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ABSTRACT
The problem of trajectory similarity has been recently at-
tracted research interest considerably, due to its importance
in diverse fields. In this work, we study trajectory simi-
larity by attacking the problem taking an information re-
trieval perspective. Trajectories are first decomposed by
using a grid and each trajectory is mapped to a multidi-
mensional space where Latent Semantic Analysis is applied.
Distance measures like Euclidean distance or cosine distance
are applied to process similarity queries (range queries, k-
NN queries). Performance evaluation results, based on real-
life data sets, show the simplicity and effectiveness of the
proposed scheme.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Performance

Keywords
Trajectories, LSA, query processing

1. INTRODUCTION
Trajectories appear in many application domains in di-

verse fields. In location-based services, a trajectory may rep-
resent the motion of a moving object (e.g., vehicle). Trajec-
tories are archived and studied to extract useful knowledge
regarding the motion behavior. In meteorological applica-
tions, a trajectory may represent the motion characteristics
of a physical phenomenon (e.g., a hurricane, a storm). In-
vestigating the motion behavior of such dangerous physical
phenomena is important towards predicting future locations
and therefore avoiding catastrophic results if possible. In
video surveillance and tracking applications, it is important
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to categorize motions according to their physical meaning
(e.g., a person is walking, a person is leaving a bug at the air-
port, an unusual behavior of a car). In the aforementioned
applications, there is a definite need to archive, organize
and manage the collected trajectories. The archived trajec-
tories can be used in a number of different directions, such
as: (i) trajectories are searched towards answering queries
involving past locations, (ii) trajectory locations are used
as a base for predicting future locations of moving objects,
(iii) trajectories are organized in a convenient way to sup-
port the extraction of useful motion patterns, by means of
data mining techniques (e.g., clustering, sequential pattern
discovery).

With respect to the latter direction, the concept of simi-
larity is of vital importance. Meaningful similarity measures
result in meaningful trajectory clustering and pattern dis-
covery. In this paper, we focus on ad-hoc similarity queries.
Given a query trajectory Tq and a set of trajectories T ,
the similarity query asks for the data trajectories that best
match the query. A similarity query is expressed either as a
range query or a k-nearest-neighbor (k-NN) query. Similar-
ity range queries are formed by a query trajectory Tq and
a user defined range r. The query asks for all trajectories
that are within distance r from Tq. An alternative similarity
query is the k-NN query, defined by a query trajectory Tq

and an integer k, asking for the k data trajectories that best
match Tq.

A trajectory is usually represented as a sequence of points
in space, ordered with respect to the time instance. For
example, assuming that objects move on the 2-d Euclidean
plane, a trajectory Ti may be represented as follows:

Ti = (xi1, yi1, t1), ..., (xin, yin, tn), t1 < t2 < ... < tn

where xia and yia define the location of the object at time in-
stance ta. The dissimilarity between two trajectories Ti and
Tj is expressed by means of a distance function D(Ti, Tj).
It is expected that the more similar the trajectories are, the
less the value D(Ti, Tj) becomes and vice-versa.

In this work, we study the problem of trajectory similar-
ity taking an information retrieval perspective. The trajec-
tory similarity problem is transformed to that of document
similarity, i.e., the trajectories are the “documents” and the
space regions are the “terms”. A similarity matrix is used to
express inter-region proximities. This results in a weighted
Euclidean distance measure, which is transformed to a non-
weighted one by using specific mathematical tools. Finally,
by using Latent Semantic Analysis trajectories are repre-



sented as vectors in a low-dimensional space, where index-
ing schemes can be applied to speed-up retrieval. Similarity
is expressed by the cosine or Euclidean distance measures
in the low-dimensional space. The proposed scheme can be
utilized by a geographic search engine in determining similar
travel routes given a query trajectory, or in grouping travel
routes in clusters according to their geographic similarity.

The rest of the work is organized as follows. Section 2 de-
scribes related research and presents the motivation behind
the proposed study and our research contributions. Section
3 studies the similarity search problem from an information
retrieval viewpoint. Performance results are given and dis-
cussed in Section 4, whereas Section 5 concludes the work
and presents future directions.

2. RELATED WORK AND CONTRIBUTION
In many research contributions, trajectory similarity is

being viewed as the multidimensional counterpart of (one-
dimensional) time series similarity. One of the first studies
in similarity queries for time series databases has been per-
formed in [1]. The Discrete Fourier Transform (DFT) is
used as the feature extraction method, and the Euclidean
distance is used as the similarity measure.

In [7] the authors study the problem of similarity search in
multidimensional data sequences, to determine similarities
in image and video databases. A similarity model based
on the Minkowski distance is defined, and each sequence is
partitioned to subsequences by means of MBRs, to enable
efficient indexing.

Another approach for expressing the similarity between
two trajectories is studied in [12]. A more robust distance
metric is used, based on the concept of Longest Common
Subsequence (LCSS) between two trajectories. This met-
ric is more immune to noise than the Minkowski distance.
Because the proposed distance does not satisfy the metric
space properties, indexing is achieved by utilizing the index
structure of a hierarchical clustering algorithm.

In [14] a similarity measure between trajectories is de-
fined, which is invariant to translation, rotation and scaling.
The used measure is based on the Minkowski distance, and
objects are allowed to move freely in the address space.

The aforementioned research proposals take a database
perspective towards similarity query processing. However,
there is important work in trajectory similarity assuming
a pattern recognition perspective. In [13], a multi-object
tracking system for surveillance video analysis is proposed.
An efficient fuzzy clustering method is used which is based
on features such as position, color and velocity. A method
for clustering vehicle trajectories and discovering unusual
events is studied in [6], which is based on spectral cluster-
ing. In [9], the authors study the performance of DFT-
based methods for clustering trajectories that exist in a
video surveillance system. They demonstrate that the use
of DFT coefficients improves the clustering quality, for both
k-means and SOM methods, in comparison to point-based
flow vectors. Finally, [16] offers a useful performance com-
parison of several distance measures such as Euclidean, Dy-
namic Time Warping, Longest Common Subsequence, Hid-
den Markov Models and Hausdorff. An interesting result of
this study is that in outdoor surveillance scenes the combi-
nation of Principal Component Analysis and the Euclidean
distance (see [2]) offers good clustering quality.

Several research contributions are based on the use of the

Euclidean distance in the original space to quantify sim-
ilarities among trajectories. Although the Euclidean dis-
tance has a number of nice properties (e.g., lower bounding,
easy implementation) it suffers from performance degrada-
tion due to the following reasons:

• Trajectories may have different lengths, and may have
been sampled with different sample rates. This pre-
vents the direct application of Minkowski distances
and therefore re-sampling and alignment is usually ap-
plied.

• Real-life trajectories contain noise which is a direct
effect of inaccuracies in tracking devices. The existence
of noisy data brings up the issue of uncertainty with
respect to the exact location of a moving object.

• Spatial proximity in several cases is not well preserved,
although the trajectories are close in the original space.

To alleviate the aforementioned problematic phenomena,
Dynamic Time Warping (DTW) has been used [15]. How-
ever, DTW-based techniques suffer for performance ineffi-
ciencies for long sequences, since the computational costs
for distance calculations may increase substantially [10].

In this work, we focus on the spatial proximity of trajecto-
ries. Initially, a new grid-based distance measure is defined,
the Grid Aggregate Distance (GAD), which is based on tra-
jectory aggregation. Trajectories are mapped to a multi-
dimensional space, whose dimensions are determined by the
number of grid cells used. By using this technique we get a
documents/terms analogy for trajectories. Then, by using
cell similarities, the weighted Euclidean distance, and Latent
Semantic Analysis, we obtain a trajectory representation in
a low-dimensional space. Trajectory similarity in the trans-
formed space is defined either by the cosine distance or the
Euclidean distance.

The proposed approach has a number of significant ad-
vantages: (i) it supports approximate processing, since tra-
jectory uncertainty is compensated by the use of the grid
structure, (ii) the transformed space contains a few dimen-
sions, and therefore distance calculations require reduced
computational costs, (iii) indexing is enabled by point-based
or metric-based access methods, (iv) concept-based trajec-
tory similarity is supported, something which has not been
addressed so far in related research, to the best of our knowl-
edge, and (v) existing information retrieval techniques can
be applied (i.e., vector space model and LSI).

3. TRAJECTORY SIMILARITY WITH LSA
Table 1 illustrates the most important symbols used in

our study, whereas the following definitions describe for-
mally the similarity range query and the similarity k-NN
query.

Definition 1 (similarity range query)
For a query trajectory Tq, a real non-negative number r and
a distance measure dist, the range similarity query returns
an answer set A such that:

∀Ti ∈ A, dist(Tq , Ti) ≤ r, and ∀Tj ∈ (T − A), dist(Tq , Tj) > r
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(c) conceptual grid

Figure 1: Different grid types.

Definition 2 (similarity k-NN query)
For a query trajectory Tq, an integer k and a distance mea-
sure dist, the similarity k-NN query returns an answer set
A of data trajectories containing at least k trajectories such
that:

∀Ti ∈ A,∀Tj ∈ (T − A), dist(Tq, Ti) ≤ dist(Tq, Tj)

The most important parameter in the above definitions
is the distance measure used. Different distance measures
may give totally different results. We propose to use a dis-
tance measure which is not based on the original data set,
but on an aggregation performed by means of an application
dependent grid structure. Figure 1 demonstrates examples
of different grid types. The most common grid type is the

Symbol Description

T set of data trajectories

T , Ti data trajectories

Tq a query trajectory

m number of trajectories

e number of selected singular values

n number of grid cells

k number of requested similar trajectories

r radius of similarity range query

ci the i-th grid cell

T (ci) occurrences of trajectory T in cell ci

GAD(Ti, Tj) grid aggregate distance between trajectories
eD initial n×m data matrix of occurrences

C the n× n cell similarity matrix

M [i, j] the value of M ’s i-th row and j-th column

Table 1: Symbols and definitions.

regular (uniform) grid which is shown in Figure 1(a). Space
is partitioned into cells of equal size (usually rectangular).
Non-regular grids may also be applied, such as the one in
Figure 1(b). For example, in an application for tracking
the motion of cellular phone subscribers, one can use the
existing cellular grid, where a grid cell is defined by the
transmission ability of a corresponding antenna. Finally, a
conceptual grid may be used, where each cell corresponds
to a concept or a level of a particular measure (in contrast
to the other grid types which are based on the geometric
characteristics of the cells). For example, the trajectories
of Figure 1(c) may correspond to a particular fish species.
Assuming that gray levels represent different water temper-
ature values, it would be interesting to express similarities
among trajectories based on different temperature levels, to-
wards determining if there are specific patterns in the data.

3.1 The Grid Aggregate Distance
Although the proposed scheme supports all grid types dis-

cussed above, we adopt the regular grid for simplicity. How-
ever, as long as similarity among cells has been determined,
any grid type can be used as well.

Let n be the number of generated grid cells. Each grid cell
is labeled by an identifier c1 through cn. For a trajectory T ,
let the value T (ci) denote the number of occurrences of T in
cell ci. Note that for continuous time the value T (ci) denote
the total time that T has spent in cell ci. This way, a data

matrix eD is formed, having n rows (the number of cells) and
m columns (the number of trajectories). Each trajectory Ti

is transformed to the grid-based representation, and it is

considered as a vector written as eTi.

Definition 3 (data matrix)

The data matrix eD is an n×m matrix containing occurrences

of trajectories in grid cells. Each element eD[i, j] records the
number of occurrences of the j-th trajectory in the i-th cell.

The next step involves the construction of the cell similar-
ity matrix. The similarity between two grid cells is defined
by a function sim(ci, cj) which assumes values in the inter-
val [0, 1]. The similarities among all grid cells compose a
matrix C (with n rows and n columns) which is symmetric
and contains non-negative elements.

Definition 4 (cell similarity matrix)
The cell similarity matrix C is an n × n symmetric matrix
with non-negative elements, where each matrix cell C[i, j]
denotes the similarity between the i-th and the j-th grid
cells. More specifically, 0 ≤ C[i, j] ≤ 1, and C[i, j] = 1 if
i = j.

We are ready now to define the Grid Aggregate Distance
between trajectories, which is expressed as a weighted Eu-

clidean distance measure based on the data matrix eD and
the cell similarity matrix C.

Definition 5 (grid aggregate distance)
The Grid Aggregate Distance between two trajectories Ti

and Tj for a cell similarity matrix C is defined as follows:

GAD(Ti, Tj) = ( eTi − eTj)
T · C · (eTi − eTj) (1)

Since C is symmetric with real non-negative elements, it
can be written as a product of three matrices as follows:



C = P ·∆ · P T ⇒ C = P ·∆1/2 ·∆1/2 · P T (2)

where ∆ is a diagonal matrix, containing the eigenvalues
of C, and P is a symmetric matrix for which P T = P−1.
Furthermore, if C is positive semi-definite, its eigenvalues
are non-negative. This means that the matrix ∆1/2 contains
non-negative real values. If this is not the case, then the
similarity matrix C is approximated by Capprox which is
defined as:

Capprox = P ·∆0 ·P T ⇒ Capprox = P ·∆1/2
0 ·∆1/2

0 ·P T (3)

where ∆0 is the diagonal matrix which contains the positive
eigenvalues of C and all negative eigenvalues have been re-
placed by zeros. It has been proven that Capprox is the best
approximation we can get regarding the sum of squared dif-
ferences of matrices C and Capprox (see [11] for details).
Evidently, if C is positive semi-definite then Capprox = C.

By using Equations 1 and 3, the fact that (∆
1/2
0 )T = ∆

1/2
0

and elementary linear algebra manipulations, the grid ag-
gregate distance between trajectories Ti and Tj is expressed
as:

GAD(Ti, Tj) = ( eTi − eTj)
T · P ·∆1/2

0 ·∆1/2
0 · P T · (eTi − eTj)

= ( eTi − eTj)
T · (∆1/2

0 · P T )T · (∆1/2
0 · P T ) · ( eTi − eTj)

=
h
(∆

1/2
0 · P T ) · (eTi − eTj)

iT

·
h
(∆

1/2
0 · P T ) · ( eTi − eTj)

i

By inspecting the previous equation, it is evident that it

suffices to left-multiply the data matrix eD by ∆
1/2
0 · P T .

This way, we produce the n×m matrix
eeD = ∆

1/2
0 · P T · eD

which is used to determine similarities among trajectories.

3.2 LSA and Query Processing
Up to now we have managed to express the similarity of

two trajectories by means of the trajectory occurrences in
each grid cell and the cell similarity matrix. Each trajec-
tory has been mapped to a n-dimensional point, where n
is the total number of grid cells. Usually, the number n is
expected to be large, especially if a fine grid is used. The
last step in the proposed scheme involves dimensionality re-
duction towards: (i) a more compact representation and (ii)
the utilization of indexing schemes for fast retrieval.

LSA-based methods have been successfully applied in text
information retrieval [3]. The main characteristic of this
approach is that it “shifts” the documents from the term
space to the concepts space. This is exactly our target, with
the main difference that our data is composed of trajectories,
which have been converted to the documents/terms analogy.
The mathematical tool behind LSA is the Singular Value

Decomposition (SVD). The matrix
eeD is written as a product

of the matrices U , S and V as follows:

eeD = U · S · V T

where the orthogonal matrix U stores the left singular vec-
tors, the orthogonal matrix V stores the right singular vec-
tors and S is a diagonal matrix containing the singular val-

ues of
eeD in descending order. Dimensionality reduction is

achieved by selecting the e largest eigenvalues (i.e., keeping
the first e rows and columns of S, the first e columns of U
and the first e rows of V T ). If Ue denotes the reduced ma-
trix of left singular vectors, each trajectory is mapped to a
point in the e-dimensional space by applying the following:

eeDe = UT
e · eeD (4)

To support similarity queries efficiently, the transformed
trajectories can be organized by means of spatial access
methods (e.g., R-tree, X-tree) or metric access methods (e.g.,
M-tree, Slim-tree). When there is a new query trajectory Tq,

it is first mapped to the grid representation (
eeT q) and then

it is transformed to the e-dimensional space (
eeT qe) by using:

eeT qe = UT
e · eeT q (5)

Then, the index is consulted to prune trajectories that are
not possible to contribute to the final answer. According to
the query type (range or k-NN) refinement should be applied
towards removing the false alarms.

4. PERFORMANCE RESULTS
Two real-life data sets have been used for performance

evaluation. These data sets, which are shown graphically in
Figure 2, contain locations of trajectories of school buses and
trucks respectively (available at http://www.rtreeportal.org).
Evidently, the distribution of the data sets deviate from uni-
formity significantly. The BUSES data set contains 66,096
locations of school buses in the 2-dimensional space, com-
posing 108 trajectories. The smallest trajectory contains 79
points, whereas the largest one contains 1,095 points. The
TRUCKS data set contains 112,203 locations of trucks in the
2-dimensional space, composing 273 trajectories. The small-
est trajectory contains 29 locations, whereas the largest one
contains 992 locations.

(a) BUSES data set (b) TRUCKS data set

Figure 2: Real-life trajectory data sets.

4.1 Similarity queries
Figures 3 and 4 depict the performance results for k-NN

queries for BUSES and TRUCKS respectively. Note that
the results have been obtained by performing the queries
in the original and the transformed space without applying
refinement. The graphs show the precision by varying the
number k of requested trajectories and the dimensionality
(number of singular values) of the transformed space. Each
trajectory has been set as the query, and for every query the
k most similar trajectories have been requested. The graphs



(a) cosine distance (b) Euclidean distance

Figure 3: Similarity search accuracy for k-NN
queries on BUSES (varying k and e).

(a) cosine distance (b) Euclidean distance

Figure 4: Similarity search accuracy for k-NN
queries on TRUCKS (varying k and e).

show average precision values. A uniform grid has been
used composed of 400 grid cells. Cell similarity is defined
by the Euclidean distance of cell centroids. It is evident
that by selecting e=10 dimensions, the recall values are very
satisfactory (over 80% recall and precision) for both cosine
and Euclidean distances. This is a nice result considering
that no refinement has been applied to the results.

Next, we study the performance of the proposed scheme
for similarity range queries. We give the results for the
TRUCKS data set only. Tables 2 and 3 show the recall
and precision for several values of the query radius r and
the dimensionality of the transformed space. Again, 400
cells have been used whereas cell similarity is defined by the
Euclidean distance of cell centroids. Note that the recall of
the Euclidean distance is always 100% since the application
of SVD respects the lower bounding of the Euclidean dis-
tance. On the other hand, the recall for the cosine distance
may drop below 100%, denoting that some answers may be
missed. By inspecting the tables it is evident that keep-
ing e=10 or e=15 dimensions gives high recall and precision
values.

Finally, we present some representative results showing

recall/precision

radius(r) e=5 e=10 e=15
0.1 1.0/0.4185 1.0/0.6384 1.0/0.7661
0.2 1.0/0.5509 1.0/0.7216 1.0/0.8197
0.5 0.9961/0.8164 1.0/0.9144 1.0/0.9469
1.0 0.9853/0.9799 0.9962/0.9954 0.9980/0.9975
1.5 0.9724/0.9999 0.9895/1.0 0.9938/1.0

Table 2: Results for range queries on TRUCKS (cosine

distance, max distance is 1.9).

recall/precision

radius(r) e=5 e=10 e=15
10 1.0/0.9023 1.0/0.9860 1.0/0.9890
20 1.0/0.5882 1.0/0.8483 1.0/0.9408
50 1.0/0.5820 1.0/0.7679 1.0/0.8673
100 1.0/0.8609 1.0/0.9414 1.0/0.9654
200 1.0/0.9876 1.0/0.9962 1.0/0.9986

Table 3: Results for range queries on TRUCKS (Eu-

clidean distance, max distance is 683).

the impact of the number of grid cells used for the grid for-
mulation. The precision results for the Euclidean distance
(recall is always 100%) are given in Figure 5. The results
correspond to similarity range queries. The radius of the
query in each case has been selected so as to retrieve ap-
proximately 10 trajectories in the answer set. Evidently, the
more dimensions we use, the better the precision becomes.
However, by using e=10 or e=15 dimensions in the trans-
formed space, adequate precision is achieved, which means
that the number of false alarms is very low.
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Figure 5: Precision by varying the number of cells
and the number of singular values.

4.2 Clustering Comparison
In this section, we investigate the effectiveness of the LSA

scheme on clustering (without loss of generality, K-means
has been used as the clustering algorithm). This is achieved
by comparing the clustering performed prior to SVD to the
clustering performed after dimensionality reduction. The
clustering effectiveness is measured by means of the Match-
ing (MC) and the Jaccard Coefficient (JC) of the cluster-
ings [5]:

MC =
N00 + N11

N00 + N11 + N01 + N10
and JC =

N11

N11 + N01 + N10

where N00 is the number of trajectory pairs that are in dif-
ferent clusters both in both clusterings, N11 is the number
of trajectory pairs that are in the same cluster in both clus-
terings, N01 is the number of trajectory pairs that are in
different clusters in the first clustering but are in the same
cluster in the second, and N10 is the number of trajectory
pairs that are in the same cluster in the first clustering but
in different clusters in the second.

Figure 6 illustrates the clustering comparison results for
the TRUCKS data set, by using both cosine (a) and Eu-
clidean distance (b). The number of clusters for each dis-
tance measure has been selected in order to give a relatively
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Figure 6: Clustering comparison for TRUCKS.

high silhouette coefficient. It is evident that both MC and
JC assume values larger than 0.9 when five or more singular
values are used for the trajectory representation. Therefore,
instead of performing a clustering in the n-dimensional space
(where n is the number of grid cells) we can apply clustering
on the e-dimensional space (where e is the number of singu-
lar values maintained). Evidently, the number of retained
eignevalues depends on the characteristics of each data set.

5. CONCLUSIONS
Trajectories appear in several applications domains such

as location-based services, monitoring of meteorological phe-
nomena, logistics, video tracking/surveillance, animal track-
ing. In this work, we have studied the trajectory similarity
problem from an information retrieval perspective. Trajec-
tories are first mapped to a grid representation, where LSA
is applied towards “shifting” trajectories to the concepts
space. The proposed scheme is capable of handling spatial
proximity, uncertainty and it allows concept-based trajec-
tory similarity. The performance results have shown that
not only similarity queries can be efficiently handled, but
also clustering can be performed in the transformed space
since distances are well preserved. Some directions for fu-
ture research are: (i) the study of alternative dimensional-
ity reduction methods, (ii) the performance comparison of
different indexing schemes, and (iii) the combination of geo-
graphic with textual information to define similarity among
trajectories. Regarding the last issue, each route may be an-
notated with textual information. Combining the two types
of information (geographic and textual) is an interesting and
very promising research topic [4, 8].
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