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Abstract Collaborative Filtering (CF) Systems have been studied extensively for more

than a decade to confront the ‘‘information overload’’ problem. Nearest-neighbor CF is

based either on similarities between users or between items, to form a neighborhood of

users or items, respectively. Recent research has tried to combine the two aforementioned

approaches to improve effectiveness. Traditional clustering approaches (k-means or hier-

archical clustering) has been also used to speed up the recommendation process. In this

paper, we use biclustering to disclose this duality between users and items, by grouping

them in both dimensions simultaneously. We propose a novel nearest-biclusters algorithm,

which uses a new similarity measure that achieves partial matching of users’ preferences.

We apply nearest-biclusters in combination with two different types of biclustering

algorithms—Bimax and xMotif—for constant and coherent biclustering, respectively.

Extensive performance evaluation results in three real-life data sets are provided, which

show that the proposed method improves substantially the performance of the CF process.

Keywords Nearest neighbor � Collaborative filtering � Biclustering �
Clustering

This work is an extension of a preliminary version presented in WebKDD 2006 Workshop. In this paper,
extensive material has been added, which compares new classes of biclustering algorithms over more real
data sets. Moreover, model-based approaches (in addition to the memory-based approaches) are under
examination, too.
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1 Introduction

Information Filtering has become a necessary technology to attack the ‘‘information

overload’’ problem. In our everyday experience, while searching on a topic (e.g., products,

movies, etc.), we often rely on suggestions by others, more experienced on it. In the Web,

however, the plethora of available suggestions pauses difficulties in detecting the trust-

worthy ones. The solution is to shift from individual to collective suggestions.

Collaborative Filtering (CF) applies information retrieval and data mining techniques to

provide recommendations based on suggestions of users with similar preferences. CF is a

very popular method in recommender systems and e-commerce applications.

Two families of CF algorithms have been studied extensively in the literature:

• Memory-based algorithms, which perform the computation on the entire database to

identify the top k similar users to a target user (Xue et al. 2005).

• Model-based algorithms, which recommend items to a target user after they have first

computed a model of predefined classes of users based on their rating patterns (Xue

et al. 2005).

Regarding memory-based algorithms, a well-studied approach in research is user-based

(UB) CF (Breese et al. 1998; Resnick et al. 1994), which forms neighborhoods based on

similarities between users. In particular, for a test user, UB employs users’ similarities to

form a neighborhood of his nearest users. Then, UB recommends to the test user, the most

frequent items in the formed neighborhood. Recently, another algorithm was proposed

(Sarwar et al. 2001), denoted as item-based (IB) CF, which forms item neighborhoods

based on similarities between items. IB is usually assigned to the memory-based family.1

Both UB and IB are one-side approaches, in the sense that they examine similarities either

only between users or only between items, respectively. This way, they ignore the clear

duality that exists between users and items. Furthermore, UB and IB algorithms cannot

detect partial matching of preferences, because their similarity measures consider the entire

set of items or users, respectively. However, two users may share similar preferences only

for a subset of items.

As an example, consider two users that share similar preferences for science-fiction

books and differentiate in all other kinds of literature. In this case, their partial matching

for science-fiction, which can help to provide useful recommendations for this kind of

books, will be missed by existing nearest neighbor CF approaches. The reason is that these

approaches measure similarity between two users with respect to the entire set of items.

Thus, they miss their partial matching, since the differences in the rest items prevail over

the subset of items in which their preferences match. Analogous reasoning applies for the

IB approaches. Content-Based Filtering (CBF) (Balabanovic and Shoham 1997; Salter and

Antonopoulos 2006; Melville et al. 2002) can help towards partial matching (such

approaches are detailed in Sect. 2). However, these approaches exploit additional infor-

mation about the content of items (e.g., in the form of features), whereas in this paper we

focus on CF based solely on ratings.

To disclose the duality between users and items, we propose the generation of groups

of users and items at the same time. The simultaneous clustering of users and items

discovers biclusters, which correspond to groups of users which exhibit highly correlated

ratings on groups of items. Biclusters allow the computation of similarity between a test

1 Since, in its off-line part, IB learns relationships between items according a model, it could be considered
as a model-based algorithm as well.
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user and a bicluster only on the items that are included in the bicluster. Thus, partial

matching of preferences is taken into account. Moreover, a user can be matched with

several nearest biclusters, to receive recommendations that cover the range of his various

preferences.

Regarding Model-based algorithms, once they have build the model, they present good

scalability. However, they have the overhead to build and update the model, and they

cannot cover as diverse user ranges as the nearest-neighbor algorithms do (Xue et al.

2005). The reason is that model-based approaches group users into small number of

classes, resulting to reduced range of variation for the users’ preferences. Thus, it is more

difficult for a user with eclectic taste compared with a small number of classes to get

recommendations. In contrast, nearest-neighbor algorithms provide good recommendations

to users with eclectic tastes. Clustering is probably the most widely method used in model-

based approaches (Xue et al. 2005; Hofmann 2004; Kohrs and Merialdo 1998). It finds

groups of users or items that have similar preferences. Traditional clustering approaches,

such as k-means and hierarchical clustering, put each user in exactly one cluster. However,

the fact that a user usually has various different preferences, should be taken into account

for the process of assigning him to clusters. Therefore, such a user should be included in

more than one clusters. This cannot be achieved by the traditional clustering algorithms,

which place each user/item in exactly one cluster.

To include a user in more than one clusters, we allow a degree of overlap between

biclusters. Thus, if a user presents different item preferences, by using overlapping bicl-

usters, he can be included in more clusters in order to cover all his different preferences.

Several biclustering algorithms have been proposed in the literature, each of which has

strengths and weaknesses depending on different scenarios. For this reason, we try two

different approaches and choose an algorithm that delivers the best results for purposes of

CF. Two main bicluster classes have been proposed: (a) biclusters with constant values and

(b) biclusters with coherent values. The first category looks for subsets of rows and subsets

of columns with constant values, while the second is interested for biclusters with coherent

values. In this paper, we examine the effectiveness and efficiency of both schemes. The

contributions of this paper are summarized as follows:

• We introduce the application of two classes of biclustering algorithms (one with

constant and one with coherent values) for the purposes of CF. These algorithms

perform simultaneous clustering of users and items to provide more accurate

recommendations. In contrast to previous related work (George and Merugu 2005),

that used biclusters only to improve the scalability of CF, we follow an entirely

different approach and aim to additionally improve the accuracy of CF.

• We propose a novel nearest-biclusters algorithm, which uses a new similarity measure

that achieves partial matching of users’ preferences.

• We compare the impact of two different bicluster algorithms.

• Our extensive experimental results in three real-life data sets illustrate the effectiveness

and efficiency of the proposed algorithm over existing state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 summarizes the related work,

whereas Sect. 3 contains the analysis of the CF issues. The proposed approach is

described in Sect. 4. Experimental results are given in Sect. 5. Finally, Sect. 6 concludes

this paper.
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2 Related work

Collaborative Filtering (CF) is based on common users preferences. In 1994, the Group-

Lens system (Resnick et al. 1994) proposed an CF algorithm, known as user-based (UB)

CF, because it employs users’ similarities for the formation of the neighborhood of nearest

users. Since then, many improvements of user-based algorithm have been suggested, e.g.

(Breese et al. 1998; Herlocker et al. 1999; Mobasher et al. 2001). Herlocker et al. (2002)

proposed the latest variation, by weighting the significance of nearest neighbors based on

the number of common ratings between them and the target user. According to Signifi-

cance Weighting (SW), if variable sim denotes the similarity between two users, then it can

be weighted based on a c parameter, which is a threshold for the required number of co-

rated items between the two users. The similarity sim between the two users is multiplied

with a weighting factor
maxðc;cÞ

c ; where c is the number of co-rated items. In 2001, another

CF algorithm was proposed. It is based on the items’ similarities for a neighborhood

generation (Sarwar et al. 2001; Karypis 2001; Deshpande and Karypis 2004). This

approach is known as item-based CF algorithm, because it employs items’ similarities for

the formation of the neighborhood of nearest users. Additionally, Lemire and Maclachlan

(Lemire and Maclachlan 2005) proposed three related slope one schemes with predictors of

the form f(x) = x + b, which precompute the average difference between the ratings of

one item and another for users who rated both. Finally, Wang et al. (2006) proposed the

Similarity Fusion (SF) between the UB and IB methods, using also data from a third source

(ratings of other similar users on other similar items). In particular, the final rating pre-

dictions are estimated by fusing predictions from three sources: (i) predictions based on

UB, (ii) predictions based on IB and, (iii) predictions based on data from similar users

rating other similar items.

Compared with memory-based algorithms, the basic idea of model-based algorithms is

to cluster items or training users into classes explicitly, and predict ratings of a test user by

using the ratings of classes that fit best with the test user (Breese et al. 1998; Hofmann

2004; Jin et al. 2006). Several different probabilistic models have been proposed. Hofmann

(2004) proposed a statistical modeling technique that introduces latent class variables to

discover user communities and prototypical interest profiles. Jin et al. (2006) compared

five different probabilistic mixtures models. They claimed that the Decoupled Model (DM)

outperforms the other models, because it satisfies all three desired properties for a mixture

model: (i) separate clustering of users and items (ii) flexibility for a user/item to be in

multiple clusters and, (iii) decoupling of user preferences from its rating patterns. There are

also other model-based algorithms which are based on pure cluster-based methods. For

instance, Kohrs and Merialdo (1998) proposed clustering methods for CF. Xue et al.

(2005) proposed scalable CF using cluster-based smoothing. Once clusters are created,

predictions for a test user can be made by averaging the opinions of the other users in the

cluster that he participates. Some clustering techniques represent each user with partial

participation in several clusters. The prediction is then an average across the clusters,

weighted by the degree of participation (Xue et al. 2005). In contrast, traditional clustering

approaches such as k-means and hierarchical clustering put each user in exactly one

cluster.

In contrast to CF algorithms, CBF assumes that each user operates independently. As

a result, CBF exploits solely information derived from document or item features (e.g.,

terms or attributes). There have been several attempts to combine CBF with CF. The
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Fab System (Balabanovic and Shoham 1997), measures similarity between users after

first computing a profile for each user. This process reverses the CinemaScreen System

(Salter and Antonopoulos 2006) which runs CBF on the results of CF. Melville et al.

(2002) used a bayesian content-based predictor to enhance existing user data, and then

to provide personalized suggestions though collaborative filtering. In this paper, we

focus on the CF systems and the information derived solely from the user-item ratings

matrix.

The concept of biclustering has been used in (Mirkin1996) to perform grouping in a

matrix by using both rows and columns. However, biclustering has been used previously

in (Hartigan 1972) under the name direct clustering. Recently, biclustering (also known

as co-clustering, two-sided clustering, two-way clustering) has been exploited by many

researchers in diverse scientific fields, towards the discovery of useful knowledge (Cheng

and Church 2000; Dhillon 2001; Dhillon and Mallela 2003; Long et al. 2005; Murali and

Kasif 2003). One of these fields is bioinformatics, and more specifically, microarray data

analysis. The results of each microarray experiment are represented as a data matrix,

with different samples as rows and different genes as columns. Among the proposed

biclustering algorithms we highlight the following: (i) Cheng and Church’s algorithm

(Cheng and Church 2000) which is based on a mean squared residue score, (ii) the

Bimax algorithm, an exact biclustering algorithm based on a divide-and-conquer strat-

egy, that is capable of finding all maximal bicliques in a corresponding graph-based

matrix representation (Prelic et al. 2006), and (iii) the xMOtif algorihm, an iterative

search method which seeks biclusters by extracting conserved gene expression motifs

from gene expression data (Murali and Kasif 2003). Finally, Shafiei and Milios (2005)

proposed a co-clustering model able to find co-clusters in an input-data matrix, where

some data points could belong to more than one bicluster. This approach does not focus

on recommender systems and CF in particular, thus can be treated as a model for

creating bi-clusters.

In the CF area, Madeira and Oliveira (2004) have reported in their survey, the existence

of works that have used two-sided clustering. In these models (Ungar and Foster 1998;

Hofmann and Puzicha 1999), there is a hidden variable for each user and item, respec-

tively, that represents the cluster of that user or item. For each user-item pair, there is a

variable that denotes their relation. The existence of the relation depends on the cluster of

the person, and the cluster of item, hence the notion of two-sided clustering. These are

latent class models using statistical estimation of the model parameters and clustering is

performed separately for users and items. Finally, George and Merugy (2005) used co-

clustering in CF to build an efficient real-time CF framework. In particular, they proposed

a method for incremental update of the biclusters as new users and new ratings are being

continuously updated. As they claimed, their algorithm achieves the same accuracy as the

other CF algorithms. In contrast, our approach is based on the application of specific

biclustering algorithms2 that perform simultaneous clustering of users and items to provide

more accurate recommendations. We test our method, with other state-of-the-art algo-

rithms (Herlocker and Shoham 2002; Wang et al. 2006; Jin et al. 2006). The experimental

results demonstrate that our algorithm outperforms significantly the other methods in terms

of accuracy.

2 For implementation issues, we use the Bimax and xMotif biclustering algorithms, however any other
algorithm can be used equally well, as our approach is independent of the specific biclustering algorithm that
is used.

Inf Retrieval (2008) 11:51–75 55

123



3 Examined issues

In this section, we provide details for the issues we examine about CF algorithms and

simple clustering. Table 1 summarizes the symbols that are used in the sequel.

Scalability: Scalability is important, because in real-world applications the number of

users/items is very large. As the number of users/items grows, CF algorithms face per-

formance problems. There are many model-based approaches that have been used to

confront this scalability problem. These approaches first create a model of users’ ratings.

hierarchical clustering or k-means are examples of traditional clustering algorithms, which

have been extensively used to create clusters of items or users. CF algorithms should be

evaluated in terms of their responding time in providing recommendations.

Similarity measure: The most extensively used similarity measures are based on cor-

relation and cosine-similarity (Herlocker et al. 2002; McLauglin and Oliveria 2004; Breese

et al. 1998; Sarwar et al. 2001). Specifically, user-based CF algorithms mainly use Pear-

son’s Correlation (Eq. 1), whereas for item-based CF algorithms, the Adjusted Cosine

Measure is preferred (Eq. 2). The Adjusted Cosine Measure is a variation of the simple

cosine formula, that normalizes bias from subjective ratings of different users. As default

options, for user-based CF we use the Pearson Correlation (McLauglin and Oliveria 2004),

whereas for item-based we use the Adjusted Cosine Similarity (Sarwar et al. 2001),

because they presented the best behavior overall.

Table 1 Symbols and
definitions

Symbol Definition

k Number of nearest neighbors or biclusters

N Size of recommendation list

Ps Threshold for positive ratings

I Domain of all items

U Domain of all users

u, v Some users

i, j Some items

Iu Set of items rated by user u

Ui Set of users who rated item i

ru, i The rating of user u on item i

ru Mean rating value for user u

ri Mean rating value for item i

n Minimum allowed number of users in a bicluster

m Minimum allowed number of items in a bicluster

B Set of all biclusters

b A bicluster

Ib Set of items of bicluster b

Ub Set of users of bicluster b

t Total number of created biclusters

ns Number of users which act as seeds

nu Maximum number of users which can be
selected for each seed

ni Maximum number of items which can be
selected for each seed

p-Value Percentage of a bicluster’s homogeneity
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simðu; vÞ ¼

X

8i2S

ðru;i � ruÞðrv;i � rvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

8i2S

ðru;i � ruÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

8i2S

ðrv;i � rvÞ2
r ; S ¼ Iu \ Iv: ð1Þ

simði; jÞ ¼

X

8u2T

ðru;i � ruÞðru;j � ruÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

8u2Ui

ðru;i � ruÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

8u2Uj

ðru;j � ruÞ2
s ; T ¼ Ui \ Uj: ð2Þ

Neighborhood size: The number, k, of nearest neighbors used for the neighborhood

formation is important, because it can affect substantially the system’s accuracy. In most

related works (Herlocker et al. 1999; Sarwar et al. 2000, 2001; Breese et al. 1998), k has

been examined in the range of values between 10 and 100. The optimum k depends on the

data characteristics (e.g., sparsity). Therefore, CF algorithms should be evaluated against

varying k, in order to tune it.

Positive rating threshold: Recommendation for a test user is performed by generating

the top-N list of items that appear most frequently in his formed neighborhood (this

method is denoted as Most-Frequent item-recommendation). Nevertheless, it is evident

that recommendations should be ‘‘positive’’, as it is not success to recommend an item

that will be rated with, e.g., 1 in 1–5 scale. Thus, ‘‘negatively’’ rated items should not

contribute to the increase of accuracy. We use a rating-threshold, Ps, to recommended

items whose rating is not less than this value. If we do not use a Ps value, then the

results become misleading.

Training/Test data size: There is a clear dependence between the training set’s size and

the accuracy of CF algorithms (Sarwar et al. 2001, 2000). Through our experimental study

we verified this conclusion. Though most related research uses a size around 80%, there

exist works that use significantly smaller sizes (McLauglin and Oliveria 2004). Therefore,

CF algorithms should be evaluated against varying training data sizes.

Recommendation list’s size: The size, N, of the recommendation list poses a tradeoff:

With increasing N, the absolute number of relevant items (i.e., recall) is expected to

increase, but their ratio to the total size of the recommendation list (i.e., precision) is

expected to decrease. (Recall and precision metrics are detailed in the following.) In

related work (Karypis 2001; Sarwar et al. 2001), N usually takes values between 10 and 50.

Evaluation Metrics: Our performance study is mainly focused on widely accepted

metrics from information retrieval. For a test user that receives a top-N recommendation

list, let R denote the number of relevant recommended items (the items of the top-N list that

are rated higher than Ps by the test user). We define the following:

• Precision is the ratio of R to N.

• Recall is the ratio of R to the total number of relevant items for the test user (all items

rated higher than Ps by him).

Notice that with the previous definitions, when an item in the top-N list is not rated at all

by the test user, we consider it as irrelevant and it counts negatively to precision (as we

divide by N). Moreover, this precision metric (where non-rated items counted as non

relevant) is also proposed by (McLauglin and Oliveria 2004) denoted as modified preci-

sion. In the following we also use F1, because it combines both the previous metrics:
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F1 ¼ 2 � recall � precision=ðrecallþ precisionÞ:

F1 is used because precision and recall follow a reverse behavior with respect to the size of

the top-N list. By increasing N, recall increases but precision decreases, and vise versa.

Therefore, F1 considers both of them at the same time.

On the other hand, several other metrics have been used for the evaluation of CF

algorithms, for instance the Mean Absolute Error (MAE) or the Receiving Operating

Characteristic (ROC) curve (Herlocker et al. 2002, 2004). In order to compare our work

with other algorithms, we also include experiments with MAE, which represents the

absolute differences between the real and the predicted values. In particular, MAE mea-

sures, for all test users ut, the average absolute deviation of predictions between their actual

ratings rut ;i and the predicted ratings r̂ut ;i: The definition of MAE is given in Eq. 3:

MAE ¼
P

ut ;i
jrut ;i � r̂ut ;ij

L
; ð3Þ

where L denotes the total number of examined ratings.

From our experimental study (Sect. 5) we understood that MAE is able to characterize

the accuracy of prediction, but is not indicative for the accuracy of recommendation. Since

in real-world recommender systems the experience of users mainly depends on the

accuracy of recommendation, MAE may not be the preferred measure.

4 Nearest-biclusters approach

4.1 Outline of the proposed approach

Our approach consists of three stages.

• Stage 1: the data preprocessing/discretization step (optional).

• Stage 2: the biclustering process.

• Stage 3: the nearest-biclusters algorithm.

The proposed approach, initially, applies a data preprocessing/discretization step, which

is optional. The motivation is to preserve only the positive ratings. Consequently, we

proceed to the biclustering process, where we create groups consisting of users and items in

a single-step. Finally, we implement the k nearest-biclusters algorithm. We calculate

similarity between each test user and the generated bicluster. Thus, we create the test users’

neighborhood, consisted of the k nearest biclusters. Then, we provide for each test user a

top-N recommendation list based on the most frequent items in his neighborhood.

To ease the discussion, we will use the running example illustrated in Fig. 1, where I1–7

are items and U1– 9 are users. As shown, the example data set is divided into training and

test set. The null cells (no rating) are presented with dash.

4.2 Data preprocessing/discretization step

In our approach so far, we assume that all users express their rating behavior similarly on a

common scale. However, it is known that different users may associate subjectively dif-

ferent preferences with specific ratings. For instance, a 4 in a rating scale (Balabanovic and
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Shoham1997; Barkow et al. 2006; Breese et al. 1998; Cheng and Church 2000; Deshpande

and Karypis 2004) may mean different things for different people. Similarly, some items

may get higher ratings than their real value, because they have been rated by users with

positive intent. In memory-based methods, this is taken into account in the similarity

measures, such as Pearson Coefficient in UB CF (Herlocker et al. 1999) and Adjusted

Cosine Similarity in IB CF (Sarwar et al. 2001). Particularly, in Eqs. 1 and 2, this is taken

into account by subtracting the mean rating value for each user/item, respectively. To

attain the same result in our approach, similarly to (Wang et al. 2006), we normalize the

user-item rating matrix as follows: for each rating of a user, we subtract the user’s mean

rating value. (In our running example, this preprocessing step is presumed.)

According to the positive rating threshold, introduced in Sect. 3, recommendations

should be ‘‘positive’’, as it is meaningless to recommend an item that will be rated with,

e.g., 1 in 1–5 scale. Thus, ‘‘negatively’’ rated items should not contribute to the increase of

accuracy. This is the reason that we are interested only in positive ratings, as shown in

Fig. 2.

Furthermore, as biclustering groups items and users simultaneously, it allows to identify

sets of users sharing common preferences across subsets of items. In our approach, the

main goal is to find subsets of users that have rated positively (above Ps rating threshold)

(a)

(b)

Fig. 1 Running example: (a)
training set; (b) test set

Fig. 2 Training set with rating
values C Ps
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items. Therefore, the problem can be discretized to binary values by setting as discreti-

zation threshold the Ps rating threshold. The discretized data are shown in Fig. 3.

Discretization of data is optional and can be omitted, in case we use a biclustering

algorithm which discovers biclusters with coherent values on both users and items. In our

case, as it is shown in the next section, we use Bimax algorithm which finds clusters with

constant values and the discretization step is required, and we also use xMotif algorithm,

which finds biclusters based on coherent values, and this step can be omitted.

4.3 The biclustering process

The biclustering process on a data matrix involves the determination of a set of clusters

taking into account both rows and columns. Each bicluster is defined on a subset of rows

and a subset of columns. Moreover, two biclusters may overlap, which means that several

rows or columns of the matrix may participate in multiple biclusters. Another important

characteristic of biclusters is that each bicluster should be maximal, i.e., it should not be

fully contained in another determined bicluster.

For the biclustering step, we have adopted two different algorithms as representatives of

the main two bicluster classes that have been proposed: (a) biclusters with constant values

and (b) biclusters with coherent values. The first category looks for subsets of rows and

subsets of columns with constant values, while the second is interested for biclusters with

coherent values.

The first algorithm is a simple binary inclusion-maximal biclustering algorithm denoted

as Bimax (Prelic et al. 2006). It is an exact biclustering algorithm based on a divide-and-

conquer strategy that is capable of finding all maximal biclusters in a corresponding graph-

based matrix representation.

The second algorithm is the xMotif algorihm, an iterative search method which seeks

biclusters by extracting conserved gene expression xMotifs from gene expression data

[Murali and Kasif 2003]. An xMotif is a conserved gene expression motif followed from a

subset of genes that is simultaneously conserved across a subset of samples.

According to (Prelic et al. 2006), the run-time complexity of Bimax is O(nmb), where n
is the number of users, m is the number of items, and b is the number of the resulting

biclusters. Also, according to (Murali and Kasif 2003], for xMotif, the run-time complexity

to identify the largest motif, is O(nmO(log(1/a) log(1/b))), where a and b are users parameters

in the range [0, 1] that conserve the size of motif. For more information, see the original

papers (Prelic et al. 2006; Murali and Kasif 2003). However, have in mind that in our

Fig. 3 Binary discretization of
the training set

60 Inf Retrieval (2008) 11:51–75

123



method, both algorithms are executed off-line. Thus, these run-time complexities are

adequate.

4.3.1 The Bimax algorithm

For the Bimax algorithm, a bicluster b(Ub, Ib) corresponds to a subset of users Ub � U that

jointly present positively rating behavior across a subset of items Ib � I : In other words,

the pair (Ub, Ib) defines a submatrix for which all elements equal to 1.

The main goal of the Bimax algorithm is to find all biclusters that are inclusion-
maximal, i.e., that are not entirely contained in any other bicluster. The required input to

Bimax is the minimum number of users and the minimum number of items in a bicluster. It

is obvious that the Bimax algorithm finds a large number of overlapping biclusters. To

avoid this we can perform a secondary filtering procedure to reduce this number to the

desired overlapping degree. In particular, a criterion to remove overlap is to maintain each

time those biclusters that are larger in size, by giving also a percentage of the desired

overlap.

In Fig. 4, we have applied the Bimax algorithm to the running example. Four biclusters

are found (depicted with dashed rectangles), with minimum number of users equal to 2

(i.e., |Ub| C 2) and the minimum number of items equal to 2 (i.e., |Ib| C 2). These bilcusters

are summarized as follows:

b1 : Ub1
¼ fU3;U6g; Ib1

¼ fI1; I7g
b2 : Ub2

¼ fU5;U7;U2g; Ib2
¼ fI5; I3g

b3 : Ub3
¼ fU2;U8g; Ib3

¼ fI6; I5g
b4 : Ub4

¼ fU8;U4g; Ib4
¼ fI4; I2; I6g

Notice that there is overlap between biclusters, specifically between biclusters 2 and 3 in

item I5. Also, we have an overlap between biclusters 3 and 4 in item I6. We can allow this

overlapping (it reaches 16, 6%) or we can forbid it. If we forbid it, then we will abolish the

existence of the third bicluster because it is smaller than the other two. In order not to miss

important biclusters, we allow overlapping. However, overlapping introduces a trade-off:

(a) with few biclusters the effectiveness reduces, as several biclusters may be missed; (b)

with a high number of biclusters efficiency reduces; as we have to examine many possible

matchings. In our experimental results we show the tuning of the allowed overlapping

factor.

I4 I2 I6 I5 I3 I1 I7

U3 0 0 0 0 0 1 1 

U6 0 0 0 0 0 1 1 

U5 0 0 0 1 1 0 0 

U7 0 0 0 1 1 0 0 

U2 0 0 1 1 1 0 0 

U8 1 1 1 1 0 0 0 

U4 1 1 1 0 0 0 0 

U1 0 0 0 0 0 1 0 

Fig. 4 Applying the Bimax
algorithm to the training set
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4.3.2 The xMotif algorithm

For the xMotif algorithm, given a set of users whose ratings are across a set of items and

the user-defined parameters 0 \ a, b \ 1, a bicluster b(Ub, Ib) corresponds to a subset of

users Ub � U that jointly present coherent rating behavior across a subset of items Ib � I ;
which also satisfies the following conditions:

• Size: the number of users in Ub is at least an

• a-fraction of all the number of users,

• Conservation: every item in Ib is conserved across all the users in Ub, i.e., the item is in

the same state in all the users in Ub, and

• Maximality: for every item not in Ib, the item is conserved in at most a b-fraction of the

users in Ub.

The maximality condition enforces a balance between the number of items in the motif

and the number of users matching the motif. If we add a extra item to the motif, then the

number of users matching the new motif will decrease by a fraction of at least b, a cost we

may not be willing to pay. Given this definition, the user-item data matrix may contain

many xmotifs. We can allow a user or item to appear in more than one motif, modelling the

possibility that the user may have different preferences or an item can belong in many

genres. In Fig. 5, we have applied the xMotif algorithm to the running example (without

the data discretization stage). There are four biclusters consisting of at least of 2 users and

2 items.

These bilcusters are summarized as follows:

b1 : Ub1
¼ fU3;U6;U1g; Ib1

¼ fI1; I7g
b2 : Ub2

¼ fU5;U7;U2;U8g; Ib2
¼ fI5; I3g

b3 : Ub3
¼ fU2;U8g; Ib3

¼ fI6; I5; I3g
b4 : Ub4

¼ fU8;U4g; Ib4
¼ fI4; I2; I6; I5g

The xMotif algorithm permits the generation of xMotifs (biclusters) which can embody

users or items in a more flexible and complete way. Firstly, it finds biclusters with coherent

values. Secondly, in contrast to Bimax, which defines a submatrix for which all elements

are equal to 1 (above the Ps threshold), xMotif algorithm allows a user or item to be

included in a bicluster, even if there exists a fraction of ratings which cannot not be defined

as interesting ones (ratings under the Ps threshold or null values). The aforementioned

characteristic is controlled by a p-value parameter which is user-defined. This p-value

Fig. 5 Applying the xMotif
algorithm to the training set
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parameter defines how a range of the expression values of a bicluster is statistically

significant (Murali and Kasif 2003). Thus, through the p-value parameter we can control

the generation of biclusters which are homogeneous or biclusters with more diversity. The

required input for the xMotif algorithm is an initial ns number of users which will act as

seeds for the biclusters. For each randomly selected seed, we select nu sets of users with ni

number of items. This means that the number of biclusters is defined as an input parameter

(ns * nu).

Finally, as it is shown in Fig. 5, there is overlapping between biclusters. We can again

allow this overlapping or we can forbid it as in the Bimax case. We have to mention that

the xMotif algorithm does not create inclusion-maximal biclusters. But this can be avoided

also through the tuning of the allowed overlapping factor.

4.4 The nearest-biclusters algorithm

In order to provide recommendations, we have to find the biclusters containing users with

preferences that have strong partial similarity with the test user. This stage is executed on-

line and consists of two basic operations:

• The formation of test users’ neighborhood, i.e., to find the k nearest biclusters.

• The generation of the top-N recommendation list.

To find the k nearest biclusters, we measure the similarity of the test user against each of

the biclusters. The central difference with past work is that we are interested for the

similarity of test user and a bicluster only on the items that are included in the bicluster and

not on all items that he has rated positively (above Pt threshold).3 As described, this allows

for the detection of partial similarities. The similarity between a test user u and each

bicluster b is calculated as given by Eq. 4:

simðu; bÞ ¼ jIu

T
Ibj

jIbj
ð4Þ

It is obvious that similarity values range between [0, 1].

In the next phase, we proceed to the generation of the top-N recommendation list. For

this purpose, we have to find the appearance frequency of each item and recommend the N
most frequent ones. In Eq. 5, we define as Weighted Frequency (WF) of an item i in a

bicluster b, the product between |Ub| and the similarity sim(u, b). This way, we weight the

contribution of each bicluster with its size in addition to its similarity with the test user:

WFði; bÞ ¼ simðu; bÞ�jUbj ð5Þ
Finally, we apply the Most Frequent Item Recommendation (proposing those items that

appear most frequently in the test user’s formed neighborhood). Thus, we add the item

weighted frequencies, we sort them, and propose the top-N items in the constructed list,

which is customized to each test user preferences.

In our running example, for the Bimax case, assume that we keep all four biclusters

(allow overlapping) and we are interested for 2 nearest biclusters (k = 2). As it is shown,

U9 has rated positively only two items (I1, I3). So, his similarity with each of the biclusters

is (0.5, 0.5, 0, 0), respectively. Thus, test user’s nearest neighbors come from the first two

3 In future work we plan to investigate the role of negatively rated items.
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biclusters, and the recommended items for him will be items I7 and I5. For the xMotif

algorithm, taking into account the aforementioned assumptions, the similarity of U9 with

each of the biclusters is 0.5, 0.5, 0.33, 0, respectively. As we can see, the similarity values

are different than those resulted by Bimax.

5 Experimental evaluation

In this section, we compare the performance of our nearest-bicluster CF approach, using

the xMotif (denoted as NBCF-X) and Bimax (denoted as NBCF-B) algorithms, against

existing CF algorithms such as user-based algorithm denoted as UB (Breese et al. 1998)

and item-based algorithm denoted as IB (Sarwar et al. 2001). For comparison reasons, we

also used a clustering-based CF representative denoted as CBCF (Xue et al. 2005). All

algorithms were implemented in C++ and their parameters were tuned according to the

original papers. In particular for the generation of biclusters, we used the Biclustering

Analysis Toolbox (BicAT) (Barkow et al. 2006). Our experiments were performed on a

3 GHz Pentium IV, with 1 GB of memory, running Windows XP.

The factors that are treated as parameters, are the following: the neighborhood size

(k, default value 20), the size of the recommendation list (N, default value 20), and the size

of training set (default value 75%). The test set consists of all remaining users, i.e., those

not in the training set. Users in the test set are the basis for measuring the examined metrics

(precision, recall, and F1). Each test user’s ratings have been split into observed items and

held-out items. The ratings of observed items (default is 5) are input for the similarity

measures between the test user and the training users. The held-out items are used for

measuring precision, recall and F1. Each experiment has been repeated 20 times (each time

a different training set is selected at random) and the presented measurements, based on

two-tailed t-test, are statistically significant at the 0.05 level.

We performed experiments with three real-life data sets that have been used as

benchmark in prior work. In particular, we examined the following data sets: (i) the

MovieLens 100 K data set with 100,000 ratings (1–5 scale) assigned by 943 users on 1,682

movies, denoted as 100 K data set, (ii) the Movielens 1 M data set with about 1 million

ratings for 3,592 movies by 6,040 users, denoted 1 M data set and (ii) the EachMovie data

set where we extracted a subset of 2,000 users with ratings (1–6) scale on 1,628 movies

denoted as EachMovie.

For the CBCF algorithm, which is based on k-means algorithm, it is required an input

parameter for specifying the desired number of clusters of users. Thus, CBCF algorithm

evaluated against different desired number of clusters: 250 clusters, 500 cluster, 750

clusters and 1,000 clusters. For the 100 K data set, the best results for F1 metric was with

500 clusters. For the 1 M data set, the input parameter for CBCF was set to 750 clusters,

while for the EachMovie data set was set to 500. Finally, since we have normalized our

data sets by subtracting the user’s mean rating value, Ps is set to 0 for all data sets.

5.1 Sensitivity analysis for NBCF-B

As already discussed in Sect. 4.3.1, the only input to the Bimax algorithm is the minimum

allowed number of users in a bicluster, n, and the minimum allowed number of items in a

bicluster, m. In order to discover the best biclusters (in terms of effectiveness and
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efficiency), it is important to fine-tune these two input variables. For the 100 K data set, we

examine the performance of F1 metric versus different values for n and m.

Figure 6a illustrates F1 for varying n (in this measurement we set m = 10). As n is the

minimum allowed number of users in a bicluster, Fig. 6a also depicts (through the numbers

over the bars) the average numbers of users in a bicluster, which as expected increase with

increasing n. As shown, the best performance is attained for n = 4. In the following, we

keep this as the default value. Nevertheless, notice that performance is, in general, robust

against varying n. In particular, for n B 6 the resulting F1 is high. In contrast, for higher n,

F1 decreases. The reason is that with higher n we result with an inadequate number of

biclusters to provide qualitative recommendations. Thus, small values for n are preferred, a

fact that eases the tuning process. Finally, in Fig. 7, we present F1 for varying n and m
parameters simultaneously to (i) show that there is interaction between parameters n and m,

and (ii) to verify the findings in Fig. 6a and b. Figure 7 shows that the best F1 is attained by

setting n = 4 and m = 10, as we have already found in Fig. 6a and b.

Similarly, we examined F1 for varying m. The results for F1 are depicted in Fig. 6b

(n = 4). As previously, in the same figure we also illustrate the resulting average numbers

of items in a bilcuster. The best performance is attained for m = 10 (henceforth kept as

default value), whereas F1 decreases for higher or lower m values. The reason is as follows:

for very small values of m, there are not enough items in each bicluster to capture the

similarity of users’ preferences (i.e., matching is easily attained), thus the quality of rec-

ommendation decreases; on the other hand, for very large values of m, the number of

discovered biclusters is not adequate to provide recommendations.

In Sect. 4.3, we mentioned that Bimax finds all biclusters that are not entirely contained

in any other bicluster. It is obvious that this characteristic generates overlapping biclusters.

The number of overlapping biclusters can be enormously large. To avoid this, we can

perform a secondary filtering procedure to reduce the number of biclusters with respect to

the desired overlapping degree. In Fig. 8 we can see F1 versus varying overlapping degree

(given as a percentage of common items/users between the biclusters). The figure also

depicts (numbers over the bars) the resulting number of biclusters for each overlapping

degree. With decreasing overlapping degree, F1 decreases too. On the other hand, by

keeping a high level of overlap between the biclusters, we harm efficiency—in terms of

execution time—of the Nearest Biclusters algorithm (for its on-line part). As shown, by

permitting 100% of overlapping, the number of generated biclusters is 85, 723. It is

obvious that this number impacts the efficiency of the recommendation process. The best

combination of effectiveness and efficiency can be attained by having an overlapping equal
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to 30% (results to 611 biclusters), where the resulting F1 is 0.35 (very close to the 100%

overlapping result).

For the 1 M data set, we follow the same tuning procedure and we resulted to the

following values which have the best results in our experiments in terms of F1 measure:

n = 3, m = 6, overlapping = 10%, which result to 2126 biclusters. For the EachMovie

data set, the input parameters are set as follows: n = 7, m = 12, overlapping = 20%,

which resulted to 1,022 biclusters.

5.2 Sensitivity analysis for NBCF-X

In Sect. 4.3 the required input for the xMotif algorithm is an initial ns number of users,

which will act as seeds for the biclusters. For each randomly selected seed, the algorithm

selects nu users with ni number of items in a bicluster. Moreover, the total number of

created biclusters, t is defined as an input parameter (ns * ni). In order to improve our
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recommendations in terms of effectiveness and efficiency, it is important to fine-tune nu

and ni variables. For the 100 K data set, we examine the performance of F1 metric versus

different values for nu. Figure 9a illustrates F1 for varying nu values (in this measurement

we set ns = 10, ni = 100). As shown, the best performance is attained for nu = 4. In the

following, we keep this as the default value. Nevertheless, notice that performance is, in

general, robust against varying nu. Figure 9b illustrates F1 for varying ni values which is

the number of items in a bicluster(in this measurement we set ns = 10, nu = 4). As shown,

the best performance is attained for ni = 100. In the following, we keep this as the default

value.

Moreover, xMotif algorithm allows a user or item to be included in a bicluster, even if,

there exist a fraction of their ratings values which cannot not defined as interesting

ones(ratings under the Ps threshold or null values). Thus, in order to discover the best

biclusters (in terms of effectiveness and efficiency), it is also important to fine-tune the

p-value parameter which controls a bicluster’s homogeneity. So, we examine the perfor-

mance of F1 metric versus different values of the p-value parameter. Figure 10a illustrates

F1 for varying p-values (in this measurement we set ns = 10 and nu = 4 ni = 100). As

shown, the best performance is attained for p-value =0.001 where the average number of

items in biclusters is 21.9. This average has at least 7 items more than the Bimax case. This

is the reason we succeed more diversity in our biclusters. In the following, we keep this as

the default value.

Finally, note that xMotif does not create inclusion-maximal biclusters. This means that

there is extend overlapping between biclusters. Nevertheless, this can be avoided through

the tuning of the allowed overlapping factor. In Fig. 10b we observe F1 versus varying

overlapping degree (given as a percentage of common items between the biclusters). The

figure also depicts (numbers over the bars) the resulting number of biclusters for each

0,2
0,22
0,24
0,26
0,28
0,3
0,32
0,34
0,36
0,38
0,4

3 4 5 6 7
n u

 0.31

 0.35
 0.37

0.33

0.30

F 1

(a)

0,2
0,22
0,24
0,26
0,28
0,3
0,32
0,34
0,36
0,38
0,4

60 80 100 120 140
n i

17.44*
18.32*

21.9*
22.4* 24.9*

*avg. #Items in a bicluster

F
1

(b)

Fig. 9 F1 versus tuning number of (a) users, (b) items

0,2
0,22
0,24
0,26
0,28
0,3
0,32
0,34
0,36
0,38
0,4

0,01 0,001 0,0005 0,0001 0,00001

p-value

71.23*

21.9*

14.7*
12.9*

17.8*

F
1

*avg. #Items in a bicluster
(a)

0,2
0,22
0,24
0,26
0,28
0,3
0,32
0,34
0,36
0,38
0,4
0,42

0% 10% 15% 25% 50% 75% 100%

overlapping

 29569
*

 11585
*

991
*

  75
*

  1682
*

587
*

F
1

 45000
*

*number of biclusters
(b)

Fig. 10 F1 versus tuning number of (a) p-value parameter, (b) overlapping factor

Inf Retrieval (2008) 11:51–75 67

123



overlapping degree. With decreasing overlapping degree, F1 decreases too. On the other

hand, by keeping a high level of overlap between the biclusters, we harm efficiency—in

terms of execution time—of the NBCF-X algorithm (for its on-line part). As shown, by

permitting 15% of overlapping, the number of remaining biclusters is 991. It is obvious

that this number impacts the efficiency of the recommendation process.

For the 1 M data set, we follow the same tuning procedure and we resulted to the

following values which have the best results in our experiments in terms of F1 measure:

ns = 30, nu = 3, ni = 120, p-value = 0.001, overlapping = 5%, which results to 2,690

biclusters. For the EachMovie data set the input parameters are set as follows: ns = 20,

nu = 6, ni = 110, p-value = 0.005, overlapping = 15%, which resulted to 1,356

biclusters.

5.3 Comparative results for effectiveness

We proceed to the comparison of NBCF-B, NBCF-X with the UB, IB and CBCF algo-

rithm. The results for precision and recall versus k for 100 K data set are displayed in

Fig. 11a and b, respectively.

As shown, UB performs worst than IB for small values of k. The performance of the two

algorithms converges to the same value as k increases. The reason is that with a high k, the

resulting neighborhoods for both UB and IB are similar, since they include almost all

items. Thus, the top-N recommendation lists are about the same, as they are formed just by

the most frequent items. In particular, both UB and IB reach an optimum performance for a

specific k. In the examined range of k values, the performance of UB and IB increases with

increasing k and outside this range (not displayed), it stabilizes and never exceeds 40%

precision and 15% recall. Regarding CBCF algorithm, it does not exceed 26% for small

values of k, collapses for big values of k and presents the worst performance.

As expected, biclustering algorithms significantly outperform UB and IB. The difference

in precision is almost 30%, whereas with respect to recall, it exceeds 10% (we refer to the

optimum values resulting from the tuning of k). The reason is that the two Biclustering

algorithms take into account partial matching of preferences between users and the possi-

bility of overlapping between their interests. In contrast, UB and IB are based on individual

users and items, respectively, and do not consider the aforementioned characteristics.

Comparing the two biclustering algorithms, we observe that NBCF-X outperforms

slightly but constantly NBCF-B. The reason is that it includes biclusters with more

diversity in items. The difference is 3% in terms of precision and 2% in terms of recall.
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68 Inf Retrieval (2008) 11:51–75

123



For the 1 M data set, the results for F1 measure versus k are displayed in Fig. 12a.

Evidently, the difference between NBCF-B and NBCF-X increases for the 1 M data set.

The reason is that the number of items is double in relation to 100 K data set and the

sparsity is larger. Therefore, finding compact biclusters using NBCF-B becomes more

difficult. On the other hand, NBCF-X, by exploiting diversity in constructing biclusters

(through the p-value parameter), can overcome smoothly the aforementioned problems.

For the EachMovie data set, the results for F1 measure versus k are displayed in

Fig. 12b. As we can see, the difference between NBCF-B and NBCF-X is decreased but

NBCF-X is always better than NBCF-B. Both approaches outperform all other three

methods. The results for all algorithms are better than 1 M because sparsity of data is

smaller in EachMovie data set.

5.4 Comparative results for efficiency

Regarding efficiency, we measured the wall-clock time for the on-line parts of UB, IB,

NBCF-B, NBCF-X and CBCF algorithms. The on-line parts concern the time it takes to

create a recommendation list, given what is known about a user. Notice that there is an off-

line part for the IB, NBCF-X, NBCF-B and CBCF algorithms, which demands additional

computational time, needed to build the items’ similarity matrix and find the biclusters or

clusters, respectively. However, since these computations are executed off-line, we do not

count them in the recommendation time. The results versus k are presented in Fig. 13. In

particular, we present the average time in milliseconds that takes to provide recommen-

dations to a test user.

As expected, IB requires less time to provide recommendations than UB. The required

time for IB to provide recommendations for a test user is almost stable, whereas the time

for UB increases by increasing k. The reason is that UB finds, firstly, user neighbors in the

neighborhood matrix and then counts presences of items in the user-item matrix. In con-

trast, with IB, the whole task is completed in the item-neighborhood matrix, which is

generated off-line. Thus, in terms of execution time, IB is superior to UB.

In all cases, NBCF-B algorithm needs less time than IB and NBCF-X to provide

recommendations. The reason is that the number of biclusters (611) in our experiment is

less than two numbers: (i) the number of items (1,682) in the similarity matrix of IB, and

(ii) the number of biclusters (991) in the NBCF-X case. NBCF-X is worse than IB, because

the average number of items inside biclusters increases due to diversity. As it is already
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presented in Sect. 5.2, by decreasing the percentages of overlap between biclusters,

accuracy decreases too. On the other hand, by keeping a high level of overlap between

biclusters, we harm efficiency. Thus, to combine effectiveness and efficiency, a pre-

requisite is a fine-tuning of the degree of overlap between biclusters.

Finally, as expected, CBCF algorithm presents the best performance in terms of exe-

cution time. The reasons are the following: (i) there is a small number of created clusters

(750), and (ii) it does not take into account the existence of users. But as we have seen, this

performance is not followed by effective results in terms of accuracy. For 1 M and

EachMovie data sets, our experiments have analogous results for the execution times of the

aforementioned algorithms, confirming the 100 k data set results.

5.5 Examination of additional factors

In this section we examine the impact of additional factors. In our measurements we again

consider UB, IB, NBCF-B, NBCF-X, and the CBCF algorithms.

Recommendation list’s size: We examine the impact of N. The results of our experi-

ments are depicted in Fig. 14a and b.

As expected, by increasing N, recall increases and precision decreases. The best per-

formance of UB and IB corresponds to the worst performance of biclustering algorithms.

The relative differences between the algorithms are coherent with those in our previous
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measurements. In real-life applications, N should be kept low, because it is impractical for

a user to see all recommendations when their number is large.

Training/Test data size: We test the impact of the size of the training set, which is

expressed as percentage of the total data set size. The results for F1 are given in Fig. 15.

As expected, when the training set is small, performance decreases for all algorithms.

Therefore, we should be careful when we evaluate CF algorithms so as to use an ade-

quately large training set. Similarly to the previous measurements, NBCF-X and NBCF-B

are better than IB and UB in all cases. The performance of both UB and IB reaches a peak

around 75%, after which it reduces. It is outstanding that Biclustering algorithms trained

with the 15% of the data set, attain much better F1 than UB and IB, which have been

trained with 75%. Also, we see that above a threshold of the training set size, the increase

in accuracy is less steep. However, the effect of overfitting is less significant compared to

general classification problems. In contrast, low training-set sizes negatively impact

accuracy. Therefore, the fair evaluation of CF algorithms should be based on adequately

large training sets. Regarding the two biclustering algorithms, as expected, NBCF-X

outperforms NBCF-B algorithm in all cases. The reason is that it includes biclusters with

more diversity in items. On the other hand, NBCF-B biclusters are more compact and can

speed up the recommendation process.

For the 1 M and EachMovie data sets, the results for F1 are given in Fig. 16a and b,

respectively. As expected, the relative differences between the algorithms are coherent

with those in our previous measurement. As a result, based on our experiments, we can

claim that a 15% of the training set is adequate to provide accurate results.
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Fig. 15 For the 100 K data set, comparison of F1 versus training set size
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Fig. 16 Comparison of F1 versus training set size for: (a) 1 M data set, (b) EachMovie data set
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5.6 Comparison to other methods

In this Section, we compare NBCF-X (the algorithm that attained the best performance in

previous experiments) against the following state-of-the-art methods:

• Wang et al. (2006) proposed an algorithm based on Similarity Fusion between the UB

and IB methods. This algorithm is denoted as SF.

• Jin et al. (2006) proposed the Decoupled Model. This method is denoted as DM.

• Herlocker et al. (2002) proposed the Significance Weighting, denoted as SW.

The parameters we used to evaluate the performance of SF, DM and SW, are identical

to those reported in the original papers. However, for data sets that were not used in these

papers, we tuned the parameters so as to get the best results for these methods. SF and DM

have focused on predicting ratings, not on recommending a list of top-N items. Their

evaluation has been performed in terms of Mean Absolute Error (MAE), which evaluates

algorithms on a per prediction basis.

Previous research (McLauglin and Herlocher 2004] has clearly indicated that this

measure biases performance results towards algorithms which predict all items well.

However, this does not necessarily hold for the recommendation of top-N items. More

precisely, MAE works well for measuring how accurately the algorithm predicts the rating

of a randomly selected item, but fails to evaluate whether an algorithm will provide a good

user experience (McLauglin and Herlocher 2004). Therefore, Precision/Recall evaluation

techniques, in addition to MAE, are able to better measure the quality of recommendations.

Since, (Wang et al. 2006) and (Jin et al. 2006) lack a method to generate the top-N
recommendation list for SF and DM, respectively, the most reasonable way of generating

the recommendations is as follows: After predicting the ratings for the test user, we rank

the predicted ratings and propose the items with the highest predicted rating.

Correspondingly, in order to measure MAE for NBCF-X and SW, we predict the rating

of test user ut on item i as shown in Eq. 6 (McLauglin and Herlocher 2004). Note that for

the NBCF-X, rv, i is the average rating across the users of the bicluster.

r̂ut ;i ¼ �rut
þ
P

v2U simðut; vÞðrv;i � �rut
ÞP

v2U jsimðut; vÞj
ð6Þ

Initially, we measured MAE for all the examined algorithms for the 100 K Movielens

and EachMovie data sets. The results are summarized in Table 2a and b, respectively. In

these measurements, following (Jin et al. 2006; Wang et al. 2006), MAE is given against

test users with 5 and 10 given items (the set of observed items). By varying the number of

given items we can test the robustness of the prediction procedure.

As shown, DM attains the lowest MAE values. NBCF-X is second best for the 100 K

MovieLens data set, whereas SF is second best for the EachMovie data set. Moreover, as

the number of given items increases (in the tables, from 5 to 10), the differences between

MAE of all algorithms significantly decreases.

Next, we measure precision versus recall for all four algorithms. The results for the

100 K Movielens and EachMovie data sets are depicted in Fig. 17a and b, respectively. For

both data sets, NBCF-X and SW significantly outperform DM and SF, whereas NBCF-X

attains the best performance in all cases. These results are in accordance with the con-

clusions in (McLauglin and Herlocher 2004; Symeonidis et al. 2006): good results on

MAE, like those of DM and SF, cannot fully characterize users’ experience in web-based

recommender systems (such as Amazon, eBay, etc.), which propose a top-N ranked list of
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items to a user. The basic reason is that an error of size e has the same impact on MAE

regardless of where that error places the item in a top-N ranking (McLauglin and Herlocher

2004; Symeonidis et al. 2006). In contrast, results on Precision/Recall can better charac-

terize users’ experience in the aforementioned systems. Therefore, since DM and SF has

been designed with emphasis on optimizing MAE, are outperformed by SW and NBCF-X.

Moreover, compared to SW, the similarity measure of NBCF-X is based on nearest-

biclusters, and thus, being able to detect partial matching of users’ preferences, can provide

accurate recommendations. This is the reason why SW is outperformed by NBCF-X.

6 Conclusions

We proposed the application of two different classes of biclustering algorithms (i) with

constant values (Bimax) and (ii) with coherent values (xMotif) in the CF area, to disclose

the duality between users and items and to capture the range of users’ preferences. In

addition, we propose a novel nearest-biclusters algorithm, which uses a new similarity

measure that achieves partial matching of users’ preferences and allows overlapping

interests.
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Fig. 17 Comparison between NBCF-X, SW, SF and DM algorithms in terms of precision-recall curve for
(a) 100 K data set (b) EachMovie data set

Table 2 Comparison between
NBCF-X, SW, SF and DM
algorithms in terms of MAE for
(a) 100 K Movielens and (b)
EachMovie data sets

A smaller value (bold values)
means a better performance

Algorithms 5 Items given 10 Items given

(a)

DM 0.84 0.79

NBCF-X 0.84 0.83

SW 0.88 0.84

SF 0.89 0.87

(b)

DM 1.05 1.03

SF 1.06 1.04

SW 1.09 1.08

NBCF-X 1.08 1.04
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We performed an extensive experimental comparison of NBCF-B and NBCF-X algo-

rithms against state-of-the-art CF algorithms over three real-life data sets (100 k and 1 M

Movielens data sets and EachMovie). Our experimental results illustrate the effectiveness

and efficiency of the proposed algorithms over the existing CF approaches.

We highlight the following conclusions from our examination:

• Our approach shows significant improvements over existing CF algorithms, in terms of

effectiveness, because it exploits the duality of users and items through biclustering and

partial matching of users’ preferences.

• Our approach shows good improvement over existing nearest neighbor algorithms, in

terms of efficiency. The Nearest-biclusters algorithm needs even less time than IB

approach to provide recommendations.

• In our experiments, we have seen for 3 different data set, that only a 15% of the training

set in our approach is adequate to provide accurate results.

• We introduced a similarity measure for the biclusters’ neighborhood formation and

proposed the Weighted Frequency for the generation of the top-N recommendation list

of items.

• In our experiments, NBCF-X algorithm outperforms slightly the NBCF-B algorithm, in

terms of accurate recommendations. The reason is that it includes biclusters with more

diversity in items. The difference is 3% in terms of precision and 2% in terms of recall.

• Comparing the two biclustering algorithms in terms of efficiency the NBCF-B

algorithm needs less time than NBCF-X to provide recommendations. This is due to the

fact that the biclusters are with smaller average number of items. Thus, they are more

compact and homogeneous.

Summarizing the aforementioned conclusions, we see that, the proposed nearest-bicl-

usters algorithms, by using the partial matching of users’ preferences, achieve better results

in terms of effectiveness and efficiency than the existing CF algorithms. For this reason, in

our future work we will examine our more special classes of biclustering algorithms.

Furthermore, we will examine different similarity measures between a user and a bicluster

and more top-N generation list algorithms by taking also into account the non-positive

ratings. Finally, based on the approach of (George and Merugu 2005) we will consider the

problem of incremental updating the bi-clusters, in order to speed-up the off-line part of

our algorithm.
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