
2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

NODESIG: Binary Node Embeddings via Random
Walk Diffusion

Abdulkadir Çelikkanat
Technical University of Denmark

DTU Compute
Lyngby, Denmark

abdcelikkanat@gmail.com

Fragkiskos D. Malliaros
Paris-Saclay University
CentraleSupélec, Inria
Gif-sur-Yvette, France

fragkiskos.malliaros@centralesupelec.fr

Apostolos N. Papadopoulos
Aristotle University of Thessaloniki

Department of Informatics
Thessaloniki, Greece
papadopo@csd.auth.gr

Abstract—Graph Representation Learning (GRL) has become
a key paradigm in network analysis, with a plethora of interdis-
ciplinary applications. As the scale of networks increases, most
of the widely used learning-based graph representation models
also face computational challenges. While there is a recent effort
toward designing algorithms that solely deal with scalability
issues, most of them behave poorly in terms of accuracy on
downstream tasks. In this paper, we aim to study models that
balance the trade-off between efficiency and accuracy. In particu-
lar, we propose NODESIG, a scalable model that computes binary
node representations. NODESIG exploits random walk diffusion
probabilities via stable random projections towards efficiently
computing embeddings in the Hamming space. Our extensive
experimental evaluation on various networks has demonstrated
that the proposed model achieves a good balance between
accuracy and efficiency compared to well-known baseline models
on the node classification and link prediction tasks.

Index Terms—Graph representation learning, node embed-
dings, binary representations, node classification, link prediction

I. INTRODUCTION

Graph-structured data is ubiquitous in many diverse dis-
ciplines and application domains, including biology, neu-
roscience, and applications arising from social media and
networking analysis [1]. Besides being elegant models for
data representation, graphs have also been proven valuable in
various widely used machine learning tasks. For instance, in
the case of biological networks, we are interested in predicting
the function of proteins or in inferring the missing structure
of the underlying protein-protein interaction network. Both of
these problems can be formalized as learning tasks on graphs,
with the main challenge being how to properly incorporate
its structural properties and the proximity among nodes into
the learning process. In this direction, Graph Representation
Learning (GRL) has become a key paradigm for extracting
information from networks and for performing various tasks
such as link prediction, classification, and visualization [2],
[3]. These models aim to find node representations (i.e., node
embeddings) in a way that the desired properties and proximity
among nodes are preserved in the embedding space.

Supported in part by ANR (French National Research Agency) under the
JCJC project GraphIA (ANR-20-CE23-0009-01).

Most of the existing GRL approaches deal with learning-
based models, relying either on matrix factorization or on
node context sampling to infer the proximities between nodes
[2]. For the former, the goal is to learn embeddings by
factorizing the matrix which has been designed for capturing
and representing desired graph properties and node proximities
in a lower-dimensional space. Typically, such approaches
target to preserve first-order (adjacency-based) or higher-order
proximity of nodes [4]–[7]. Since such models heavily rely on
the expensive factorization of dense node proximity matrices,
the computational cost and the high memory usage burden
bring limitations for large-scale networks. Although recent
studies have proposed heuristics to overcome these challenges
[8], [9], they are obliged to forgo their predictive performance
in most cases—hence, putting the practitioners in a dilemma
between effectiveness and computational cost.

In order to address the aforementioned challenges towards
developing effective and scalable algorithms for representation
learning on networks, random walk-based models have gained
considerable attention [2]. The main idea here is to generate
a set of node sequences by following a random walk strategy.
Node embeddings are then learned by maximizing the proba-
bility of node co-occurrences in the generated sequences. [10]–
[14]. Nevertheless, a large number of random walks is required
to be explicitly sampled in order to ensure the effectiveness
of the embedding on downstream tasks. Furthermore, it has
been shown that random walk-based embedding approaches
implicitly perform factorization of a properly chosen dense
transition probability matrix, leading to better performance
on downstream tasks [15], [16]. Although recent studies aim
to improve running time complexity via matrix sparsification
techniques [17] or capitalizing on hierarchical graph represen-
tations [18], the quality of the embeddings deteriorates.

Besides the computational burden of model optimization,
most of the proposed algorithms learn low-dimensional em-
beddings in the Euclidean space. A recent few studies have
proposed to learn discrete node representations [19], [20],
in which Hamming distance is leveraged to determine the
similarity of embedding vectors. The basic idea builds upon
fast sketching techniques for scalable similarity search, mainly
based on data-independent or data-dependent hashing tech-
niques [21]. Although binary embeddings speedup distanceIEEE/ACM ASONAM 2022, November 10-13, 2022

978-1-6654-5661-6/22/$31.00 © 2022 European Union

68

measure computations with respect to the metrics defined
in Euclidean space, the corresponding models often undergo
computationally intensive learning procedures, especially in
the case of learning-to-hash models [19].

Contributions. In this paper, we propose NODESIG, a scalable
model for computing expressive binary node embeddings
based on stable random projections. NODESIG first lever-
ages random walk diffusions to estimate higher-order node
proximity. Then, a properly defined sign random projection
hashing technique is applied to obtain binary node signatures
in the Hamming space, leading to an approximation of the
chi similarity (χ) [22] between the proximity vectors in the
original space. Since these vectors are constructed based on
the occurrence frequencies of nodes within random walks, chi
similarity emerges as a natural choice of similarity metric, fre-
quently used to compare histograms in various areas including
natural language processing and computer vision [23], [24].

Each component of NODESIG has been designed to en-
sure the scalability, while at the same time, the accuracy
on downstream tasks is not compromised or even improves
compared to traditional models. Figure 1 positions NODESIG
regarding the accuracy and running time, providing a compar-
ison to different models on the PPI network. As we observe,
NODESIG’s running time is comparable to that of models that
focus solely on scalability (e.g., NODESKETCH, RANDNE,
LOUVAINNE), with improved accuracy even higher than
NODE2VEC, FREDE and HOPE in this dataset.
The main contributions can be summarized as follows:

• We introduce NODESIG, a scalable and expressive model
for binary node embeddings based on stable random pro-
jection hashing of random walk diffusion probabilities.

• The distance computation between node signatures in the
embedding space is provided by the Hamming distance
on bit vectors, which is significantly more efficient than
distance computations based on other distance measures.

• In a thorough experimental evaluation, we demonstrate
that the proposed binary embeddings achieve superior
performance compared to various baseline models on two
downstream tasks. At the same time, the running time
allows the model to scale on large graphs.

Source code. The implementation of NODESIG can be found
at: https://abdcelikkanat.github.io/projects/nodesig/.

II. RELATED WORK

Graphs are rich representations of the real world that can
capture different types of relationships and modalities among
entities [2]. One of the first modern algorithms is the DEEP-
WALK algorithm [10] which uses uniform truncated random
walks to represent the context of a node. Intuitively, nodes
with similar random walks have a higher degree of similarity.
The NODE2VEC method [11] is more general and manages to
combine BFS and DFS search strategies, achieving significant
performance improvements. LINE [12] optimizes an objective
function capturing both first-order and second-order node
proximities. Essentially those models constitute adaptations

0 20 40 60 80 100 120 140
Running time (in seconds)

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

M
ic

ro
F

1
S

co
re

fo
r

50
%

tr
ai

n
in

g
ra

ti
o

HOPE

Node2Vec

NetSMF
FREDE

LouvainNE

RandNE

NodeSketch

NodeSig

Fig. 1: Comparison of models on the PPI network. NODESIG
balances good accuracy (Micro-F1) and running time (in secs).

of the SKIPGRAM technique proposed for word embeddings
[25]. However, they require the extensive realization of the
random walks, which constitutes a computationally intensive
operation. It turns out that problems related to random walk
sampling can be alleviated by using matrix factorization. The
main drawback of NETMF and other matrix factorization-
based approaches [4], [7], however, is that in general matrix
factorization is a computationally intensive operation.

The main limitation of the aforementioned embedding tech-
niques is that they do not scale well for large networks. The
main focus has been put on increasing the effectiveness of
data mining tasks (e.g., classification, link prediction, net-
work reconstruction) whereas the efficiency dimension has
not received significant attention. To attack this problem,
recent advances in network representation learning use random
projection or hashing techniques (more specifically, variants
of locality-sensitive hashing) in order to boost performance,
trying to maintain effectiveness as well.

RANDNE [8] is one of the first scalable approaches which
is based on iterative Gaussian random projection, being able
to adapt to any desired proximity level. In the same line,
FASTRP was proposed in [9] which is faster than RANDNE
and also more accurate. LOUVAINNE [18] suggested learning
node representations by aggregating the embeddings of nodes
extracted at varying levels of the hierarchy. The NETHASH
algorithm [20] expands each node of the graph into a rooted
tree, and then by using a bottom-up approach encodes struc-
tural information as well as attribute values into minhash
signatures in a recursive manner. FREDE [26] is a sketching-
based approach relying on Personalized Page Rank (PPR)
matrix, which alleviates the computation burden by applying
a sketching technique. A similar approach has been used
in NODESKETCH [27], where the context of every node is
defined in a different way whereas the embedding vector of
each node contains integer values. Although these approaches
rely on fast-sketching schemes, they do not show comparable
performance to the aforementioned learnable models in the
downstream tasks. In this paper, we aim to introduce an
approach balancing accuracy and running time.

69

https://abdcelikkanat.github.io/projects/nodesig/

[1, · · · , 1]
[0, · · · , 1]

[1, · · · , 1]

[0, · · · , 0]
[0, · · · , 1]

[1, · · · , 0]

[0, · · · , 1][1, · · · , 0]

v1

v2

v3

v4
v5

v6

v7
v8

v10

v9

v11

a) Input Network

[−0.1, · · · , 0.3]
[−0.4, · · · , 0.1]

[0.6, · · · , 0.9]

[0.5, · · · , 0.4]

[0.2, · · · , 0.3]

[0.5, · · · , 0.4]
[−0.9, · · · , 0.7]

[0.1, · · · ,−0.4]

[0.6, · · · , 0.1]

v1

v2

v3

v4
v5

v6

v7
v8

v10

v9

v11

c) Weight Propagation

[1, · · · , 1]
[0, · · · , 1]

d) Binary representationsb) Weight Sampling

Fig. 2: Schematic representation of the NODESIG model. First, the weights of the random projection matrix are sampled and
then the projection of the proximity matrix is performed via the weight propagation step. Finally, binary node representations
are obtained by combining the signs of the projected values.

III. PROPOSED APPROACH

A. Random Walk Diffusion for Node Proximity Estimation

In most cases, direct links among nodes are not sufficient
to grasp various inherent properties of the network that are
related to node proximity. It is highly probable that the network
might have missing or noisy connections, thus relying solely
on first-order proximity can reduce the expressiveness of the
model. To overcome this problem, we directly leverage random
walk diffusions, adopting a uniform random walking strategy
to extract information describing the structural roles of nodes
in the network. Let P denote the right stochastic matrix
associated with the adjacency matrix of the graph, which is
obtained by normalizing the rows of the matrix. More formally,
P can be written as P(i,j) := A(i,j)/

∑
j A(i,j), defining the

transition probabilities of the uniform random walk strategy.
We use a slightly modified version of the transition matrix by
adding a self-loop on each node, in case it does not exist.

Note that the probability of visiting the next node depends
only on the current node that the random walk resides;
therefore, node vj can be visited starting from vi by taking
l steps with probability P

(l)
(i,j), if there is a path connecting

them. For a given walk length L, we define the matrix M as

M := P+ · · ·+P(l) + · · ·+P(L),

where P(l) indicates the l-order proximity matrix and each
entry Mv,u in fact specifies the expectation of visiting u
starting from node v within L steps. By introducing an
additional parameter α, M(α) can be rewritten as follows:

M(α) := αP+ · · ·+ α(l)P(l) + · · ·+ α(L)P(L).

Higher order node proximities can be captured using longer
walk lengths, where the impact of the walk at different steps
is controlled by the importance factor α ∈ R+. As we
will present in the next paragraph, matrix M(α) is properly
exploited by a random projection hashing strategy to efficiently
compute binary node representations.

B. Learning Binary Embeddings

Random projection methods [28] have been widely used in
a wide range of machine learning applications dealing with
large scale data. They mainly target to represent data points
into a lower dimensional space by preserving the similarity

in the original space. Likewise, we aim at encoding each
node into a Hamming space H

(
dH, {0, 1}D

)
; we consider

the normalized Hamming distance dH as the distance metric
[29]. The benefit of binary representations is twofold: first,
they will allow us to perform efficient distance computation
using bitwise operations, and secondly reduce the required disk
space to store the data.

Random projections are linear mappings; the binary em-
beddings though require nonlinear functions to perform the
discretization step, and a natural choice is to consider the signs
of the values obtained by the Johnson-Lindenstrauss (JL) [30]
transform. More formally, it can be written that

hW(x) := sign(x⊤W),

where W is the projection matrix whose entries W(i,j) are
independently drawn from normal distribution and sign(x)j
is equal to 1 if xj > 0 and 0 otherwise. The approach was
first introduced in the work [31] for a rounding scheme in
approximation algorithms, demonstrating that the probability
of obtaining different values for a single bit quantization is
proportional to the angle between vectors, as it is shown
in Theorem 1. The main idea relies on sampling uniformly
distributed random hyperplanes in RD. Each column of the
projection matrix, in fact, defines a hyperplane and the arc
between vectors x and y on the unit sphere is intersected if
hW(x)i and hW(y)i take different values.

Theorem 1 ([31]). For a given pair of vectors x,y ∈ RN ,

P
[
hW(x)j ̸= hW(y)j

]
=

1

π
cos−1

(
x⊤y

∥x∥2∥y∥2

)
,

where W(i,j) ∼ N (0, 1) for 1 ≤ i, j ≤ N .

Although the signs of JL random projections allow us to
approximate the angle between the vectors in the original
space, in our settings, we would prefer to preserve a distance
metric that can fit better the input data M(α). Note that, the
node proximity matrix M(α) contains non-negative elements
computed based on the occurrence frequencies of nodes within
random walks. Hence, we will focus on estimating distance
metrics capable of comparing histogram-type data by properly
redesigning the projection matrix. The stable random projec-
tions approach [32] generalizes the aforementioned idea by
using a symmetric α-stable distribution with unit scale in order

70

to sample the elements of the projection matrix, for 0 < α ≤ 2.
Li et al. [32] proposed the following upper bound

P
[
hW(x)j ̸= hW(y)j

]
≤ 1

π
cos−1ρα (1)

for non-negative vectors (xi ≥ 0,yi ≥ 0 for 1 ≤ i ≤ N),
where ρα is defined as

ρα :=

(∑
i=1 x

α/2
i y

α/2
i√∑

i=1 x
α
i

√∑
i=1 y

α
i

)2/α

.

It is well known that the bound is exact for α = 2, which
also corresponds to the special case in which normal random
projections are performed. When the vectors are chosen from
the ℓ1(R+) space (i.e.,

∑
d=1 xd = 1,

∑
d=1 yd = 1),

it is easy to see that the χ2 similarity ρχ2 defined as∑
d=1(2xdyd)/(xd + yd) is always greater or equal to ρ1, as

suggested by Lemma 1.

Lemma 1. For given x,y ∈ RD satisfying xi, yi ≥ 0 for all
1 ≤ i ≤ D and

∑
i=1 xi =

∑
i=1 yi = 1, then ρ1 ≤ ρχ2 .

Proof.

ρ1=

(∑
i=1 x

1/2
i y

1/2
i√∑

i=1 xi

√∑
i=1 yi

)2

=

∑
i=1

√
xiyi

2

=

∑
i=1

√
2xiyi√
xi + yi

√
xi + yi√

2

2

≤
∑
i=1

2xiyi
xi + yi

∑
i=1

xi + yi
2

=
∑
i=1

2xiyi
xi + yi

= ρχ2 ,

where the inequality follows from the Cauchy-Schwarz in-
equality.

Besides, it has been empirically shown [32] that the collision
probability for Cauchy random projections with unit scale can
be well estimated, especially for sparse data:

P
[
hW(x)j ̸= hW(y)j

]
≈ 1

π
cos−1ρχ2 ≤ 1

π
cos−1ρ1. (2)

Note that, the matrix, M(α), described in the previous para-
graph consists of non-negative values; its row sums are equal
to
∑L

l=1 α
l and M(α) is sparse enough for small walk lengths.

Therefore, we design the projection matrix by sampling its
entries from the Cauchy distribution, aiming to learn binary
representations preserving the chi-square similarity. The chi-
square distance is one of the measures used for histogram-
based data, commonly used in the fields of computer vision
and natural language processing [23], [24].

As it is shown in Figure 2, the last step of NODESIG for
obtaining binary node representations is to utilize the signs of
the projected data. In other words, the embedding vector E[v]
for each node v ∈ V is computed as follows:

E[v] :=

[
sign

(
M(α)(v,:)W(:,1)

)
, . . . , sign

(
M(α)(v,:)W(:,D)

)]

Note that, the projection of the exact realization of M(α)
can be computationally intensive, especially for large walks.
Instead, it can be computed by propagating the weights W(u,d)

for each dimension d (1 ≤ d ≤ D), using the following
recursive update rule:

R(l+1)
(v,d) (α)← α

∑
u∈N (v)

P(v,u) ×
(
W(u,d) +R(l)

(u,d)(α)
)
, (3)

where N (v) refers to the set of neighbors of node v ∈ V and
R(l)

(v,d) is equal to the projected data, M(v,:)(α) ·W(:,d) for the

walk length l, and R(0)
(v,d) is initialized to zero. By Lemma 2,

it can be seen that the projection of M(α) can be computed
by applying the recursive update rules defined in Eq. 3.

Lemma 2. Let P be n × n a right stochastic matrix and
M(L)(α) be the matrix defined by αP+ · · ·+α(l)P(l)+ · · ·+
α(L)P(L). For a given W ∈ Rn×D, the term M(L)(α)W

is equal to R(L) where each R
(l)
(v,d) is recursively defined

by αP(v,:)

(
W(:,d) + R(l−1)

(:,d)

)
for all l ∈ {1, . . . , L}, v ∈

{1, . . . , n} and R(0) is set to 0.

Proof. For l = 1, we have that R(1)
(v,d) = αP(v,:)

(
W(:,d) +

R(0)
(:,d)

)
= αP(v,:)

(
W(:,d) + 0

)
= αP(v,:)W(:,d) for all d ∈

{1, . . . ,D}, v ∈ {1, . . . , n} so the claim holds for n = 1. Let
us assume that it is true for n = l ≥ 1. Then,

R(n+1)
(v,d) = αP(v,:)

(
W(:,d) +R(n)

(:,d)

)
= αP(v,:)

(
W(:,d)+αPW(:,d) + · · ·+ α(n)P(n)W(:,d)

)
= αP(v,:)W(:,d) + · · ·+ α(n+1)P

(n+1)
(v,:) W(:,d)

=
(
αP(v,:) + · · ·+ α(n+1)P

(n+1)
(v,:)

)
W(:,d)

= M(n+1)(α)W(:,d).

Thus, the claim also holds for n+1= l. By the principle of
induction, it satisfies for all l ∈ {1, . . . , L}.
Algorithm 1 provides the pseudocode of NODESIG. We gen-
erate the projection matrix by sampling the weights from the
Cauchy distribution with unit scale. The samples are further
divided by

∑
l=1 α

l, because the row sums of M(α) must be
equal to 1. Then, we compute the terms R(l)

(v,d) by propagating
the weights in Line 9 at each walk iteration l < L. Note that,
the term R in the pseudocode is a vector of length D, thus we
obtain the final node representation using the signs of R(L)

(v,d).

C. Time and Space Complexity

At the beginning of the algorithm, we need to sample a
weight matrix of size |V| · D, and it can be formed in the
order of O(|V| · D). As we observe in Algorithm 1, the
main cumbersome point of NODESIG is caused by the update
rule defined in Eq. (3), which corresponds to Line 9 of the
pseudocode. The update rule must be repeated |N (v)| times
for each node v ∈ V , thus it requires 2 ·m · D multiplication
operations at the walk step l (1 ≤ l ≤ L) for a network
consisting of m edges and for embedding vectors of dimension

71

Algorithm 1: NODESIG

Data: Graph G = (V,E) with the transition matrix P;
representation size D; walk length L;
importance factor α

Result: Embeddings E[v] ∈ RD for each node v ∈ V
1 for each node v ∈ V do
2 R[v]← 0D = (0, . . . , 0) ;
3 W [v] ∼ Cauchy(0, 1)D /

∑L
l=1 α

l;
4 end
5 for l← 1 to L do
6 for each node v ∈ V do
7 temp[v]← 0D = (0, . . . , 0) ;
8 for each neighbour node u ∈ N (v) do
9 temp[v]← temp[v]+

(
W [u]+R[u]

)
×P [u, v];

10 end
11 end
12 for each node v ∈ V do
13 R[v]← α× temp[v] ;
14 end
15 end
16 for each node v ∈ V do
17 E[v]← sign(R[v]) ;
18 end

D. Hence, the overall time complexity of the algorithm is
O
(
(|V| · D +m · L · D

)
. During the running course of the

algorithm, we need to store a vector of size N in memory for
the computation of each dimension. Assuming, in the worst
case, that we aim to retain the whole projection matrix W
in memory, we need O(N · D) space in total, since each
node requires D space for storing the R(l)

(v,d) values in the
update rule of Eq. (3). Note that, the performance of the
algorithm can be boosted by using parallel processing for
each dimension of embedding vectors or for Line 6, since the
required computation for each node is completely independent.

IV. EXPERIMENTAL EVALUATION

We report empirical evaluation results demonstrating the
effectiveness and efficiency of NODESIG compared to base-
lines. All the experiments have been performed on a server
(16 Cores) with 128GB of memory.

A. Datasets and Baseline Models

Datasets. We perform experiments on networks of different
scale and type. (i) Blogcatalog [33] social network; (ii) Cora
[34] citation graph; (iii) DBLP [35] co-authorship network;
(iv) PPI [11] is a protein-protein interaction network. (v)
Youtube [36] is a social network in which node labels indicate
categories of videos. All the networks used in the experiments
are unweighted and undirected (the direction of edges are
discarded), in order to be consistent in the evaluation. The
characteristics of the graphs are shown in Table I.
Baseline models. We have considered seven representative
baseline methods in the evaluation. In particular, the first two

Networks # Nodes # Edges # Labels # Density

Blogcatalog 10,312 333,983 39 6.3× 10−3

Cora 2,708 5,278 7 1.4× 10−3

DBLP 27,199 66,832 4 1.8× 10−4

PPI 3,890 38,739 50 5.1× 10−3

Youtube 1,138,499 2,990,443 47 4.6× 10−6

TABLE I: Characteristics of networks.

correspond to widely used node embedding models: (i) a
biased random walk-based model, NODE2VEC [11], and (ii)
a matrix factorization algorithm, HOPE [7]. The remaining
four baselines constitute recent models aiming to address
the scalability challenge. (iii) NETSMF [17] is a sparse
matrix factorization algorithm, modeling the pointwise mutual
information of node co-occurrences. (iv) FREDE [26] is a
matrix sketching-based approach. (v) RANDNE [8] leverages
Gaussian random projections to deal with scalability. (vi)
LOUVAINNE [18] constructs a hierarchical subgraph structure,
aggregating the node representations learned at each level.
Finally, (vii) NODESKETCH [27] learns embeddings in the
Hamming space, using MINHASH signatures. For all methods,
we learn embedding vectors of size 128.

For simplicity, we set the importance factor α to 1 in all
the experiments of NODESIG, as we have observed that the
algorithm shows comparable performance for values close to
1; a detailed analysis of the behaviour of NODESIG with
respect to the importance factor is given in Section IV-D. The
walk length is set to 3 for Cora and Blogcatalog, and to 5 for
all the other networks in the classification experiment. For the
link prediction task, the walk length is chosen as 15 for all
networks. We set the dimension size of the embedding vectors
to 8, 192 bits in order to be consistent with the experiments
with the baseline methods, since modern computer architec-
tures use 8 Bytes for storing floating point data types.

B. Multi-label Node Classification

Our goal is to correctly infer the labels of nodes chosen for
the testing set, using the learned representations and the labels
of nodes in the rest of the network, namely the nodes in the
training set. The evaluation follows a strategy similar to the
one used by baseline models [27].

1) Experimental set-up: The experiments are carried out
by training an one-vs-rest SVM classifier with a pre-computed
kernel, which is designed by computing the similarities of
node embeddings. The similarity measure is chosen depending
on the algorithm that we use to learn representations. More
specifically, the Hamming similarity for NODESKETCH and
the Cosine similarity for the rest baselines methods are chosen
in order to build the kernels for the classifier. For NODESIG,
we use the chi similarity χ, defined as 1−

√
dχ2 , where

dχ2 :=
D∑
i=1

(xi − yi)
2

xi + yi
=

D∑
i=1

(xi + yi)−
D∑
i=1

4xiyi
xi + yi

=2− 2ρχ2 ,

for the vectors satisfying
∑

i xi =
∑

i yi = 1 and xi ≥ 0, yi ≥
0 for all 1 ≤ i ≤ D. Hence, we apply a small transformation

72

Micro-F1 Macro-F1

10% 50% 90% 10% 50% 90%

HOPE 0.305 0.317 0.326 0.117 0.119 0.124
NODE2VEC 0.341 0.352 0.345 0.155 0.165 0.165

NETSMF 0.360 0.376 0.377 0.189 0.200 0.199
FREDE 0.354 0.368 0.381 0.171 0.179 0.183

LOUVAINNE 0.047 0.143 0.165 0.022 0.037 0.041
RANDNE 0.316 0.337 0.340 0.141 0.164 0.165

NODESKETCH 0.305 0.381 0.398 0.145 0.236 0.263
NODESIG 0.358 0.408 0.420 0.191 0.267 0.286

TABLE II: Micro-F1 and Macro-F1 classification scores for
varying training set ratios of the Blogcatalog network.

Micro-F1 Macro-F1

10% 50% 90% 10% 50% 90%

HOPE 0.687 0.780 0.797 0.671 0.772 0.786
NODE2VEC 0.764 0.813 0.831 0.749 0.802 0.818

NETSMF 0.763 0.824 0.831 0.751 0.815 0.821
FREDE 0.777 0.825 0.846 0.766 0.817 0.833

LOUVAINNE 0.686 0.711 0.721 0.648 0.675 0.683
RANDNE 0.583 0.676 0.693 0.557 0.668 0.686

NODESKETCH 0.648 0.825 0.872 0.632 0.818 0.866
NODESIG 0.750 0.852 0.879 0.736 0.843 0.871

TABLE III: Micro-F1 and Macro-F1 classification scores for
varying training set ratios of the Cora network.

while constructing the kernel matrix of the SVM in order to
approximate the chi similarity, instead of using cos−1ρχ2/π in
Eq. (2), which is estimated directly via the Hamming distance.

2) Experimental results: For the multi-label node classi-
fication task, Tables II-VI report the average Micro-F1 and
Macro-F1 scores over 10 runs, where the experiments are
performed on different training set sizes. The symbol ”-” is
used to indicate that the corresponding algorithm is unable to
run due to excessive memory usage (> 60GB) or because it
requires more than one day to complete. The best and second
best performing models for each training ratio (10%, 50%, and
90%) are indicated with bold and underlined text, respectively.

As we observe, NODESIG consistently outperforms the
baselines for higher training ratios on the Blogcatalog and
Cora networks, while the obtained Macro-F1 score is very
close to the performance of NETSMF for 10% training ratio

Micro-F1 Macro-F1

10% 50% 90% 10% 50% 90%

HOPE 0.620 0.632 0.631 0.525 0.536 0.536
NODE2VEC 0.621 0.632 0.631 0.510 0.535 0.531

NETSMF 0.626 0.644 0.647 0.533 0.572 0.575
FREDE 0.648 0.661 0.661 0.567 0.586 0.588

LOUVAINNE 0.494 0.496 0.499 0.354 0.356 0.359
RANDNE 0.418 0.437 0.438 0.233 0.255 0.257

NODESKETCH 0.668 0.847 0.903 0.616 0.831 0.891
NODESIG 0.704 0.843 0.893 0.660 0.824 0.879

TABLE IV: Micro-F1 and Macro-F1 classification scores for
varying training set ratios of the DBLP network.

Micro-F1 Macro-F1

10% 50% 90% 10% 50% 90%

HOPE 0.134 0.151 0.146 0.083 0.085 0.077
NODE2VEC 0.141 0.161 0.138 0.084 0.087 0.070

NETSMF 0.150 0.170 0.163 0.096 0.102 0.095
FREDE 0.156 0.174 0.157 0.099 0.105 0.090

LOUVAINNE 0.042 0.054 0.056 0.023 0.025 0.021
RANDNE 0.145 0.161 0.145 0.087 0.091 0.083

NODESKETCH 0.152 0.227 0.243 0.102 0.181 0.196
NODESIG 0.177 0.236 0.246 0.119 0.185 0.191

TABLE V: Micro-F1 and Macro-F1 classification scores for
varying training set ratios of the PPI network.

Micro-F1 Macro-F1

10% 50% 90% 10% 50% 90%

HOPE 0.342 0.341 0.343 0.198 0.201 0.201
NODE2VEC - - - - - -

NETSMF 0.392 0.379 0.376 0.273 0.256 0.247
FREDE - - - - - -

LOUVAINNE 0.248 0.251 0.256 0.064 0.063 0.072
RANDNE 0.335 0.341 0.339 0.205 0.220 0.215

NODESKETCH 0.439 0.467 0.476 0.365 0.412 0.426
NODESIG 0.455 0.465 0.471 0.387 0.410 0.414

TABLE VI: Micro-F1 and Macro-F1 classification scores for
varying training set ratios of the Youtube network.

on Blogcatalog. In the case of the Cora network which
corresponds to the smallest one used in our study, FREDE
shows better performance for small training ratio of 10%. For
the Youtube and DBLP networks, the proposed NODESIG
model along with NodeSketch perform equally well. This is
quite surprising, since both these methods that correspond to
data-independent hashing techniques offer a clear performance
gain over traditional models, such as NODE2VEC and HOPE.
Lastly, for the PPI dataset, NODESIG obtains consistently
the highest scores for Micro-F1, while its main competitor
NODESKETCH has close performance for the Macro-F1 score.

C. Link Prediction

The second downstream task used to assess the quality of
node embeddings is the one of link prediction.

1) Experimental set-up: Half of the edges of a given
network are removed by still keeping the residual network
connected. Node embeddings are learned on the rest of the
graph. The removed edges are considered as positive samples
for the testing set, while the same number of node pairs which
does not exist in the initial network is separately sampled
for training and testing sets in order to form the negative
samples. As it has been described in Section IV-B, we build
the features corresponding to the node pair samples using the
similarities between embedding vectors; the similarity measure
is chosen depending on the algorithm that we use to extract
the representations. Since Youtube is relatively larger than the
rest of the networks, we work on 7% of its initial size. We
predict edges by constructing the similarity list of edges, and
we provide the Area Under Curve (AUC) scores in Table VII.

73

Blogcatalog Cora DBLP PPI Youtube

HOPE 0.517 0.665 0.769 0.524 0.514
NODE2VEC 0.595 0.748 0.843 0.616 0.533

NETSMF 0.691 0.709 0.835 0.534 0.542
FREDE 0.709 0.760 0.858 0.451 0.460

LOUVAINNE 0.565 0.684 0.789 0.570 0.528
RANDNE 0.608 0.508 0.517 0.505 0.502

NODESKETCH 0.703 0.590 0.714 0.514 0.510
NODESIG 0.822 0.737 0.856 0.654 0.537

TABLE VII: Area Under Curve scores for link prediction.

2) Experimental results: For the link prediction task,
NODESIG acquires the highest AUC scores on three datasets,
while it is also the second-best performing model for the
remaining two. In the case of the Youtube dataset, all baselines
demonstrate comparable results. Although NODE2VEC shows
good performance across most datasets in the link prediction
task, it does not perform well on the Blogcatalog network,
mainly because of its high density. On the other hand, NODE-
SIG reaches the highest score on this dataset, with a clear
difference to its main competitor, NODESKETCH.

D. Parameter Sensitivity

We concentrate on the influence of three parameters, namely
walk length L, importance factor α and dimension size D,
examining their impacts on the Cora network.

1) Effect of walk length: In order to examine the influence
of the walk length on the performance, we perform experi-
ments for varying lengths by fixing the importance factor α to
1.0. Figure 3a depicts the Micro-F1 scores for different train-
ing ratios. We observe a significant increase in performance
when the walk length increases, particularly for small training
ratios and walk lengths. Although it shows a wavy behavior for
the largest training ratio, there is a logarithmic improvement
depending on the walk length. NODESIG better captures the
structural properties of the network in longer walks, thus the
low performance observed on small training ratios can be
compensated with longer walks.

1 3 5 7 9

(a) Walk length, L

0.7

0.8

0.9

M
ic

ro
F

1
Sc

or
e

0.25 0.75 1 2 4 6 8

(b) Importance Factor, α

0.7

0.8

29 211 213 215

(c) Dimension size, D

0.7

0.8

0.9

Training ratio: 10% Training ratio: 50% Training ratio: 90%

Fig. 3: Influence of various parameters in terms of Micro-F1

score on the Cora network for varying training set ratios.

2) Effect of importance factor: The importance factor con-
trols the impact of walks of different lengths: the importance
of the higher levels is increasing for α > 1, while it can be
diminished choosing α < 1. Figure 3b depicts the performance
of NODESIG on the Cora network, fixing the walk length value
to 3. Although we do not observe a steady behavior for the

large training set, higher values of α, especially around 4,
positively contribute to the performance; values smaller than
1 have negative impact on the performance.

3) Effect of dimension size: The dimension size is a crucial
parameter affecting the performance of the algorithm, since
a better approximation to the chi similarity measure can be
obtained for larger dimension sizes, following Hoeffding’s
inequality [37]. Therefore, we perform experiments for varying
dimension sizes, by fixing the walk length to 5. Figure 3c
depicts the Micro-F1 scores of the classification experiment
for different dimension sizes ranging from 29 to 217. Although
we have fluctuating scores on the large training set due to
the randomized behavior of the approach, the impact of the
dimension size can be observed clearly on the small training
set size. On the other hand, we observe an almost stable
behavior for the training ratio of 50%, encouraging the use of
small embedding sizes towards reducing storage requirements.

E. Time Comparison

We have recorded the elapsed real (wall clock) time of
all methods, and the results are provided in Table VIII. The
Random network indicates the Gn,p Erdös-Renyi random graph
model, using n = 105 and p = 10−4. All the experiments
have been conducted on the server whose specifications given
in Section IV. We use 32 threads for each algorithm, when
it is applicable. We have utilized the suggested default pa-
rameters for the baselines, and the settings described for the
classification task are employed for NODESIG.

Bl
og

ca
ta

lo
g

C
or

a

D
BL

P

PP
I

Yo
ut

ub
e

R
an

do
m

Sp
ee

du
p

HOPE 97.81 27.32 198.59 32.65 8470.33 1048.52 8.85x
NODE2VEC 1400.44 18.32 161.24 72.16 - 716.07 2.55x

NETSMF 7.78 1.32 10.91 1.90 1624.94 236.30 1.69x
FREDE 1179.79 20.46 2612.84 140.43 - 22386.98 28.33x

LOUVAINNE 0.34 0.06 0.24 0.11 6.86 1.25 0.01x
RANDNE 25.52 3.15 11.55 5.40 449.15 73.11 0.51x

NODESKETCH 64.21 13.42 19.10 14.40 1563.00 101.16 1.59x
NODESIG 17.40 0.74 9.26 2.53 1047.53 38.11 1.00x

TABLE VIII: Running time (in seconds) and average speedup.

As we observe, NODESIG runs faster than HOPE,
NODE2VEC as well as FREDE. This is happening be-
cause HOPE requires an expensive matrix factorization, while
NODE2VEC needs to simulate random walks to obtain their
exact realizations. Although FREDE is a sketching-based
approach, we have observed that the computation of the PPR
matrix requires considerable time. Furthermore, although the
remaining baseline methods run faster compared to NODESIG,
as we have already presented, the proposed model generally
outperforms them both in the classification and link prediction
tasks. These experiments further support the intuition about
designing NODESIG as an expressive model that balances
accuracy and running time.

V. DISCUSSION FOR DYNAMIC NETWORKS

Most real-world networks undergo structural changes and
evolve over time with the addition and removal of links and

74

nodes [38]. Therefore, designing models properly adapting to
dynamic networks is an important point to investigate. As we
discuss here, the proposed method allows for efficient updates
of the embeddings, without requiring any costly learning
procedures. More precisely, the key point in the dynamic case,
is that the learned embedding vectors should be efficiently
updated instead of being recalculated from scratch. If an edge
is added or removed for a pair of nodes (u, v) ∈ V × V ,
the terms R(l)

(w,:) in Eq. (3) for node w ∈ V are affected, for
all l > k := min{dist(w, u), dist(w, v)}—thus, it suffices to
update only these affected terms. The transition probabilities
for nodes u and v also change even though the remaining
nodes are not affected, so all the terms P(v,:) must be divided
by
∑

w∈N (v) P(v,w) in order to normalize the transition proba-
bilities and similarly the same procedure must also be applied
to node u after each edge insertion and deletion operation.

VI. CONCLUSION AND FUTURE WORK

We have introduced NODESIG, an efficient binary node em-
bedding model. Its components have properly been designed
to improve scalability without sacrificing effectiveness on
downstream tasks. NODESIG exploits random walk diffusion
probabilities via stable random projection hashing, towards ef-
ficiently computing representations in the Hamming space that
approximate the chi similarity. The experimental results have
demonstrated that NODESIG outperformed in accuracy recent
highly-scalable models, being able to run within the reasonable
time duration, while at the same time it shows comparable
or even better accuracy with respect to widely used baseline
methods in multi-label node classification and link prediction.
In future work, we plan to further study the properties of the
model for attributed and dynamic networks and also study the
performance of parallel/distributed alternatives.

REFERENCES

[1] M. Newman, “The structure and function of complex networks,” SIAM
review, vol. 45, no. 2, pp. 167–256, 2003.

[2] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” IEEE Data Eng. Bull., vol. 40, pp.
52–74, 2017.

[3] W. L. Hamilton, Graph Representation Learning. Morgan and Claypool
Publishers, 2020.

[4] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representations
with global structural information,” in CIKM, 2015, pp. 891–900.

[5] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
KDD, 2016, pp. 1225–1234.

[6] A. Celikkanat, Y. Shen, and F. D. Malliaros, “Multiple kernel represen-
tation learning on networks,” IEEE Trans. Knowl. Data Eng., 2022.

[7] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in KDD, 2016, pp. 1105–1114.

[8] Z. Zhang, P. Cui, H. Li, X. Wang, and W. Zhu, “Billion-scale network
embedding with iterative random projection,” in ICDM, 2018, pp. 787–
796.

[9] H. Chen, S. F. Sultan, Y. Tian, M. Chen, and S. Skiena, “Fast and
accurate network embeddings via very sparse random projection,” in
CIKM, 2019, pp. 399–408.

[10] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014, pp. 701–710.

[11] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in KDD, 2016, pp. 855–864.

[12] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-
scale information network embedding,” in WWW, 2015, pp. 1067–1077.

[13] D. Nguyen and F. D. Malliaros, “BiasedWalk: Biased sampling for
representation learning on graphs,” in BigData, 2018, pp. 4045–4053.

[14] A. Çelikkanat and F. D. Malliaros, “Exponential family graph embed-
dings,” in AAAI, 2020, pp. 3357–3364.

[15] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec,” in WSDM, 2018, pp. 459–467.

[16] S. Chanpuriya and C. Musco, “Infinitewalk: Deep network embed-
dings as laplacian embeddings with a nonlinearity,” in KDD, 2020, p.
1325–1333.

[17] J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang, “NetSMF:
Large-scale network embedding as sparse matrix factorization,” in
WWW, 2019, pp. 1509–1520.

[18] A. K. Bhowmick, K. Meneni, M. Danisch, J.-L. Guillaume, and B. Mitra,
“Louvainne: Hierarchical louvain method for high quality and scalable
network embedding,” in WSDM, 2020, pp. 43–51.

[19] D. Lian, K. Zheng, V. W. Zheng, Y. Ge, L. Cao, I. W. Tsang, and
X. Xie, “High-order proximity preserving information network hashing,”
in KDD, 2018, pp. 1744–1753.

[20] W. Wu, B. Li, L. Chen, and C. Zhang, “Efficient attributed network
embedding via recursive randomized hashing,” in IJCAI, 2018, pp.
2861–2867.

[21] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A survey on
learning to hash,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 769–790, 2018.

[22] O. Pele and M. Werman, “The quadratic-chi histogram distance family,”
in ECCV, 2010, pp. 749–762.

[23] C. Ye, J. Wu, V. S. Sheng, S. Zhao, P. Zhao, and Z. Cui, “Multi-label
active learning with chi-square statistics for image classification,” in
ICMR, 2015, pp. 583–586.

[24] V. T. L. Huong, D. Park, D. Woo, and Yunsik Lee, “Centroid neural
network with chi square distance measure for texture classification,” in
IJCNN, 2009, pp. 1310–1315.

[25] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
NIPS, 2013, pp. 3111–3119.

[26] A. Tsitsulin, M. Munkhoeva, D. Mottin, P. Karras, I. Oseledets, and
E. Müller, “Frede: Anytime graph embeddings,” Proc. VLDB Endow.,
vol. 14, no. 6, p. 1102–1110, feb 2021.

[27] D. Yang, P. Rosso, B. Li, and P. Cudre-Mauroux, “Nodesketch: Highly-
efficient graph embeddings via recursive sketching,” in KDD, 2019, pp.
1162–1172.

[28] S. Vempala, The random projection method. Am. Math Soc., 2001.
[29] X. Yi, C. Caramanis, and E. Price, “Binary embedding: Fundamental

limits and fast algorithm,” in ICML, 2015, pp. 2162–2170.
[30] W. B. Johnson, J. Lindenstrauss, and G. Schechtman, “Extensions of

lipschitz maps into banach spaces,” Israel Journal of Mathematics,
vol. 54, pp. 129–138, 1986.

[31] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” J. ACM, vol. 42, 1995.

[32] P. Li, G. Samorodnitsky, and J. Hopcroft, “Sign cauchy projections and
chi-square kernel,” in NIPS, 2013.

[33] L. Tang and H. Liu, “Relational learning via latent social dimensions,”
in KDD, 2009, pp. 817–826.

[34] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, 2008.

[35] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, “Don’t walk, skip!
online learning of multi-scale network embeddings,” in ASONAM, 2017,
pp. 258–265.

[36] L. Tang and H. Liu, “Scalable learning of collective behavior based on
sparse social dimensions,” in CIKM, 2009, pp. 1107–1116.

[37] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Am. Stat. Assoc., vol. 58, pp. 13–30, 1963.

[38] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and
P. Poupart, “Representation learning for dynamic graphs: A survey,” J.
Mach. Learn. Res., vol. 21, no. 70, pp. 1–73, 2020.

75

	Introduction
	Related Work
	Proposed Approach
	Random Walk Diffusion for Node Proximity Estimation
	Learning Binary Embeddings
	Time and Space Complexity

	Experimental Evaluation
	Datasets and Baseline Models
	Multi-label Node Classification
	Experimental set-up
	Experimental results

	Link Prediction
	Experimental set-up
	Experimental results

	Parameter Sensitivity
	Effect of walk length
	Effect of importance factor
	Effect of dimension size

	Time Comparison

	Discussion for Dynamic Networks
	Conclusion and Future Work
	References

