and 𝐺𝜏𝑖 ≠ 𝐺 do
5: 𝜏𝑖+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜏∗ s.t. 𝑠𝑖𝑧𝑒 (𝐺𝜏∗) ≥ 2 ∗ 𝑠𝑖𝑧𝑒 (𝐺𝜏𝑖 )
6: 𝑖 ← 𝑖 + 1
7: end while
8: return 𝜏∗

Lemma 3.6. Let 𝜏∗ be the largest value such that 𝐺𝜏∗contains at
least 𝑟 -𝑘-influential communities. Then, the set of top-𝑟 -𝑘-influential
communities in 𝐺𝜏∗ is the set of top-𝑟 -𝑘-influential communities in
𝐺 .

The goal of local search approach is to first detect the smallest

possible subgraph of 𝐺 that contains 𝑟 -𝑘-influential communities.

So we need to find a way to compute 𝜏∗ efficiently. In [3] the

following strategy has been shown to be the most efficient. We

first set 𝜏1 to be the weight of the (𝑘 + 𝑟 )𝑡ℎ largest weight node

in 𝐺 . We do so because the 𝑟 -𝑘-influential communities contain at

least 𝑘 + 𝑟 distinct nodes. Then, while 𝐺𝜏 does not contain at least

𝑟 𝑘-influential communities, we iteratively increase the size of 𝐺𝜏

until it gets doubled. So we exponentially grow the initial𝐺𝜏1 until

it contains the required number of communities. The pseudo-code

to compute 𝜏∗ is presented in Algorithm 1.

Example 3.7. Consider the graph shown in Figure 1. Assume that

we want to find top 4-2- influential communities. We first set 𝜏1

equal to the weight of the 4 + 2 = 6
𝑡ℎ

largest weight node. This is

node 8 with weight 8. So 𝜏1 = 8. 𝐺8 contains only 2-2- influential

communities. As a result we need to compute the largest 𝜏2 value

such that 𝑠𝑖𝑧𝑒 (𝐺𝜏2) ≥ 2 ∗ 𝑠𝑖𝑧𝑒 (𝐺𝜏1). The size of 𝐺𝜏1 is 13 as it

consists of 6 nodes and 7 edges. We iteratively add the next highest-

weight node into 𝐺𝜏1 until its size gets at least 26. Node 7 is added

and increases the size by 3, as it has an edge with 8 and one with

13. Node 6 is added next, increasing the size by 3. The addition of

node 5 increases the size by 4. Now we have a total size of 23. We

need 3 more. Finally we add nodes 4 and 3 that results to a new size

of 26. So 𝜏2 = 3. 𝐺3 contains 5-2 influential communities. Now we

are safe to say that 𝜏2 = 𝜏∗ = 3.

Until now we have shown that we need to count influential

communities in a subraph of 𝐺 , but we have not explained how

to achieve this. In this paper we will use the CountIC algorithm

presented in [3]. Before we explain the algorithm we first need to

give the definition of keynode regarding 𝑘-influential community.

Definition 3.8. We call keynode regarding a 𝑘 value, a node 𝑢 in

a graph 𝐺 , if there exists a subgraph 𝑔 of 𝐺 with influence value

equal to 𝑢’s weight and the minimum degree node of 𝑔 is at least 𝑘 .

Note that, by definition of influence value, 𝑢 must be contained in

subgraph 𝑔.

For example, in Figure 1, node 10 is a keynode regarding 𝑘 = 2

for the subgraph induced by {10,11,12} since the subgraph has an

Algorithm 2 CountIC

Input: Graph 𝐺 and cohesiveness value 𝑘 .

Output:Number of 𝑘-influential communities in 𝐺 .

1: 𝑔←the 𝑘-core of 𝑔

2: 𝑘𝑒𝑦𝑠 ← ∅
3: 𝑐𝑣𝑠 ← ∅
4: while 𝑔 ≠ ∅ do
5: 𝑢 ← the minimun weight node in 𝑔

6: Append 𝑢 to 𝑘𝑒𝑦𝑠

7: Remove(𝑢,𝑔,𝑐𝑣𝑠)

8: end while
9: return |𝑘𝑒𝑦𝑠 |

Procedure Remove(𝑢, 𝑔, 𝑐𝑣𝑠)

10: 𝑄 ← empty queue

11: push 𝑢 into 𝑄

12: while 𝑄 ≠ ∅ do
13: Pop 𝑣 from 𝑄

14: for 𝑣 ’ ∈ N(𝑣 , 𝐺) do
15: if 𝑑 (𝑣 ′, 𝑔) = 𝑘 then
16: Push 𝑣 ′ in 𝑄

17: end if
18: end for
19: Remove 𝑣 from 𝑔

20: Append 𝑣 in 𝑐𝑣𝑠

21: end while

influence value of 10 which is equal to the weight of node 10, and

has a minimum degree of at least 2. We will call a node simply a

keynode without referring to his 𝑘 value which can be inferred

from the context.

We should mention the next two lemmas regarding a keynode.

Lemma 3.9. Given a graph𝐺 and a value 𝜏 , there is at most one
𝑘-influential community with influence value 𝜏 .

Lemma 3.10. There is one-to-one correspondence between𝑘-influential
communities and keynodes in 𝐺 . As a result, the number of keynodes
in 𝐺 is equal to the number of 𝑘-influential communities in 𝐺 .

Given an influential community 𝑔, the node with the minimum

weight would be its unique corresponding keynode, denoted by

key(𝑔). Note that𝑔may contain keynodes of possible sub-influential

communities of 𝑔, but it is uniquely identified by the keynode with

the minimum weight. For example, {9,10,11,12} is a 2-influential

community which keynode is 9. But, it contains 10 which is the

keynode for {10,11,12}. So, the unique corresponding keynode of

{9,10,11,12} is 9.

The Algorithm. CountIC takes as input a graph 𝑔 and a value 𝑘

and returns the number of 𝑘-influential communities in 𝑔. This is

done by finding all the keynodes in 𝑔 and then return its count. We

first need to reduce g in its 𝑘-core. [2] presents an efficient way

to find the core number of each node in a graph. Another way to

compute 𝑘-core of 𝑔 mentioned in [3], is to call procedure Remove

for each vertex in 𝑔 whose degree is less than 𝑘 . Then we initialize

two empty lists, 𝑘𝑒𝑦𝑠 to store the keynodes and 𝑐𝑣𝑠 that we can

ignore for now as it will be used in a further process-to build the
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Figure 2: Running example for CountIC 2

index. Then, while 𝑔 is not empty, we iteratively find the minimum

weighted node, store it in𝑢, add𝑢 to the list of keynodes, and finally

remove it from 𝑔. Note, that every 𝑢 will be a keynode as it satisfies

the definition of keynode. Furthermore, the process that removes

𝑢 from 𝑔, also computes the 𝑘-core of 𝑔 \ 𝑢. This is necessary as

𝑔 \ 𝑢 may not be a 𝑘-core. To do so, we initialize a queue 𝑄 that

contains only𝑢. Then we will push every neighbor of𝑢 with degree

equal to 𝑟 in 𝑄 , and do the same for every node in 𝑄 . This process

recursively will remove from 𝑔 every node whose degree becomes

less than 𝑘 as a result of previously deleting nodes from 𝑔, resulting

to the new 𝑘-core. Note that 𝑐𝑣𝑠 will contain all nodes of 𝐺 , with

the order that they are removed from 𝐺 .

Example 3.11. Lets run algorithm 2 in 𝐺3 with 𝑘 = 2. Remind

that 𝐺3 is the subgraph of 𝐺 that contains all nodes with weight

no less than 3. First of all, we reduce 𝐺3 to its 2-core. This action

removes nodes 3 and 4, as they both only have a degree of 1. Then

we remove the node with the minimum weight. That is node 5.

We append to the list of 𝑘𝑒𝑦𝑠 and call the remove process for this

node. None of its neighbors have degree 2, so only node 5 gets

removed. Secondly, we delete node 6. Again none of its neighbors

gets deleted. Next, node 7 gets removed. The remove process also

removes nodes 8 and 13, as they are not par of 2-core anymore.

Similarly we delete node 9 and finally node 10, which also deletes

nodes 11 and 12. So we have a total of 5 keynodes. That means that

there are 5 2-influential communities in 𝐺3. The resulting contents

of 𝑘𝑒𝑦𝑠 and 𝑐𝑣𝑠 are shown in Figure 2.

Until now, we know how to detect a small subgraph of𝐺 in order

to locally search for influential communities and we also know a

way to count their number in the subgraph. The next and final

step is to extract the influential communities. This is achieved with

the help of our two lists, 𝑘𝑒𝑦𝑠 and 𝑐𝑣𝑠 . Given these two lists, we

create one group of nodes for each keynode in 𝑘𝑒𝑦𝑠 . The group

of each keynode 𝑢 is denoted by gp(𝑢) and it contains 𝑢 and all

nodes after𝑢 and before the next keynode in 𝑐𝑣𝑠 . From the previous

example it is true that gp(5)={5}, gp(6)={6}, gp(7)= {7,8,13}, gp(9)={9}

and gp(10)={10,11,12}.

In order to extract the final influential communities, we are based

on the lemma below. We denote by 𝐼𝐶 (𝑢), the influential commu-

nity corresponding to keynode 𝑢, as we have already explained

that every influential community is corresponding by its unique

keynode.

Lemma 3.12. IC(𝑢) equals the union of gp(𝑢) and IC(𝑢’) for each
keynode 𝑢’ such that𝑤 (𝑢 ′) > 𝑤 (𝑢) and there is an edge between a
node of gp(𝑢) and a node of gp(𝑢’).

1

2 5

6

7

10

9

1

2, 3, 4 5

6

7, 8, 13

10, 11, 12

9

3, 4

8, 13

11, 12

5,6,7,8,13 9,10,11,12

k = 1 k = 2 k = 3

Figure 3: Example of an ICP index.

We will not present the algorithm in detail, as it exceeds the

needs of this paper. The interested reader is referred to [3] which

also describes in detail the required graph organization. In next

sessions we will only use the two lists and the groups of every

keynode in order to build the index. Then we will be able to extract

the influential communities easier by using the index.

3.3 The ICP index
The idea of the index is based on the fact that for each 𝑘 , the 𝑘-

influential communities form an inclusion relation. As we have

shown in previous examples, an influential community may be

contained in another one. Consider 𝐻𝑘 = {5, 6, 7, 8, 13} which is an

influential community with influence value 5. 𝐻𝑘 contains {6,7,8,13}

and {7,8,13} which are other influential communities.

Lemma 3.13. For any 𝑘 -influential community 𝐻𝑘 , if we delete
the minimum weight node and the resulting subgraph still contains a
maximal 𝑘-core 𝐶𝑘 , then each maximal connected component of 𝐶𝑘
is a 𝑘- influential community.

Based on the lemma above it is true that a 𝑘-influential com-

munity contains all sub-𝑘- influential communities which are the

MCCs of the maximal k-core of 𝐻𝑘 \ 𝑢. So we can construct a two

level tree structure to organize this inclusion relationship as follows:

the parent vertex is 𝐻𝑘 and each MCC of the maximal 𝑘-core of

𝐻 \𝑢 will be a child of the𝐻𝑘 . Every child also will be a 𝑘 -influential

community. Note that we can recursively use the above result to

every child of the initial influential community, resulting in a tree

structure.

So, all𝑘-influential communities can be organized as a tree-shape

structure, where the root of the tree will represent the influential

community with the lowest influence value and every child will be

a different influential community with higher influence value. As a

result the top-𝑟 -𝑘- influential communities will be close to leaves.

It is not effective to store in every vertex of a 𝑘 tree the whole

influential community but we can use the inclusion relationship

to avoid this problem. For each non-leaf vertex in the tree which

corresponds to a 𝑘-influential community we only store the nodes

of the 𝑘- influential community that do not exist in its children

influential communities.

Example 3.14. Consider the graph in Figure 1. All nodes of 𝐺

form a 2-core. Assume that we are interested for all 2-influential

communities in 𝐺 . The whole graph is a 2-influential community

with the smallest possible influence value of 1. If we remove node
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1, three MCCs are created, that are also 2- influential communities.

That is {2,3,4}, {5,6,7,8,13} and {9,10,11,12}. So far we should have for

2-tree a root vertex containing only node 1 with 3 children, one for

eachMCC. Root contains only node 1 as it is the only node that does

not appear in any sub-2-influential community. Then we remove

node 2, which also removes nodes 3 and 4. So the vertex {2,3,4} will

be a leaf as it does not have any children. Then the removal of node

5 creates one MCC that contains {6,7,8,13}, so vertex {5,6,7,8,13}

now splits into a parent node {5} with a single child {6,7,8,13}. We

continue the process with the same logic resulting to the 2-tree

shown in Figure 3.

When we want to extract a 𝑘-influential community from a

vertex 𝑣 of the 𝑘-tree we have to return as a result, not only the

nodes contained in this vertex, but in addition all nodes that exist

in all vertices of the sub-tree with root the initial vertex 𝑣 . Note for

𝑘 = 3 we do not have a tree, but a forest structure, as the 3-core

of our graph consist of two MCCs. Figure 3 shows the whole ICP

index structure.

The algorithm to build the ICP-index of a graph G is presented

in detail in [21] . We will not present these algorithms in this paper

as our goal is not to build the whole ICP-index, but based on that

algorithm we will only build the most bottom parts of each tree

that users are interested in.

4 THE PROPOSED APPROACH
Consider a scenario that we have a large-scale graph 𝐺 and some

users that query for 𝑘-influential communities over𝐺 . We expect

that some queries will be very similar to each other. For example, a

user may ask for the top-10 10-influential communities and then

another user may ask for the top-5 10-influential communities.

In this case, we have already computed the second query as it is

contained in the answer of the first one. Therefore, we should avoid

re-computing the top-5 10-influential communities query. Assume

further that a third query is asking for the top-20 10-influential

communities. We should find a way to use the previous results of

top-10 10-influential communities in order to compute the top-20

10-influential communities. Thus, we aim to determine the best

strategy to answer these queries given an input graph.

A simple approach is to use an on-line algorithm, but in this case

we do not use any relation that exists between different queries and

plus we have to process all the graph every time a new query occurs.

Then we can think about building the ICP-index. Using the index

we will be able to answer every query in time linear to the size of

communities in the query, so it is optimal [21]. We just need to build

the whole index once. Also, we do not care for any relationship

between the queries. The problem with this implementation is

that for large-scale graphs most times we need a large amount

of main memory. Also, we have to pre-computed all 𝑘-influential

communities, even if users are interested in finding top-100 or the

top-1000 only. Or users may not be interested in all possible 𝑘-

influential communities, but only for specific values of 𝑘 . In that

case, building the ICP-index will make unnecessary computations

in order to compute some 𝑘-trees, plus it will lead to excessive main

memory usage.

In this section we propose a method that starts with no index in

memory and then based on users queries it uses online algorithms

Algorithm 3 Query

Input: Graph 𝐺 , number 𝑟 of influential communities and the

cohesiveness value 𝑘 .

Output:Top 𝑟 -𝑘-influential communities in 𝐺 .

1: if 𝑘-tree exists in ICP then
2: if 𝑘-tree contains less than 𝑟 nodes then
3: Call on-line algorithm to extend the 𝑘-tree of ICP

4: end if
5: else
6: Call online algorithm to create the 𝑘-tree of ICP

7: end if
8: Use ICP to extract top 𝑟 -𝑘-influential communities

Algorithm 4 ConstructTree

Input: 𝑘 value of cohesiveness, 𝑐𝑣𝑠 and 𝑘𝑒𝑦𝑠 lists.

Output: part of 𝑘-tree in ICP index.

1: Keep nodes of 𝑐𝑣𝑠 and 𝑘𝑒𝑦𝑠 that they do not exist in any vertex

of 𝑘-tree

2: Create a signal-vertex tree in 𝑘-tree for each gp(𝑢) of 𝑘𝑒𝑦𝑠

3: for node 𝑢 in 𝑐𝑣𝑠 with reversed order do
4: for 𝑣 ∈ N(𝑢, 𝐺) s.t.𝑤𝑣 > 𝑤𝑢 do
5: 𝑆𝑢 ← the root node of the tree containing 𝑢 in 𝑘-tree

6: 𝑆𝑣 ← the root node of the tree containing 𝑣 in 𝑘-tree

7: if 𝑆𝑢 ≠ 𝑆𝑣 then
8: Merge the trees rooted at 𝑆𝑢 and 𝑆𝑣 in 𝑘-tree by adding

𝑆𝑣 as a child vertex of 𝑆𝑢

9: end if
10: end for
11: end for

to answer them, and furthermore, builds partially the 𝑘-tree of

the ICP index. This will help future queries, as it makes use of

any possible relation between different queries (queries with same

𝑘 value). Furthermore it uses far less memory, especially when

the graph is large and contains many communities. This happens

because, even if we have a single query for every possible 𝑘 value,

still we will not build the whole tree, but only the bottom levels of

it, since we are interested only for the top influential communities.

TheAlgorithm. Given a new query that asks for top-𝑟 -𝑘-influential

communities, we first look if the 𝑘 tree of ICP index already exists.

If this is the case we look if the 𝑘-tree contains at least 𝑟 influen-

tial communities. If this is true, then we are able to answer the

query using the index, without making any process in the graph.

Else, if only 𝑡 influential communities are in the 𝑘-tree (𝑡 < 𝑟 ) we
need to extend the index in order to contain at least 𝑟 influential

communities. This is achieved by calling the online algorithm and

then creating the vertices of 𝑘-tree that do not already exist. Finally,

if 𝑘-tree does not exist in the index, we need to run the online

algorithm and create the 𝑘-tree.

Furthermore, we need to explain how to build the 𝑘-tree of the

ICP index, after calling the online algorithm. We will make use of

the 𝑐𝑣𝑠 list. Remember that using 𝑐𝑣𝑠 and each keynode 𝑢 in 𝑘𝑒𝑦𝑠

we can retrieve the gp(𝑢) which is a vertex of the 𝑘-tree. First we

create a single tree vertex for each gp(𝑢). Thus we only have to
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Figure 4: Index status after executing the first query.

create pointers between every gp(𝑢), in order to create the tree

structure. We will edit the algorithm presented in [21], since we

only want to partly create the 𝑘-tree. Note that nodes in 𝑐𝑣𝑠 will be

in increasing weight order because each time we delete the node in

𝐺 with the minimum weight. The algorithm takes each node 𝑢 in

𝑐𝑣𝑠 and then for each neighbor 𝑣 with weight more than𝑤 (𝑢) finds
the root vertex of 𝑔𝑝 (𝑢) and 𝑔𝑝 (𝑣) denoted by 𝑆𝑢 and 𝑆𝑣 . Then, if

these two vertices do not have the same root, we merge them by

adding 𝑆𝑣 as a child vertex of 𝑆𝑢.

Example 4.1. Suppose we ask for the top 4-2-influential commu-

nities. Initially, we do not have any part of the index available so the

online algorithm is called. We observe in Figure 2 the final contents

of 𝑘𝑒𝑦𝑠 and 𝑐𝑣𝑠 . We note all groups for every keynode 𝑢 in 𝑘𝑒𝑦𝑠 . In

order to build the index, we first create a single vertex tree for each

group. Then, we traverse 𝑐𝑣𝑠 in reverse order. Node 12 does not

have any neighbor with larger weight. Node 11 has one neighbor

with larger weight, that is node 12. But both nodes have the same

single tree vertex so no merge operation is performed. When we

reach node 9 we see that it has node 12 as neighbor. These two

vertices have different roots, so we merge them by setting vertex

{10,11,12} as a child of vertex {9}. Now, the other two neighbors of

9, that are 10 and 11, have the same root tree vertex (that is vertex

{9}), because of the previous merge. The process continues with the

same logic. So at vertex {6}, we need to merge it with {7,8,13} and

then vertex {5} needs to be merged with vertex {6}. The state of the

index after the first query is shown in Figure 4.

Suppose then that someone asks for top 6-2-influential commu-

nities. We only have 5 influential communities stored, so we have to

extend the index. The previous 𝜏∗ was equal to 3. The new 𝜏∗ will
be 1 (since we double the size of𝐺3), so we search the entire graph.

Note that we do not expect this to happen in larger graphs as they

contain more communities. The 𝑐𝑣𝑠 will now contain {1,2,3,4} and

then all the nodes we saw in the previous example {5,6. . . }. We only

create single tree vertices for 1 and {2,3,4} as the other vertices do

already exist. Then in order to expand the index we do not use all

nodes in 𝑐𝑣𝑠 but only nodes previous than node 5. That is because

this is the node that we stopped building the index at the previous

query. □

Complexity Analysis. Index requires𝑂 (𝜌 ·𝑚) time to be created,

where 𝜌 is the arboricity of the graph. Then, a top 𝑟 -𝑘-influential

community query may be answered in time proportional to the size

of top-𝑟 results. So, any query can be answered in 𝑂 (𝑟𝑚𝑎𝑥 ) where

𝑟𝑚𝑎𝑥 denotes the maximum size of communities contained in all

queries. Thus, if 𝑞 queries occur, total time needed will not be more

that 𝑂 (𝑞 · 𝑟𝑚𝑎𝑥 + 𝜌𝑚). This time is independent from the 𝑘-value

that users are interested in. Even if we know that queries contain

only some 𝑘 values of maximum 𝑘 , we cannot change the order

of the complexity. Furthermore, since communities are computed

with increasing influence value, we are unable to save time if we are

only interested for the top of communities. This happens because,

top 𝑟 influential communities are computed last.

Our approach needs same time to answer queries if index already

exists. So we have a total cost of 𝑂 (𝑞 · 𝑟𝑚𝑎𝑥 ), just using the index
for 𝑞 queries. Now, we only have to calculate the time of building

the index. In worst case every possible 𝑘-tree will be created. In

this case at least a single query will exist for each possible 𝑘 value.

Based on local search approach, the online algorithm traverses only

the subgraph that contains the required number of communities.

So, the time complexity is 𝑂 (𝑠𝑖𝑧𝑒 (𝐺𝜏∗)). Typically in most cases it

is true that 𝑂 (𝑠𝑖𝑧𝑒 (𝐺𝜏∗)) << 𝑂 (𝑚) and previous experiments [3]

show that local approach traverses lees than 1% of whole graph.

However, in worst case a single query for each 𝑘 , will ask for very

high 𝑟 value, or all 𝑘-influential communities. Then, 𝑂 (𝑠𝑖𝑧𝑒 (𝐺𝜏∗))
will be at most equal or close enough to 𝑂 (𝑠𝑖𝑧𝑒 (𝐺)). So, index
will be created in time 𝑂 (𝑘 · 𝑠𝑖𝑧𝑒 (𝐺)) which is 𝑂 (𝑘 · 𝑚), since
𝑠𝑖𝑧𝑒 (𝐺) = 𝑚 + 𝑛 but, it is true that𝑚 is never less than 𝑛 − 1 (for
undirected connected graphs), so we can assume that the order

complexity of𝑂 (𝑠𝑖𝑧𝑒 (𝐺)) = 𝑂 (2𝑚) = 𝑂 (𝑚). Therefore, if 𝑞 queries

occur, total time needed using our method will not be more that

𝑂 (𝑞 · 𝑟𝑚𝑎𝑥 + 𝑘 ·𝑚).
As a result, when we have not any limits for 𝑘 and 𝑟 values and

whole index will be constructed over time, our method will be up

to 𝑘𝑚𝑎𝑥/𝜌 times slower than directly building the index from the

beginning. Note, that the arboricity 𝜌 of a graph is proven never

to be more than 𝑚1/3
and in real word graphs it is a very small

number [14, 22].

Online algorithm cannot answer every query in time 𝑂 (𝑟𝑚𝑎𝑥 ),
as it does not use any index and it has to process the graph every

time a query occurs. If we consider again a worst case scenario, in

which some queries need to traverse the whole graph (because 𝑘

or/and 𝑟 values are very high), then the algorithm needs 𝑂 (𝑞 ·𝑚)
time to answer 𝑞 queries.

5 PERFORMANCE EVALUATION
In this section, we present performance evaluation results regarding

the comparison of the different algorithmic techniques. More specif-

ically, we have conducted an extensive performance evaluation to

assess the efficiency to answer a specific number of queries in a

graph. The queries are randomly generated. We have used three

different methods:

(1) Firstly, we answer the queries using only the best online

algorithm.

(2) Then, we build the ICP index in order to answer the same

queries.

(3) Finally we have used the technique proposed in this paper.
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5.1 Set-up and Datasets
Every test was repeated five times for five different random sets

of queries. We vary three query parameters for each graph. The

number of queries (𝑞) made by users, the maximum number (𝑟 ) of

communities that a user asks for and also the maximum cohesive-

ness value (𝑘) of the communities. PageRank algorithm is used to

calculate the weight of each node 𝑢, as a very common method for

this purpose. We have implemented all methods in Python version

3.8.2.

All experimentswere conducted on amulti-coremachine equipped

with an Intel Xeon E5-2680 @2.80 GHz CPU and 756 GB main mem-

ory running Linux Ubuntu 20.04.1 LTS.

Table 1: Datasets and characteristics.

Dataset #nodes #edges 𝑚𝑎𝑥-𝑑 𝑚𝑎𝑥-𝑘

Youtube 1,134,890 2,987,624 28,754 51

Wiki 1,791,489 28,511,807 238,342 99

Live-Journal 3,997,962 34,681,189 14,815 353

Orkut 3,072,627 117,185,083 33,313 253

Friendster 65,608,366 1,806,067,135 5,241 304

We have used five real-world graphs in our experiments down-

loaded from the Stanford Network Analysis Platform (SNAP, http:

//snap.stanford.edu/). The most important characteristics of the

datasets are given in Table 1. The columns𝑚𝑎𝑥-𝑑 and𝑚𝑎𝑥-𝑘 de-

note the maximum node degree and the maximum cohesiveness

value respectively. In each graph every node has a distinct weight

value.

5.2 Experimental Results
In the sequel, we report experimental results based on different

values of the most important parameters 𝑘 , 𝑞 and 𝑟 .

5.2.1 Impact of the maximum cohesiveness value (𝑘). . In this series

of experiments, we vary the maximum cohesiveness value 𝑘 of the

communities that are asked by users. So 𝑘 = 10 means that queries

include atmaximum 10-influential communities and𝑘 = 30 includes

all previous possible queries plus communities with cohesiveness up

to 30. We make 100 queries that can ask up to top 100 communities.

The results are show in Figure 5. We observe that the time that

the index needs it is actually the time of its construction. Then, as

it can handle queries for every 𝑘 , it does not make any difference

in time as we increase 𝑘 . On the other hand, this is not true for

online algorithms, since they require more time to answer queries

with higher values of 𝑘 . This happens because they need to traverse

a larger part of the graph in order to include nodes that exist in

the 𝑘-core and thus, they are candidates to form a 𝑘-influential

community. We note also that our method is better than online

algorithm in every range of 𝑘 . This is reasonable, as some queries

will use the index that has been built due to previous queries.

We should mention also that when 𝑞 >> 𝑘 (for example when

𝑘 = 10) we observe a bigger difference in times, because the first

ten trees of the index will be available after first 10-20 queries.

Therefore, the next 80 queries will use or extend the index, leading

to savings of computational time. On the other hand, the online

algorithm does not have any benefits from the first 10-20 queries,

since every query is handled with exactly the same way. In case

where 𝑞 ≃ 𝑘 we observe a slight benefit from our method since

some queries (but not many) may ask for the same value of 𝑘 .

When 𝑘 >> 𝑞 we can see that the two algorithms tend to have

the same processing time (e.g., for 𝑘 = 200). In this case, only few

queries will ask for same 𝑘 value. One interesting observation here,

is that for some graphs (YouTube, Orkut) our method never exceeds

index’s time, even for the maximum value of 𝑘 . Instead, in other

graphs (Wiki, LiveJournal), we observe that there is a value of 𝑘 for

which the index-based approach shows better performance. This

behavior is attributed to the fact that denser graphs tend to con-

tain more cohesive communities. Therefore, when we ask for high

cohesive influential communities we still need to traverse a small

part of graph. Instead, if only a few such communities exist (e.g.,

3-15) then a single query asking for them will end up traversing

the whole graph. As a result, we may far exceed index’s total time.

5.2.2 Impact of the number of queries (𝑞). . We vary the number of

queries (𝑞) that users make for each graph. We compare the online

algorithm with our approach. We fix maximum 𝑘 = 50 and 𝑟 = 100.

Searching for low cohesiveness communities makes online algo-

rithms run faster since they need to search in a smaller part of the

graph. So fixing a large 𝑘 just wastes time from our experiments. We

want to show how the two different approaches scale as 𝑞 increases.

We do not compare the index method since once we have the index

we can answer any query in time linear to the size of the results

and that is independent from any previous queries. The results are

presented in Figure 6. We can see that for online algorithm the

time increases linear to the number of queries, since we do not get

any benefit from previous queries. This is not true for our method.

The time increases linear until we have a single query for each

possible 𝑘 value. Then the index is used every time (or very fre-

quently) that the time we need is just using the index to extract the

top-𝑟 -𝑘-influential communities. Clearly an upper bound in time is

created as lots of queries occur. We have a logarithmic grow of time.

5.2.3 Impact of the number of communities (𝑟 ). . In this series of

experiments, we vary the number 𝑟 of communities asked by users.

We test how the different algorithms scale when as the value of

𝑟 increases. We select values from 100 up to 2,000. Note that we

expect that the time needed for large values of 𝑟 will always be at

least as the index’s time. This happens because if we ask for all or

most communities that exist in a graph, we will have to traverse the

entire graph. As a result, online algorithms loose their advantage

of local search. Therefore, if we are sure that our queries include

many thousands and highly cohesive communities, the index is the

best solution, provided that we can offer large amounts of main

memory. We are interested in studying how quickly the runtime

increases as we increase 𝑟 .

The corresponding results are shown in Figure 7. Larger graphs

tend to contain more communities, so we do not notice exponen-

tial growth of time, as soon as we keep 𝑟 relatively low. However,

http://snap.stanford.edu/
http://snap.stanford.edu/
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Figure 5: Runtime performance for different values of 𝑘 .
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Figure 6: Runtime performance for different values of 𝑞.
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Figure 7: Runtime performance for different values of 𝑟 .
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Figure 8: Number of queries completed vs. the required runtime (in sec.) to build the whole index.

YouTube is an example of exponential time growth, since it only

contains about 5, 000 30-influential communities and we ask up to

2,000 communities. So, after first 500-1,000 communities, a signifi-

cantly larger part of the graph is traversed to answer next queries.

5.2.4 Impact of incrementally building the full index. . In this ex-

periment we try to simulate a different scenario of random queries.

To do so, we change the distribution of parameters 𝑘 and 𝑟 . We use

the Gaussian distribution for the cohesiveness value 𝑘 , as it is more

possible that users will be interested for communities with medium

cohesiveness. Queries with very high or very low 𝑘 value will still

be existing, but will occur with a lower probability. Furthermore, we

use the power-law distribution for the number 𝑟 that queries con-

tain, as most users are interested only for some communities and

queries that ask for all or many thousands communities will be rare.

So, queries contain the whole range of 𝑘 and 𝑟 parameters for each

graph. The plots present the number of queries that are answered

over time. Note that as we do not restrict the value of 𝑟 with an

upper bound, the maximum number of 𝑘-influential communities

will be asked (for each 𝑘) over time. This will result into finally

building the whole index. As we make this process incrementally,

it is expected that it will take more time than the straightforward

building of the index. However, this is not a usual case, as top-𝑟

𝑘-influential community detection problems is not about detecting

all possible communities, but the value of 𝑟 is rather small.

Previous studies (online and index based) usually vary 𝑟 up to

320 in most experiments and up to 1,000 in one case [3, 21]. In

our previous experiments we varied 𝑟 up to 2,000 and we have



Incremental Influential Community Detection in Large Networks SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

shown the superiority of our approach in most cases. Results in

Figure 8 show that that we can far exceed index method time, as

we expected. Nevertheless, we aim to see how many queries can be

answered before we exceed index’s contraction time. Since it is a

time consuming experiment, we present results only for our three

medium-sized graphs. We observe that for YouTube we are able to

answer about 150 queries before we reach index’s time. For Wiki

this number is reduced almost in half (about 80 queries) and for

LiveJournal we are not able to answer more than 20 queries. The

results depend on the properties of each graph and the time that

first tough queries arrive. Once again, it is evident that the online

algorithm does not scale well as the number of queries increases.

5.2.5 Index size. . In the next series of experiments, we compare

the total size of the index that is constructed for the two different

methods, i.e., the index-based and the proposed one. We do not have

to compare the online method, since it does not use any index at

all. We execute 100 queries that ask for up to top 2,000 𝑘-influential

communities for each possible value of 𝑘 . A large value of 𝑟 (equal

to 2,000) ensures that parts of the index created by our method have

a sufficient size. However, we expect that the total size will be even

less in a more realistic scenario.
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40

60
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Figure 9: Index size for different methods and graphs.

The performance results presented in Figure 9 demonstrate that

the proposed technique uses less main memory than ICP. This is

reasonable and expected, as we incrementally build the index based

on users’ interests – avoiding a significant part of it. A significant

advantage of this method is that it shows great scalability in very

large graphs. Please note that this is one of the most significant

problems of index-based method – it is impractical for very large

graphs, especially for a client-based machine [6]. Therefore, build-

ing the index incrementally overcomes this challenge – as long as

we assume that users will never ask for all influential communi-

ties. Thus, memory usage is another major factor that we need to

consider even if incrementally building the index costs more in

time.

5.3 Discussion
The above experiments clearly prove that when we are interested

in querying for top-𝑟 𝑘-influential communities in a graph, the

proposed method outperforms the online algorithm in all cases.

This happens because the online algorithm does not make use

of any relations between different queries. Instead, our approach

(sometimes) will make use of the index that builds even if 𝑞 < 𝑘 ,

saving computational time in contrast to the online algorithm.

Another important observation for the online algorithm is that

it does not scale well as the number of queries increases. The time

keeps increasing linearly and this is not acceptable for a strategy

that aims to answer multiple queries. Instead, the proposed ap-

proach will scale after a satisfied number of queries, since the index

will be used to extract the influential communities. On the other

hand, the problem of scalability as queries arrive does not exist

for the index based method and in some cases, especially when

the value of 𝑘 is large, building the whole index requires less time.

This is true when queries contain 𝑘 and 𝑟 values such that online

algorithm needs to traverse almost the whole graph in order to

provide the answer. Therefore, based on the maximum value 𝑘 that

users ask, we should decide between incrementally building the

index or building it at once. Note that in very big graphs we will

be unable to build the whole index, since this would require large

amounts of main memory.

An upcoming question is if we can determine the values of 𝑘

and 𝑟 towards deciding if the index would be preferred against the

proposed approach. We are not able to easily answer this question,

as maximum 𝑘-core, density of graphs and other properties seem

to affect the performance of the different algorithms studied. There-

fore, a cost model would be necessary, to be able to estimate the

computational cost as a function of 𝑘 and 𝑟 . In addition, another

important aspect of the cost is the main memory footprint required.

We plan to investigate these issues in the near future, since the exis-

tence of a cost model will enable the use of the available algorithms

in a more efficient manner and also will allow the implementation

of incremental influential community detection algorithms inside

data analytics engines.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we study incremental processing of top-𝑟 𝑘-influential

community detection. In this setting, 𝑟 denotes the number of com-

munities and𝑘 denotes the degree of cohesiveness that communities

must satisfy. In general there are two different directions to attack

the problem: 𝑖) the online approach, which computes influential

communities in increasing influence value order, and 𝑖𝑖) the index-
based approach, which pre-computes influential communities and

stores appropriate information in a tree-based index structure.

In this work, we propose a combination of online and index-based

approaches in order to design a novel technique that preserves

only the advantages of each method and incrementally detects

influential communities in response to users’ queries. Therefore,

we study how online algorithms can be used to build the index

partially in time linear with respect to the size of the subgraph that

contains the required number of influential communities. Finally,

we offer extensive performance evaluation results, based on real-life

networks, demonstrating the superiority of the proposed approach.

In all interesting cases, the proposed approach shows excellent

runtime and scalability performance.

There are several interesting future research directions that may

extend the techniques presented in this paper such as:
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𝑖) the exploitation of parallel/distributed systems towards more

efficient processing,

𝑖𝑖) the use of other criteria for quantifying the influence of a

community and

𝑖𝑖𝑖) the adaptation of the proposed techniques for the dynamic

case, where the underlying network evolves in time.

ACKNOWLEDGMENTS
This work was supported financially by King Abdullah University

of Science and Technology (KAUST), Saudi Arabia. In particular,

Klearchos Kosmanos (the first author) was a Research Intern in

KAUST during the period June 2020 - August 2020 working in the

topic of Incremental Influential Community Search.

REFERENCES
[1] Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti, and Francesco Gullo.

2015. Efficient and effective community search. Data Min. Knowl. Discov. 29, 5
(2015), 1406–1433. https://doi.org/10.1007/s10618-015-0422-1

[2] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003). http://arxiv.org/abs/

cs/0310049

[3] Fei Bi, Lijun Chang, Xuemin Lin, and Wenjie Zhang. 2018. An Optimal and

Progressive Approach to Online Search of Top-K Influential Communities. Proc.
VLDB Endow. 11, 9 (2018), 1056–1068. https://doi.org/10.14778/3213880.3213881

[4] Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. 2015. Index-

based Optimal Algorithms for Computing Steiner Components with Maximum

Connectivity. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 459–474.

https://doi.org/10.1145/2723372.2746486

[5] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa

Liang. 2013. Efficiently computing k-edge connected components via graph

decomposition. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, Ken-
neth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.). ACM, 205–216.

https://doi.org/10.1145/2463676.2465323

[6] Shu Chen, Ran Wei, Diana Popova, and Alex Thomo. 2016. Efficient Computation

of Importance Based Communities in Web-Scale Networks Using a Single Ma-

chine. In Proceedings of the 25th ACM International Conference on Information and
Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016,
Snehasis Mukhopadhyay, ChengXiang Zhai, Elisa Bertino, Fabio Crestani, Javed

Mostafa, Jie Tang, Luo Si, Xiaofang Zhou, Yi Chang, Yunyao Li, and Parikshit

Sondhi (Eds.). ACM, 1553–1562. https://doi.org/10.1145/2983323.2983836

[7] James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. 2012. Fast algorithms

for maximal clique enumeration with limited memory. In The 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’12,
Beijing, China, August 12-16, 2012, Qiang Yang, Deepak Agarwal, and Jian Pei

(Eds.). ACM, 1240–1248. https://doi.org/10.1145/2339530.2339724

[8] Jonathan Cohen. 2009. Graph Twiddling in a MapReduce World. Comput. Sci.
Eng. 11, 4 (2009), 29–41. https://doi.org/10.1109/MCSE.2009.120

[9] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

search of overlapping communities. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June
22-27, 2013, Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.).

ACM, 277–288. https://doi.org/10.1145/2463676.2463722

[10] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017.

Effective Community Search over Large Spatial Graphs. Proc. VLDB Endow. 10, 6
(2017), 709–720. https://doi.org/10.14778/3055330.3055337

[11] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. VLDB J.
29, 1 (2020), 353–392. https://doi.org/10.1007/s00778-019-00556-x

[12] Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3-5
(2010), 75 – 174. https://doi.org/DOI:10.1016/j.physrep.2009.11.002

[13] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2017.

On Minimal Steiner Maximum-Connected Subgraph Queries. IEEE Trans. Knowl.
Data Eng. 29, 11 (2017), 2455–2469. https://doi.org/10.1109/TKDE.2017.2730873

[14] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. 2013. Massive graph triangu-

lation. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, Ken-
neth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.). ACM, 325–336.

https://doi.org/10.1145/2463676.2463704

[15] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,
Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu (Eds.). ACM, 1311–1322. https:

//doi.org/10.1145/2588555.2610495

[16] Xin Huang and Laks V. S. Lakshmanan. 2017. Attribute-Driven Community

Search. Proc. VLDB Endow. 10, 9 (2017), 949–960. https://doi.org/10.14778/

3099622.3099626

[17] Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. 2017. Community Search

over Big Graphs: Models, Algorithms, and Opportunities. In 33rd IEEE Interna-
tional Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22,
2017. IEEE Computer Society, 1451–1454. https://doi.org/10.1109/ICDE.2017.211

[18] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-

proximate Closest Community Search in Networks. Proc. VLDB Endow. 9, 4 (2015),
276–287. https://doi.org/10.14778/2856318.2856323

[19] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.

In CIDR 2007, Third Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org, 68–78.

http://cidrdb.org/cidr2007/papers/cidr07p07.pdf

[20] Hu Jiafeng, Wu Xiaowei, Cheng Reynold, Luo Siqiang, and Fang Yixiang. 2017.

On Minimal Steiner Maximum-Connected Subgraph Queries. tkde 29, 11 (2017),
2455–2469. https://doi.org/10.1109/TKDE.2017.2730873

[21] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential Community

Search in Large Networks. Proc. VLDB Endow. 8, 5 (2015), 509–520. https:

//doi.org/10.14778/2735479.2735484

[22] Min Chih Lin, Francisco J. Soulignac, and Jayme Luiz Szwarcfiter. 2012. Arboricity,

h-index, and dynamic algorithms. Theor. Comput. Sci. 426 (2012), 75–90. https:

//doi.org/10.1016/j.tcs.2011.12.006

[23] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Dens-

est Subgraph Discovery. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015, Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geof-

frey I. Webb, Dragos D. Margineantu, and GrahamWilliams (Eds.). ACM, 965–974.

https://doi.org/10.1145/2783258.2783299

[24] Ahmet Erdem Sariyüce and Ali Pinar. 2016. Fast Hierarchy Construction for

Dense Subgraphs. Proc. VLDB Endow. 10, 3 (2016), 97–108. https://doi.org/10.

14778/3021924.3021927

[25] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, July 25-28, 2010, Bharat Rao, Balaji Krishnapuram, Andrew Tomkins,

and Qiang Yang (Eds.). ACM, 939–948. https://doi.org/10.1145/1835804.1835923

[26] Hanghang Tong and Christos Faloutsos. 2006. Center-piece subgraphs: problem

definition and fast solutions. In Proceedings of the Twelfth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA,
August 20-23, 2006, Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios

Gunopulos (Eds.). ACM, 404–413. https://doi.org/10.1145/1150402.1150448

[27] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.

Proc. VLDB Endow. 5, 9 (2012), 812–823. https://doi.org/10.14778/2311906.2311909
[28] Nan Wang, Jingbo Zhang, Kian-Lee Tan, and Anthony K. H. Tung. 2010. On

Triangulation-based Dense Neighborhood Graphs Discovery. Proc. VLDB Endow.
4, 2 (2010), 58–68. https://doi.org/10.14778/1921071.1921073

[29] YubaoWu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust Local Community

Detection: On Free Rider Effect and Its Elimination. Proc. VLDB Endow. 8, 7 (2015),
798–809. https://doi.org/10.14778/2752939.2752948

[30] Jierui Xie, Stephen Kelley, and Boleslaw K. Szymanski. 2013. Overlapping com-

munity detection in networks: The state-of-the-art and comparative study. ACM
Comput. Surv. 45, 4 (2013), 43:1–43:35. https://doi.org/10.1145/2501654.2501657

https://doi.org/10.1007/s10618-015-0422-1
http://arxiv.org/abs/cs/0310049
http://arxiv.org/abs/cs/0310049
https://doi.org/10.14778/3213880.3213881
https://doi.org/10.1145/2723372.2746486
https://doi.org/10.1145/2463676.2465323
https://doi.org/10.1145/2983323.2983836
https://doi.org/10.1145/2339530.2339724
https://doi.org/10.1109/MCSE.2009.120
https://doi.org/10.1145/2463676.2463722
https://doi.org/10.14778/3055330.3055337
https://doi.org/10.1007/s00778-019-00556-x
https://doi.org/DOI: 10.1016/j.physrep.2009.11.002
https://doi.org/10.1109/TKDE.2017.2730873
https://doi.org/10.1145/2463676.2463704
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.14778/3099622.3099626
https://doi.org/10.14778/3099622.3099626
https://doi.org/10.1109/ICDE.2017.211
https://doi.org/10.14778/2856318.2856323
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.1109/TKDE.2017.2730873
https://doi.org/10.14778/2735479.2735484
https://doi.org/10.14778/2735479.2735484
https://doi.org/10.1016/j.tcs.2011.12.006
https://doi.org/10.1016/j.tcs.2011.12.006
https://doi.org/10.1145/2783258.2783299
https://doi.org/10.14778/3021924.3021927
https://doi.org/10.14778/3021924.3021927
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1145/1150402.1150448
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.14778/1921071.1921073
https://doi.org/10.14778/2752939.2752948
https://doi.org/10.1145/2501654.2501657

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Problem Statement
	3.2 The Online Approach
	3.3 The ICP index

	4 The Proposed Approach
	5 Performance Evaluation
	5.1 Set-up and Datasets
	5.2 Experimental Results
	5.3 Discussion

	6 Conclusions and Future Work
	Acknowledgments
	References

