
Skyline Queries: an Introduction

Eleftherios Tiakas
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

Email: tiakas@csd.auth.gr

Apostolos N. Papadopoulos
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

Email: papadopo@csd.auth.gr

Yannis Manolopoulos
Department of Informatics

Aristotle University
54124 Thessaloniki, Greece

Email: manolopo@csd.auth.gr

Abstract—During the two past decades, skyline queries were
used in several multi-criteria decision support applications. Given
a dominance relationship in a dataset, a skyline query returns the
objects that cannot be dominated by any other objects. Skyline
queries were studied extensively in multidimensional spaces, in
subspaces, in metric spaces, in dynamic spaces, in streaming
environments, and in time-series data. Several algorithms were
proposed for skyline query processing, such as window-based,
progressive, distributed, geometric-based, index-based, divide-
and-conquer, and dynamic programming algorithms. Moreover,
several variations were proposed to solve application-specific
problems like k-dominant skylines, top-k dominating queries,
spatial skyline queries, and others. As the number of objects
that are returned in a skyline query may become large, there is
also an extensive study for the cardinality of skyline queries. This
extensive research depicts the importance of skyline queries and
their variations in modern applications.

I. INTRODUCTION

Skyline queries received great attention in the database
community during the past decades. The skyline computation
became crucial to many multi-criteria decision making appli-
cations. A significant number of algorithms were proposed and
studied extensively.

A. Definition

Given a dominance relationship in a dataset, a skyline
query returns the objects that cannot be dominated by any other
objects. In the case of a dataset consisting of multidimensional
objects, an object dominates another object if it is as good
in all dimensions, and better in at least one dimension. The
definition of skyline queries in multidimensional datasets is
identical with the known maximum vector problem [3], [22].
In these early works, skyline computation was an algorithmic
problem in nature, and all data were assumed to reside in
memory. However, nowadays we face big datasets which are
stored in secondary memory. Having the data on disk(s), the
proposed algorithms for skyline query processing are separated
in two categories: index-based algorithms and non-index-based
algorithms.

B. Example

A typical example of a skyline query is when the data
objects are two-dimensional points in the Euclidean plane, and
the preference for each dimension is the minimum. Figure
1 depicts such an example for 16 points with coordinates:
a(1, 12), b(2, 7), c(4, 22), d(5, 14), e(6, 5), f(8, 19), g(9, 9),
h(10, 4), i(12, 13), j(15, 15), k(15, 22), l(16, 6), m(17, 10),

O x

y

skyline

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

Fig. 1. Skyline Example

n(17, 20), o(21, 3), p(22, 14). The skyline query returns the
objects {a, b, e, h, o}.

II. NON-INDEX-BASED ALGORITHMS

A. Block-Nested-Loop (BNL)

A naive algorithm to compute a skyline query is to compare
every object with every other object of the dataset by using a
nested-loop. However, the quadratic complexity O(N2) makes
this algorithm very inefficient (N is the total number of objects
into the dataset).

The Block-Nested-Loop algorithm [4] applies the same
idea, but uses a window (memory block with limited space),
which holds a limited number of data objects. Any candidate
object p is checked if it is dominated by any other object
within the window. If this happens, then p is eliminated. If
p dominates any object of the window then these objects are
eliminated, and p is inserted into the window. Finally, if p is
incomparable with all objects in the window then it is inserted
into the window. In case the window is full, a temporary disk
file is used to hold the candidate objects. BNL algorithm works
well when the skyline result is relatively small; it requires a
predefined limited memory size (the window). The worst case
complexity remains O(N2), however, with a much better I/O
behavior in practice. In addition, variants of BNL have been
proposed in [4], by maintaining the window as a self-organized
list, and by replacing objects in the window to keep the most
dominant set.

Another variation of BNL is the sort-filter-skyline algo-
rithm (SFS) proposed in [8], which is based on a topological

sort with respect to the skyline dominance partial relation. The
pre-sorting step of SFS makes the query processing efficient
and well behaved in a relational setting. A further extension of
SFS, proposed in [2], is the SaLSa algorithm (Sort and Limit
Skyline algorithm), where the number of required domination
checks is significantly reduced.

B. Divide and Conquer (DC)

A divide-and-conquer algorithm for skyline queries pro-
posed in [22], [37]. It computes the median value in a
dimension, and divides the space into two partitions P1, P2.
Then, it computes the skylines S1, S2 of P1, P2, by recursively
dividing P1 and P2. The recursive partitioning stops when
there is only one (or few) objects. The overall skyline is
computed by merging S1 and S2, and eliminating the objects
of S2 which are dominated by any object of S1. The worst case
complexity is: O(N(logN)(d−2)) + O(N logN), where d is
the dimensionality. Variants of DC proposed in [4] for the case
that a partitioning does not fit into the main memory. These
variants are based on an m-way partitioning, where instead of
dividing into two partitions only, the idea is to divide into m
partitions in such a way that every partition fits into memory.

Figure 2 depicts a partitioning of the example of Figure
1 into 4 partitions P11, P12, P21, P22. The partial skylines
are S11 = {b, e, h}, S12 = {a}, S21 = {l, o}, S22 = {i},
respectively. To obtain the final skyline S, we need to remove
the points that are dominated by some point in other partitions.
Obviously all points in the skyline of P11 must appear in the
final skyline, whereas those in P22 are discarded immediately
because they are dominated by any point in P11. The skyline
points in P12 is compared only with points in P11, because
no point in P22 or P21 can dominate those in P12. In this
example, point a is not dominated by b, e, h, thus it is included
in the final skyline S. Similarly, the skyline of P21 is also
compared with points in P11, which results in the removal of
l and the remaining of o. Finally, the algorithm terminates with
the skyline set S = {a, b, e, h, o}.

O x

y

S11

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

S12

S21

S22

P12

P22

P11 P21

Fig. 2. Divide and Conquer algorithm example

Another interesting variation of DC is an optimal algo-
rithm named (DCSkyline) for computing the skyline in 2-
dimensional spaces [28]. It is similar with BBS (presented
below) with additional pruning mechanisms.

C. Bitmap

An algorithm based in bitmap encodings has been proposed
in [39]. Each object is mapped to a m-bit vector, where m
is the sum of the total number of distinct values from each
of d dimensions. More specifically, if ki is the total number
of distinct values on the i-th dimension, then m =

∑d
i=1 ki.

Assume that there are ki distinct values on the i-th dimension
and they are ordered ascending. Then, the ji-th smallest value
is represented by ki bits, where the leftmost ki − ji + 1 bits
are 1 and the remaining bits are 0.

Let us compute the bitmap encodings of our main example
of Figure 1. In the x dimension we have 14 distinct values:
1, 2, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17, 21, 22, whereas
in the y dimension we have also 14 distinct values: 3, 4,
5, 6, 7, 9, 10, 12, 13, 14, 15, 19, 20, 22. Therefore, each
dimension is encoded with 14 bits (total m = 28). Table I
depicts the final encodings. To decide whether a point (x, y)
belongs to the skyline, the algorithm creates two bit-strings
sx, sy by juxtaposing the rightmost corresponding bits (of
the order of x and y in the corresponding dimensions), from
the encodings of every point, and check if there is only one
1 in the result of the bit-string sx&sy . For example, for
point h(10, 4) we must take the 8th rightmost bit from the
x-encodings and the 2nd rightmost bit from the y-encodings.
Thus, sx = 1111111100000000 and sy = 0000000100000010,
which results in sx&sy = 0000000100000000 meaning that
point h is included in the skyline. For the point g(9, 9) we
must take the 7th rightmost bit from the x-encodings and
the 6th rightmost bit from the y-encodings. Therefore, sx =
1111111000000000 and sy = 0100101100010010; thus sx&sy
= 0100101000000000 which means that point g is not member
of the skyline. The same operations are repeated for every point
in the dataset, to obtain the entire skyline.

TABLE I. BITMAP ENCODINGS EXAMPLE

Point Bitmap representation
a(1, 12) (11111111111111, 11111110000000)
b(2, 7) (11111111111110, 11111111110000)
c(4, 22) (11111111111100, 10000000000000)
d(5, 14) (11111111111000, 11111000000000)
e(6, 5) (11111111110000, 11111111111100)
f(8, 19) (11111111100000, 11100000000000)
g(9, 9) (11111111000000, 11111111100000)
h(10, 4) (11111110000000, 11111111111110)
i(12, 13) (11111100000000, 11111100000000)
j(15, 15) (11111000000000, 11110000000000)
k(15, 22) (11111000000000, 10000000000000)
l(16, 6) (11110000000000, 11111111111000)
m(17, 10) (11100000000000, 11111111000000)
n(17, 20) (11100000000000, 11000000000000)
o(21, 3) (11000000000000, 11111111111111)
p(22, 14) (10000000000000, 11111000000000)

III. INDEX-BASED ALGORITHMS

A. Using B-Trees

An algorithm based in B-Trees for two-dimensional data
has been proposed in [4], where the data have two ordered
indices, e.g. a B-Tree or B+-Tree, one for each dimension.
The algorithm computes a superset of the skyline by scanning
simultaneously through both indices and stops as soon as an

x a b c d e f g h i j k l m n o p

 1 2 4 5 6 8 9 10 12 15 15 16 17 17 21 22

y o h e l b g m a i d p j f n c k

 3 4 5 6 7 9 10 12 13 14 14 15 19 20 22 22

Fig. 3. Progressive Skyline Example

object p has been found in both indices. This is the first step
of Fagin’s A0 algorithm in [10]. Any object which has not
been inspected in both indices is definitely not part of the
skyline, because it is dominated by p. Therefore, candidate
objects are those which have been already inspected in at
least one index; these objects are kept in a separate set S (the
superset of the skyline). Finally, any of the previous algorithms
can be executed in S to find the skyline. This algorithm can
be generalized for more than two dimensions, as proposed in
[39]. This algorithm is extended further in [1], [27] to support
progressive query processing in distributed environments, in
particular. The data are retrieved by sorted access only, and
each data source (which can be in a different location in the
web) is invoked in a round-robin fashion. In both studies ([1],
[27]), the same important property of this algorithm (used for
pruning) has been presented and proved: after an object has
been seen in each index (which also is referred as a terminating
object) and all objects with equal values in each list have also
been seen, then all the remaining objects not yet seen cannot
be part of the skyline, as they are dominated by the terminating
object.

Figure 3 depicts that moment for our main example of
Figure 1. The data are organized in two indices, one for
dimension x and one for dimension y. Each index keeps the
object id and its corresponding value. The values are sorted
in ascending order. During the round-robin scan the inspected
objects are inserted in the set S. After 9 value accesses the
object e has been detected in both x and y indices; thus, it is
the terminating object. No more objects have equal values to
6 (which is the last accessed values on x and y). Therefore,
S = {a, b, c, d, e, h, l, o}, and all other objects not yet seen
(f, g, i, j, k,m, n, p) can be discarded (as they are dominated
by e). Then, we check S for dominations: a dominates c, d
and h dominates l; thus, c, d, l are removed from S, and the
final skyline is S = {a, b, e, h, o}.

B. Using R-Trees

A spatial index, e.g. an R-tree, can be used to compute the
skyline, as proposed in [4]. The R-tree involves all dimensions
of the objects, thus it can be used only when all dimensions
are considered into the skyline query. The R-tree is traversed
in a DFS way, whereas branches and regions dominated by
any candidate object are pruned. However, in [4] this idea was
presented as a future work.

1) Nearest Neighbor search: The first complete skyline
algorithm based on a spatial index, e.g. an R-tree, is the NN
skyline algorithm, proposed in [21]. It is called NN due to its
relevance to the nearest neighbor search. It identifies skyline
objects by a repeated NN search using a suitable distance
measure. The algorithm iteratively finds the NN object to the

origin in a given region of space based on any monotonic
distance function, e.g. the Euclidean distance. During the
algorithmic process, entire regions dominated by a candidate
object are discarded, and regions that cannot be discarded are
added to a to-do list for further space partitioning. For example,
when the NN object to the origin is detected (object b in
Figure 4 of our main example of Figure 1), region R3 can
be discarded because all the contained objects are dominated
by b, and regions R1 and R2 are added to the list for further
partitioning. Continuing our example, the NN object to the
origin of R1 is a and is the only object, thus there are not any
objects to discard or any further partitioning. The NN object to
the origin of R2 is e, and by further partitioning we can discard
object l. The region of objects h, o is remaining to the list and
by further partitioning the objects are not discarded. The list
becomes empty and, thus, the algorithm terminates. The final
skyline contains all objects that have not been discarded, i.e.,
S = {a, b, e, h, o}.

O x

y

R2

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

R1 R3

Fig. 4. NN algorithm example

The NN algorithm is further optimized in [21] for online
environments, where the first skyline objects are reported
immediately to the user, and the algorithm produces additional
results continuously, allowing the user to give preferences
during the running time to control the output priority of the
next results.

2) Branch and Bound Skyline algorithm (BBS): Like NN,
the BBS algorithm proposed in [31] is also based on NN
search. It is a progressive algorithm (it reports the skyline
objects progressively), and it is IO efficient. An R-tree is
used for indexing, and now the main distance measure is L1.
A heap structure H is used for the processing, which keeps
node entries or data entries with their corresponding minimum
distance from the origin, and a set S for the skyline objects.

The minimum distance of a node with a minimum bounded
rectangle (MBR) is the sum of the coordinates of its lower-left
corner. Initially H contains all entries of the root of the R-Tree,
and S is empty. While the heap is not empty, the top entry e
of H is removed, and if e is dominated by some object in S
then e is discarded. Otherwise, in case that e is an intermediate
node, each child ei of e is checked if it is dominated or not
by some point in S, and if not then ei is inserted in H . In
case that e is a data node, then any contained object which is
not dominated by some point in S, is also inserted in S. The
algorithm terminates when the heap is empty and the final
skyline S is reported.

O x

y

R

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

N1

N2

N3

N4

Fig. 5. BBS algorithm example

Let us consider our main example of Figure 1. Data points
are organized in a simple R-tree with node capacity 4 as
depicted in Figure 5. The R-tree has only two levels, the root
node R and the data nodes N1, N2, N3, N4. The NN algorithm
starts from the root node R and inserts all of its entries into the
heap H with their corresponding minimum distances, i.e. H =
{(N1,6), (N2,13), (N3,19), (N4,25)}. Initially S = ∅. Node N1

is the top heap object, thus it is expanded and all of its points
are inserted into the heap with their minimum distances (N1

is removed), i.e., H = {(b,9), (e,11), (N2,13), (h,14), (g,18),
(N3,19), (N4,25)}.

Point b is the top heap object, and thus, it is removed from
H and it is inserted in S (S = {b}). Point g and node N4

are also removed from H as they are dominated by b ∈ S;
therefore, H = {(e,11), (N2,13), (h,14), (N3,19)}. Then, point
e is the top heap object, thus it is removed from H and it is
inserted in S (S = {b, e}). Points b, e do not dominate any
remaining heap entry, thus H = {(N2,13), (h,14), (N3,19)}.

Next, node N2 is the top heap object; thus it is expanded
and all of its points are inserted into the heap with their
minimum distances (N2 is removed), i.e., H = {(a,13), (h,14),
(d,19), (N3,19), (c,26), (f ,27)}. Now point a is the top
heap object, thus it is removed from H and inserted in S
(S = {a, b, e}). Points c, d, f are also removed from H as
they are dominated by a ∈ S, thus H = {(h,14), (N3,19)}.
Then, point h is the top heap object, thus it is removed from
H and it is inserted in S (S = {a, b, e, h}).

Points a, b, e, h do not dominate any remaining heap entry,

thus H = {(N3,19)}. Node N3 is the only heap object, thus it
is expanded and all of its points are inserted into the heap with
their minimum distances (N3 is removed), i.e., H = {(l,22),
(o,24), (m,27)}. Points l,m are also removed from H as they
are dominated by h ∈ S, thus H = {(o,24)}. Point o is the
only heap object and it is not dominated by any other object
of S, thus it is removed from H and inserted in S (S =
{a, b, e, h, o}). Finally, the heap H is empty and the algorithm
terminates.

In [29] an R-tree-based algorithm is proposed, which is a
variation of BBS that adopts a DFS technique with a “forward
checking” based on a “region dominance” relation to reduce
space complexity. The algorithm is I/O optimal and requires
a logarithmic space in the worst case in the 2D space if there
are not many overlaps in the R-tree.

IV. SKYLINES IN SUBSPACES AND CONSTRAINED

An important research has been made to answer the
problem that users may be interested for skyline queries in
subspaces of the data. In [35] a framework is proposed which
uses skyline groups and decisive subspaces, to compute the
skyline in any required subspace. Upon this framework an
efficient algorithm is proposed, named SKYEY, which applies
a top-down approach to recursively compute the skyline in
subspaces. Pre-sorting strategies and multidimensional roll-up
and drill-down analysis reduce the set of objects to be searched.
A similar approach, the SKYCUBE, is proposed in [36], [50],
which is the union of the skylines of all possible non-empty
subsets of a given set of dimensions. Several computation
sharing strategies are used, based on effectively identifying
the computation dependencies among multiple related skyline
queries. Bottom-Up and Top-Down algorithms are proposed to
compute the SKYCUBE efficiently.

A different approach, the SUBSKY, is proposed in [41],
[42], which also addresses the subspace skyline retrieval.
This method transforms the multidimensional data into one-
dimensional, and therefore permits indexing the dataset with
a single B-tree, which can be implemented in any relational
database. Moreover, the proposed method becomes more effi-
cient by using several effective pruning heuristics.

In [49] the problem of updating the skycube in a dynamic
environment with frequent updates is examined. To balance
the query cost and update cost, a structure is proposed, the
compressed skycube, which concisely represents the complete
skycube. Efficient compressed skyline cube computation is
presented in [33] by developing a fast algorithm STELLAR
which computes skyline groups and decisive subspaces without
searching all subspaces for skylines. STELLAR computes the
full space skyline only and use the skyline to shape multi-
dimensional skyline groups and their decisive subspaces, thus
avoids searching for subspace skylines in all proper subspaces.

[17] examined the problem of optimizing multiple subspace
skyline queries in multi-user environments. An efficient cell-
dominance computation algorithm is proposed, the CDCA
algorithm, for processing arbitrary single subspace skyline
query. Then, another algorithm is proposed, the AOMSSQ
algorithm, which is based on CDCA to synthetically optimize
multiple subspace skyline queries.

In [19] methods are proposed for answering subspace
skyline query on high dimensional data. The query processing
involves mostly simple pruning operations, whereas skyline
computation is performed only on a small subset of candidate
skyline objects in the subspace.

Constrained Subspace Skyline Queries are studied in [9].
This class of queries can be thought of as a generalization of
subspace skyline queries using range constraints. To address
this problem the algorithm STA is proposed, which exploits
multiple indexes. STA uses different pruning strategies to
identify dominated regions and to discard irrelevant sub-trees
of the indexes.

V. DISTRIBUTED AND PARALLEL TECHNIQUES

The algorithms of [1], [27], which have already been
presented in the index-based algorithms section, can efficiently
perform skyline queries in distributed environments. Another
study that addresses the problem of parallelizing skyline query
execution over a large number of machines by leveraging
content-based data partitioning, is presented in [48]. The pro-
posed distributed skyline query processing algorithm, named
DSL, discovers the skyline objects progressively.

Skyline query processing on Peer-to-Peer (P2P) networks
is studied in [46]. A method named SSP is proposed which
partitions and numbers the data space among the peer nodes
such that the target subspace (region) number can be derived
with good accuracy to control the peers accessed and search
messages during skyline query processing. A generalization
of the SSP method is the SKYFRAME method presented in
[47], which performs skyline processing without the need to
determine the starting peer.

A study on efficiently processing skyline queries in large-
scale P2P systems, where it is nearly impossible to guarantee
complete and exact query answers without exhaustive search,
is presented in [13]. Approximate algorithms with probabilistic
guarantees are proposed to reduce the number of queried peers.
Another similar approach is proposed in [23] where approxi-
mate algorithms are proposed to support skyline queries where
exact answers are too costly to obtain. The proposed algorithms
produce high quality answers using heuristics based on local
semantics of peer nodes. A detailed survey also for skyline
processing in highly distributed environments is presented in
[14].

In [44], [45] a threshold based algorithm for efficient
subspace skyline processing in a P2P environment is proposed,
called SKYPEER, which forwards the skyline query requests
among peers, in such a way that the amount of transferred data
is significantly reduced.

Skyline query processing in MANETs is studied in [15]
where techniques are proposed to reduce the costs of com-
munication among mobile devices and reduce the execution
time on each single mobile device. Query Processing and
Optimization in Wireless Sensor Networks is studied also
in [24]. The algorithm SKY-SEARCH is proposed which
computes the skyline with the highest existence probability
in a computational and energy-efficient way.

VI. SKYLINES IN DYNAMIC ENVIRONMENTS

Skyline query processing in stream environments studied
also extensively. A window-based algorithm for skyline queries
is proposed in [20], which transforms skyline queries into
many different dynamic window queries. Another sliding win-
dow approach is proposed in [25], which applies an effective
pruning technique to minimize the number of elements to be
kept. Sliding Window Skylines on Data Streams are studied
also in [40], where the proposed algorithms continuously mon-
itor the incoming data and maintain the skyline incrementally.

A continuous skyline query involves not only static dimen-
sions but also the dynamic one. In such cases, a useful com-
putation over streaming data sets is to produce a continuous
and valid skyline summary over time. An efficient continuous
time-interval skyline algorithm is proposed in [30]. Another
proposal for skyline queries for moving objects is presented in
[16], where a kinetic-based data structure is applied into the
query processing.

VII. OTHER VARIATIONS

In [5], a metric is proposed, the skyline frequency of
an object, which is the number of subspaces in which it is
a skyline object. Intuitively, an object with a high skyline
frequency is more interesting as it can be dominated on
fewer combinations of the dimensions. An efficient approach is
proposed to compute top-k frequent skylines using that metric.
A similar variation called k-dominant skyline is proposed in
[6] which relaxes the notion of dominance. An object p is said
to k-dominate another point q if there are k ≤ d dimensions in
which p is better than or equal to q and is better in at least one
of these k dimensions. An object that is not k-dominated by
any other objects is in the k-dominant skyline. Three different
algorithms are proposed to solve the k-dominant skyline.

Enumerating queries, proposed in [32], return for each
skyline object p, the number of objects dominated by p.
This information provides some measure of goodness for the
skyline objects. An interesting variation of the problem is the
top k-dominating query, which retrieves the k objects that
dominate the largest number of other objects. A variation of
the BBS algorithm is proposed to answer top-k dominating
queries. Another similar variation proposed in [26] is the k
Most Representative Skyline query, which selects k skyline
objects so that the number of objects, which are dominated
by at least one of these k skyline objects, is maximized. A
dynamic programming exact algorithm, and a scalable index-
based randomized algorithm is proposed to solve this problem.

The thick skylines are proposed in [18], which recommend
not only skyline objects but also their nearby neighbors within
a predefined threshold distance. Two efficient algorithms are
proposed, named Sampling-and-Pruning and Indexing-and-
Estimating, to find such thick skylines. Another interesting
variation of the skyline queries is the Spatial Skyline Queries
(SSQ) which proposed in [38]. They are skylines on spatial
attributes that are derived from the spatial distances between
the set of the data objects and a predefined set of query objects.
Two efficient algorithms, named B2S2 and V S2, are proposed
for SSQ with static query objects and an algorithm, named
V CS2, for SSQ with moving query objects.

VIII. COST ESTIMATION OF SKYLINE QUERIES

In high-dimensional spaces the number of skyline objects
becomes very large. This happens because the probability that
an object dominates another objects becomes very low. More
specifically, there is an “eliminating dimension”, studied in
[43], which is the dimensionality beyond which all domination
values become zero (i.e. and the skyline is equal to the full
dataset). Therefore, in high-dimensional spaces, the estimation
of the skyline cardinality is crucial for query optimization.
Parametric estimations are proposed in [12], [43], while non-
parametric estimation methods are proposed in [7] which use
uniform random sampling.

IX. CONCLUSIONS

In this paper a focused survey is presented for skyline
query processing algorithms that have been proposed during
the last decade. Numerous methods have been studied and
implemented in assorted environments for skyline queries; this
depicts their importance in modern applications. However,
there are also further challenges. For example, to conduct
advanced analysis for skyline queries on uncertain data remains
an open problem at large [34].

REFERENCES

[1] W.T. Balke, U. Gunzer, J.X. Zheng: “Efficient distributed skylining for
web information systems”, EDBT, pp.256-273, 2004.

[2] I. Bartolini, P. Ciaccia, M. Patella: “SaLSa: computing the skyline
without scanning the whole sky”, CIKM, pp.405-414, 2006.

[3] J.L. Bentley, H.T. Kung, M. Schkolnick, C.D. Thompson: “On the
average number of maxima in a set of vectors and applications”, JACM,
Vol.25, No.4, pp.536-543, 1978.

[4] S.Borzonyi, D.Kossmann, K. Stocker: “The skyline operator”, ICDE,
pp.421-430, 2001.

[5] C.Y. Chan, H.V. Jagadish, K.L. Tan, A.K.H. Tung, Z. Zhang: “On high
dimensional skylines”, EDBT, pp.478-495, 2006.

[6] C.Y. Chan, H.V. Jagadish, K.L. Tan, A.K.H. Tung, Z. Zhang: “Finding
k-dominant skylines in high dimensional space”, SIGMOD, pp.513-514,
2006.

[7] S. Chaudhuri, N. Dalvi, R. Kaushik: “Robust cardinality and cost
estimation for the skyline operator”, ICDE, pp.64-73, 2006.

[8] J. Chomicki, P. Godfrey, J. Gryz, D. Liang: “Skyline with presorting”,
ICDE, pp.816-825, 2003.

[9] E. Dellis, A. Vlachou, I. Vladimirskiy, B. Seeger, Y. Theodoridis:
“Constrained subspace skyline computation”, CIKM, pp.415-424, 2006.

[10] R. Fagin: “Combining fuzzy information from multiple systems”,
PODS, pp.216-226, 1996.

[11] D. Fuhry, R. Jin, D. Zhang: “Efficient skyline computation in metric
space”, EDBT, pp.1042-1051, 2009.

[12] P. Godfrey: “Skyline cardinality for relational processing”, FoIKS,
pp.78-97, 2004.

[13] K. Hose, “Processing skyline queries in P2P systems”, VLDB PhD
Workshop, pp.36-40, 2005.

[14] K. Hose, A. Vlachou: “A survey of skyline processing in highly
distributed environments”, VLDB Journal, Vol.21, No.3, pp.359-384,
2012.

[15] Z. Huang, C.S. Jensen, H. Lu, B.C. Ooi: “Skyline queries against mobile
lightweight devices in MANETs”, ICDE, 2006.

[16] Z. Huang, H. Lu, B.C. Ooi, A.K.H. Tung: “Continuous skyline queries
for moving objects”, IEEE TKDE, Vol.18, No.12, pp.1645-1658, 2006.

[17] Z.H. Huang, J.K. Guo, S.L. Sun, W. Wang: “Efficient optimization
of multiple subspace skyline queries”, Journal of Computer Science &
Technology, Vol.23, No.1, pp.103-111, 2008.

[18] W. Jin, J. Han, M. Ester: “Mining thick skylines over large databases”,
PKDD, pp.255-266, 2004.

[19] W. Jin, A.K.H. Tung, M. Ester, J. Han: “On efficient processing of
subspace skyline queries on high dimensional data”, SSDBM, 2007.

[20] Y. Jing, L. Xin, L. Guo-hua: “A window-based algorithm for skyline
queries”, PDCAT, pp.907-909, 2005.

[21] D. Kossmann, F. Ramsak, S. Rost: “Shooting stars in the sky: an online
algorithm for skyline queries”, VLDB, pp.275-286, 2002.

[22] H.T. Kung, F. Luccio, F.P. Preparata: “On finding the maxima of a set
of vectors”, JACM, Vol.22, No.4, pp.469-476, 1975.

[23] H. Li, Q. Tan, W.C. Lee: “Efficient progressive processing of skyline
queries in P2P systems”, Infoscale, 2006.

[24] J. Li, S. Xiong: “Efficient Pr-skyline query processing and optimization
in wireless sensor networks”, Wireless Sensor Network, Vol.2, pp.838-
849, 2010.

[25] X. Lin, Y. Yuan, W. Wang, H. Lu: “Stabbing the sky: efficient skyline
computation over sliding windows”, ICDE, pp.502-513, 2005.

[26] X. Lin, Y. Yuan, Q. Zhang, Y. Zhang: “Selecting stars: the k most
representative skyline operator”, ICDE, pp.86-95, 2007.

[27] E. Lo, K. Yip, K.I. Lin, D. Cheung: “Progressive skylining over web-
accessible database”, DKE, Vol. 57, No.2, pp.122-147, 2006.

[28] H. Lu, Y. Luo, X. Lin: “An optimal divide-conquer algorithm for 2D
skyline queries”, ADBIS, pp.46-60, 2003.

[29] Y. Luo, H.X. Lu, X. Lin: “A scalable and I/O optimal skyline processing
algorithm”, WAIM, pp.218-228, 2004.

[30] M. Morse, J.M. Patel, W.I. Grosky: “Efficient continuous skyline
computation”, ICDE, 2006.

[31] D. Papadias, Y. Tao, G. Fu, B. Seeger: “An optimal and progressive
algorithm for skyline queries”, SIGMOD, pp.443-454, 2003.

[32] D. Papadias, Y. Tao, G. Fu, B. Seeger: “Progressive skyline computation
in database systems”, ACM TODS, Vol.30, No.1, pp.41-82, 2005.

[33] J. Pei, A.W. Fu, X. Lin, H. Wang: “Computing compressed multidi-
mensional skyline cubes efficiently”, ICDE, pp.96-105, 2007.

[34] J. Pei, B. Jiang, X. Lin, Y. Yuan: “Probabilistic skylines on uncertain
data”, VLDB, pp.15-26, 2007.

[35] J. Pei, W. Jin, M. Ester, Y. Tao: “Catching the best views of skyline:
a semantic approach based on decisive subspaces”, VLDB, pp.253-264,
2005.

[36] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao,
J. Yu, Q. Zhang: “Towards multidimensional subspace skyline analysis”,
ACM TODS, Vol.31, No.4, pp.1335-1381, 2006.

[37] F.P. Preparata, M.I. Shamos: “Computational geometry: an introduc-
tion”, Springer-Verlag, New York, Berlin, 1985.

[38] M. Sharifzadeh, C. Shahabi: “The spatial skyline queries”, VLDB,
pp.751-762, 2006.

[39] K. Tan, P. Eng, B. Ooi: “Efficient progressive skyline computation”,
VLDB, pp.301-310, 2001.

[40] Y. Tao, D. Papadias: “Maintaining sliding window skylines on data
streams”, IEEE TKDE, Vol.18, No.3, pp.377-391, 2006.

[41] Y. Tao, X. Xiao, J. Pei, “SUBSKY: efficient computation of skylines in
subspaces”, ICDE, 2006.

[42] Y. Tao, X. Xiao, J. Pei: “Efficient skyline and top-k retrieval in
subspaces”, IEEE TKDE, Vol.19, No.8, pp.1072-1088, 2007.

[43] E. Tiakas, A.N. Papadopoulos, Y. Manolopoulos: “On estimating the
maximum domination value and the skyline cardinality of multidimen-
sional data sets”, IJ of Knowledge-based Organizations, Vol.3, No.4,
pp.61-83, 2013.

[44] A. Vlachou, C. Doulkeridis, Y. Kotidis, M. Vazirgiannis: “SKYPEER:
efficient subspace skyline computation over distributed data”, ICDE,
pp.416-425, 2007.

[45] A. Vlachou, C. Doulkeridis, Y. Kotidis, M. Vazirgiannis: “Efficient
routing of subspace skyline queries over highly distributed data”, IEEE
TKDE, Vol.22, No.12, 1694-1708, 2010.

[46] S. Wang, B. Ooi, A. Tung, L. Xu: “Efficient skyline query processing
on P2P networks”, ICDE, pp.1126-1135, 2007.

[47] S. Wang, Q.H. Vu, B.C. Ooi, A.K. Tung, L. Xu: “Skyframe: a
framework for skyline query processing in P2P systems”, VLDB Journal,
Vol.18, No.1, pp.345-362, 2009.

[48] P. Wu, C. Zhang, Y. Feng, B.Y. Zhao, D. Agrawal, A.E. Abbadi:
“Parallelizing skyline queries for scalable distribution”, EDBT, pp.112-
130, 2006.

[49] T. Xia, D. Zhang: “Refreshing the sky: the compressed skycube with
efficient support for frequent updates”, SIGMOD, pp.491-502, 2006.

[50] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. Yu, Q. Zhang: “Efficient
computation of the skyline cube”, VLDB, pp.241-252, 2005.

