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ABSTRACT
The top-k dominating query returns the k database objects
with the highest score with respect to their dominance score.
The dominance score of an object p is simply the number
of objects dominated by p, based on minimization or max-
imization preferences on the attribute values. Each object
(tuple) is represented as a point in a multidimensional space,
and therefore, the number of attributes equals the number
of dimensions. The top-k dominating query combines the
dominance concept of skyline queries with the ranking func-
tion of top-k queries and can be used as an important tool
in multi-criteria decision making systems. In this work, we
focus on the 2-dimensional space and present, for the first
time, novel algorithms for top-k dominating query process-
ing in main memory with non-trivial asymptotic guarantees.
In particular, we focus on both the semi-dynamic case (only
insertions are allowed) and the fully-dynamic case (inser-
tions and deletions are supported). We perform a detailed
cost analysis regarding the worst-case complexity of prepro-
cessing, the worst-case complexity for the query cost and the
amortized complexity for updates (insertions and deletions)
focusing on the RAM computation model. Our solutions re-
quire space linear with the number of points, which is very
important especially for modern applications which manipu-
late massive datasets. In addition, we discuss the case of the
word-RAM computation model, where slightly better results
are obtained.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query pro-
cessing ; H.2.2 [Database Management]: Physical De-
sign —Access methods; E.1 [Data]: Data Structures

General Terms
Theory, Algorithms, Performance

Keywords
dynamic queries, top-k domination

1. INTRODUCTION
Recently, there has been an increasing interest in

preference-based queries, due to their ability to select
the most interesting objects of a given dataset. The
data objects are characterized by a number of usually
contradictory attributes, such as price and quality, and
therefore, selecting a suitable result becomes a challeng-
ing task.
As an example, consider a hotel database, where each

hotel is represented as a 2-dimensional point with two
attributes (dimensions): (a) its distance from the con-
ference venue and (b) the price for a standard room
per night. Generally, a potential customer would be
interested in hotels that have both of these attributes
as small as possible. The solution would then consist
of all hotels that are in a sense more “preferred” than
others. In the sequel, each object will be represented as
a point in a multidimensional space, where each dimen-
sion corresponds to an attribute. The dataset of points
is denoted as S. Our work is based in the concept of
domination (or dominance) which is defined as follows:

Definition 1 (Domination). A point p ∈ S dom-
inates another point q ∈ S, and we write p ≺ q, iff p is
as good as q in all dimensions and it is strictly better
than q in at least one of the dimensions.

Without loss of generality, we will assume that “bet-
ter” means “smaller”. Therefore, we say that a point p
dominates q (and we write p ≺ q) when ∀i ∈ [1, d], p[i] ≤
q[i] and ∃j : p[j] < q[j], where d is the total number of
dimensions and p[i] is the value of p in the i-th dimen-
sion. The concept of domination leads naturally to the
concept of skyline [5].

Definition 2 (Skyline Query). The result of a
skyline query, SKY (S) over a dataset S is composed
of all points that are not dominated by any other point.
Formally:

SKY (S) = {p ∈ S : @q 6= p s.t. q ≺ p}
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Figure 1: The hotel database.

Essentially, the skyline set contains the best possible
objects with respect to the attribute values. This means
that there is no other point which is strictly better that
the points in SKY (S) in any of the dimensions. Evi-
dently, the skyline query may be combined with addi-
tional constraints on the attribute values. For example,
we may ask for the skyline set of a small area of the data
space and not of the entire dataset. Moreover, the sky-
line set is invariant in dimension scaling and it does not
require any user-defined function, since it is based solely
on the concept of domination. However, the cardinal-
ity of SKY (S) depends heavily on the data distribution
and dimensionality, resulting sometimes in cumbersome
results (too many skyline points) and sometimes in very
few.
On the contrary, a top-k query [9] returns exactly

k points which are the best in terms of a user-defined
scoring function. Most of the algorithms assume that
the scoring function is monotone with respect to the
values of the dimensions.

Definition 3 (TopK Query). The result of a top-
k query over a dataset S, with respect to a specific scor-
ing function, is composed of the k points with the max-
imum scores.

An example is given in Figure 1. The result of the
skyline query is composed of the points p1, p3 and p4,
since these points are not dominated by any other point
of the dataset. In contrast, the rest of the points are
dominated by at least one skyline point. For instance,
p7 is dominated by p1 whereas p2 is dominated by both
p1 and p3. The result of a top-2 query based on the
scoring function f(p) = p.x + p.y (sum of coordinates)
consists of p1 and p3. We observe that p1 is contained in
both the skyline query result and the top-2 query result.
In fact, it can be proved that for any monotone scoring
function, the top-1 query result is always a member of
the skyline.

As an attempt to eliminate the limitations of skyline
and top-k queries another preference-based query type
has been proposed initially in [17] and later studied in
detail in [20, 21]. As in a typical top-k query, the k ob-
jects with the highest scores are selected and returned
to the user. However, a fundamental difference is that
no user-define scoring function is required since by de-
fault the dominance relation is being used. This is done
by defining the score of an object p to be the number
of objects that p dominates.

Definition 4 (Dominance Score). The domina-
nce score s(p) of a point p is the number of points domi-
nated by p. Formally:

s(p) = |{q ∈ S|p ≺ q}| (1)

Definition 5 (Top-k Dominating Query). The
result of a top-k dominating query consists of the k
points with the highest scores with respect to domina-
tion.

Top-k dominating queries have the following desirable
properties:

• the result does not depend on the scaling of the
dimensions,

• no additional scoring functions are required and

• the cardinality of the result is controlled by the
parameter k.

A top-2 dominating query on the data set of Figure
1 will return the points p1 and p7. Note that, p1 domi-
nates four points (p2, p5, p6 and p7) and p7 dominates
three points (p2, p5 and p6).

Related Work. A basic method for retrieving the
top-k dominating points of a dataset would consist of,
firstly, computing the dominance score of each point
and then using a linear time selection algorithm [3] to
find the point v with the k-th largest score. To find all
the top-k dominating points we perform a final scan on
the dataset and report all points with a greater score
than the score of v.
The simplest approach for computing the domina-

tion score for all points would be to compare each point
p with every other point q in the dataset and incre-
ment p’s score if it dominates q. This results in O(n2)
time cost and O(n) space cost. An approach with lower
time complexity would be to use a 2-dimensional range
counting data structure (e.g., [8, 12]). For each point
p = (xp, yp) in a dataset S, the points lying in the
query rectangle Q = [xp,∞) × [yp,∞) can be counted
inO(logn) time andO(n) space using the 2-dimensional
range counting data structure by Chazelle [8]. The
number of points found in Q is equal to p’s domina-
tion score. In order to compute the dominance score
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of each point, we repeat the process for all the points
in S in O(n log n) total time. Lastly, an algorithm by
Chan and Pǎtraşcu [7] is able to compute the domi-
nance score for all points in O(n

√
log n) time in the

word-RAM model [11] of computation. Insertions and
deletions can be trivially supported in the above meth-
ods in O(n) time since one has to update the dominance
scores of all points in the worst-case. In the following,
we describe more elaborate methods to answer a top-k
dominating query.
Papadias et al. [17], first proposed the d-dimensional

top-k dominating query along with a solution based on
the iterative computation of a dataset’s skyline points.
More specifically, they observed that the top-1 domi-
nating point of a dataset is contained in the dataset’s
skyline points. This stems from the observation that
for every point p not in the skyline, there exists a point
p′ in the skyline that dominates it and, as a result, p′

has a larger score than p. Thus, in their approach, they
compute the set of skyline M (using the BBS algorithm
[17]) and compute the dominance score of all the points
in M . The point q with the highest score is the top-
1 dominating point and is thereby reported. Finally,
q is removed from the dataset and the procedure is re-
peated until k points have been reported. However, this
approach does not avoid the quadratic trap, since the
score computation of skyline points as well as the up-
date of dominance scores after the removal of the point
with the highest score, may lead to O(n2) dominance
checks, whereas the space remains linear 1.
Yiu and Mamoulis [20, 21] recommended using aggre-

gate R-trees (aR-trees) to efficiently compute d-dime-
nsional top-k dominating queries. They provided var-
ious algorithms based on aR-trees that proved experi-
mentally to be quite fast. They also make an analytic
study making the assumption that the data points are
uniformly and independently distributed in a domain
space. The authors do not make any statement for the
worst-case time complexity of the query but it is cer-
tainly Ω(n).
Both methods [17, 21] focus on the top-k dominating

query, where k is arbitrary. Update operations can be
applied in both cases with a linear time cost. However,
the top-k dominating query has to be re-evaluated in
both cases. Finally, both prove the efficiency of their
approach experimentally (extensive experiments can be
found in [21]).
As a closing remark, we should further note that top-

k dominating queries have also been studied in the con-
text of uncertain databases [14, 22], data streams [13],
spatial objects [19] and vertically decomposed data [18].

Motivation, Contribution and Assumptions. This
work is the first attempt to provide efficient algorithms

1The BBS algorithm is based on the use of R-trees which
require linear space.

for top-k dominating query processing in the semi-dynamic
and the fully-dynamic cases, which are the most inter-
esting and challenging. In contrast to previously pro-
posed techniques, we are interested in algorithms with
non-trivial performance guarantees.
One may think that perhaps a direct application of

the divide-and-conquer algorithmic technique could pro-
vide an efficient solution at least for the static top-k
dominating query, where given the dataset S we are ask-
ing for the k points with the highest domination scores.
The problem with this approach is that the top-k dom-
inating query is a non-decomposable query, because the
score of each point depends on the coordinates of all the
other points in S. A query q in S is decomposable [2]
if its output can be computed accurately by executing
q in a partition of S. The non-decomposability of top-
k dominating queries prohibits us from using standard
divide-and-conquer techniques and thus increases the
problem difficulty significantly.
This paper concentrates on 2-dimensional data for

two reasons. First, there is no previous work with asymp-
totic guarantees and as a result, this paper provides a
deeper understanding of the complexity of the problem.
The second, more practical, reason is that many appli-
cations are inherently 2-dimensional. This is because,
one often faces the situation of having to strike a bal-
ance between a pair of naturally contradicting factors
(e.g., price vs quality, space vs query time). Finally, our
algorithms are based on a novel restricted dynamization
of layers of minima [4]. This is of independent interest
in case we only need to access the first k layers of min-
ima.
Since static datasets are being handled rarely by mod-

ern applications, we consider the problem in the semi-
dynamic case (insertions only), where logarithmic com-
plexities are attained. In the fully-dynamic case, we
attain polynomial complexities for update operations
(insertions and deletions). In many applications, inser-
tions occur much more frequently than deletions. As a
practical example, consider an application that retrieves
the top-k dominating tweets (i.e., Twitter messages) ac-
cording to some user-selected attributes. In this appli-
cation, the semi-dynamic algorithms would suffice since
tweets very rarely are deleted [1]. Other possible ex-
amples of datasets where insertions take place signifi-
cantly more frequently than deletions include the mea-
surements collected by a scientific instrument or the
full-year sales log of a retail company. In conclusion,
applications where deletions occur orders of magnitude
less frequently than insertions can benefit from the use
of the semi-dynamic algorithms and the associated data
structures.
For each of the semi-dynamic and fully dynamic set-

tings we provide two solutions (k-list and 1-list) that
provide a trade-off between update and query time. All
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Table 1: SD stands for Semi-Dynamic, where only insertions are allowed, whereas FD stands for
Fully-Dynamic where both insertions and deletions are supported.

Algorithm Space Preprocessing Cost (worst-case) Query Cost (worst-case) Update Cost (amortized)

SD/k-list O(n) O(n log n) O(k) O(log2 n+ k2 log n)

SD/1-list O(n) O(n log n) O(k log n) O(log2 n+ k log n)
FD/k-list O(n) O(n log n) O(k) O((k +

√
n)k log n)

FD/1-list O(n) O(n log n) O(k log n) O((k +
√
n) log n)

our algorithms use linear space and work well under
the realistic assumption that k is a fixed user-defined
parameter which is small compared to the size n of the
dataset (i.e., k << n). Table 1 provides a detailed
overview of our results.

Roadmap. The rest of the paper is organized as fol-
lows. Section 2 presents some necessary concepts re-
lated to the discussion that follows. Our contribution
for the semi-dynamic case is detailed in Section 3, whereas
the study of the fully-dynamic case is offered in Sec-
tion 4. In addition to the results for the RAM com-
putation model, in Section 5 we provide an adaptation
to the word-RAM model, obtaining better asymptotic
bounds. Concluding remarks and directions for further
research are offered in Section 6.

2. PRELIMINARIES
In this section, we discuss the basic concepts that are

used throughout the rest of this work. First of all, we
note that we augment the definition of each point pi to
also include its score si = s(pi), so pi becomes a triple
of the form pi = (xi, yi, si).
In the following two sections, we describe the concept

of layers of minima and we cite a previous result in the
form of a lemma, that will be used in the query phase
of some of our proposed solutions.

2.1 Two-dimensional Layers of Minima

Figure 2: The first layer of minima (skyline).

The algorithms presented in the remaining sections
are based on the concept of layers of minima. In or-
der to compute the layers of minima of a dataset S we
perform a skyline query on S, remove the answer set
of points from S and repeat the process until no points
remain in S. The set that results from the i-th skyline
query forms the i-th layer of minima. By collecting all
the layers, we form the layers of minima of S. A concise
definition of the layers of minima follows:

Definition 6. Let M1 be the set of all minima points
in S. The first layer of minima of S is equal to the set
M1 and the second layer of minima M2 of S is equal
to the set of all minima points in S − M1. The j-th
layer of minima of S is accordingly defined to be equal
to the set of all minima points in S − (

⋃j−1
i=1 Mi). The

set {M1,M2, . . . ,Mλ} where S =
⋃λ

i=1 Mi is the layers
of minima of S.

Figure 2 depicts a layer of minima on the plane. Any
point located in the shadowed region is dominated by
at least one point in the layer of minima.
Blunck and Vahrenhold [4] proposed in-place algo-

rithms that use O(1) extra space and compute the lay-
ers of minima of a dataset of 2-dimensional points in
O(n log n) time.

2.2 Reporting Lemma
Finally, we use the following lemma from [10]:

Lemma 1. Let A1, . . . , Am be arrays of values from a
totally ordered set such that each array is sorted. Given
an integer L ≤

∑m
i=1 |Ai|, there is a comparison-based

algorithm that finds in O(m) time a value τ that is
greater than at least L but at most O(L) values in A1 ∪
. . . ∪Am.

Lemma 1 can be adjusted to report a value τ that
is smaller than at least L but at most O(L) values in
A1∪. . .∪Am. This lemma forms the basis in allowing us
to efficiently find the k-th point with the highest score
out of a collection of ordered lists and is used in Sections
3 and 4.

3. THE SEMI-DYNAMIC CASE
In this section, we propose a solution to the semi-

dynamic top-k dominating query problem and describe
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in detail the data structures and algorithms we use to
achieve it. Let S be a set of n 2-dimensional points.
Recall that the semi-dynamic top-k dominating query
aims at reporting the k points in S with the highest
dominance score where k is a fixed user-defined param-
eter. Furthermore, S is subject to insertions of new
points. This poses an additional challenge since after
inserting a new point, it is possible that the dominance
score of many (or even all) the points in S must be
updated. Individually updating the score of each such
point would be computationally prohibitive so we follow
a different approach and only update lazily the score of
groups of points that are candidates for being in the
final answer.
We first note that when a point p dominates another

point q, p’s score is strictly greater than the score of q:

∀p, q ∈ S, p ≺ q ⇒ scorep > scoreq (2)

Organizing S into layers of minima offers an intuitive
way of using the above property to eliminate points that
are not possible to belong in the final answer. As an
example, consider a top-1 dominating query in S. The
point with the highest dominance score is found in the
first layer of minima of S since all the points in the
second and subsequent layers are dominated by at least
one other point. Similarly, in a top-2 dominating query,
the first point is found in the first layer and the second
point is found in either the first or the second layer. In
general, the following lemma holds for the top-k domi-
nating points:

Lemma 2. The top-k dominating points of S are lo-
cated in the first k layers of minima of S.
Proof. If S has only k or less layers of minima, the

lemma obviously holds. Otherwise, assume that a point
p belongs to the i-th layer of minima, where i ≥ k + 1.
There are at least i− 1 points dominating p and due to
Equation 2 all of them have a larger score than p. As a
result, p is not included in the top-k dominating points
of S.

A direct consequence of Lemma 2 is that, when in-
serting a new point p, we only need to update the scores
of some points in the first k layers of minima. However,
some of the layers may have many points and thus indi-
vidually updating the score of these points would result
in a high update cost. To avoid this, after inserting a
new point p in S, we find only the first and last point
that dominate p in each layer. This pair of points de-
notes an interval that marks all the points in each layer
whose score must be updated. Consequently, by exam-
ining only O(1) points in each layer the total update
cost is reduced.
Lastly, an issue brought up by the use of layers of

minima is that the insertion of a new point p may create
cascading changes to the structure of the layers. In

x2

x1 < x2 < . . . < xb−1

y1 > y2 > . . . > yb−1

p2

p3 p1

top(v)

0

add(v)
v

. . .

. . .
y2 s2x1

p1
y1 s1

pb−1

sb−1yb−1xb−1

Figure 3: An (a, b)-tree node (k = 2). The coordi-
nates in node v are designated by the respective
representative points pi, 1 ≤ i ≤ b− 1, where pi is
the leftmost point of the i+ 1-th child of v.

particular, by inserting p into S, p must also be inserted
in one of the layers of S. Let Li be that layer. The
insertion of p in Li may cause some of its points to
be discarded as a result of them being dominated by p.
This group of points must be inserted into the next layer
Li+1 possibly discarding some of the points in Li+1 in
the process. Due to Lemma 2 and the fact that only
insertions are allowed, this chain of operations only has
to be performed up until the k-th layer.
To achieve efficient insertion, we model each layer as

an (a, b)-tree. In the following, we provide a detailed
overview of the data structure and the operations it
supports and then we describe the update and query al-
gorithms for the semi-dynamic top-k dominating query.

3.1 The Augmented (a, b)-Tree
We model each layer of minima using an augmented

leaf-oriented (a, b)-tree. Assume that L is a layer of
minima containing m points, i.e., p1, p2, . . . pm where
pi = (xi, yi, si), 1 ≤ i ≤ m. Since the points in L are
totally ordered on each dimension2, we can use a single
(a, b)-tree to search among the points in both dimen-
sions. To achieve that, each inner node stores represen-
tative keys for both dimensions, instead of storing keys
for only one of them.
For each node v of the tree with height ≥ logb k we

maintain a field add(v). The field’s contents denote a
score that has to be added to the score of all the points
in v’s subtree. Finally, each node v with height ≥ logb k
is augmented with an k-sized list top(v) which stores
the k points with the highest score in v’s subtree. An
example of an augmented (a, b)-tree node with height >
logb k for k = 2 can be seen in Figure 3.
For the remainder of this work we assume that b =

O(1) since we present main memory algorithms. The
following lemma provides the tree’s total space cost.

Lemma 3. The total space required by an augmented
(a, b)-tree storing m points is O(m).

2For two points pa = (xa, ya, sa) and pb = (xb, yb, sb) in L
if xa > xb then yb > ya
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Proof. All the nodes with height lower than logb k
only store O(1) additional information so their total
space cost is O(m). There are O(m/k) nodes with
height higher than or equal to logb k each augmented
with a k-sized list. The total space cost of this part of
the data structure is O(m/k) × O(k) = O(m). As a
result, the total space cost of the entire data structure
is O(m).

The following lemma provides the time complexity
for the construction of an augmented (a, b)-tree.

Lemma 4. The construction of an augmented (a, b)-
tree over m points that are sorted according to their
dimensions can be carried out in O(m log k) time, where
k is a user-defined parameter.

Proof. In order to construct the leaf-oriented aug-
mented (a, b)-tree we follow a bottom-up approach and
assume that the input points are sorted according to
their dimensions. The augmented (a, b)-tree is con-
structed in a similar way to a typical (a, b)-tree with an
additional issue. At first, the nodes of the augmented
(a, b)-tree are constructed by scanning the input points,
creating the leaves and then recursively creating the in-
ner nodes from bottom to top. Each node is only visited
once so the procedure up to this point requires O(m)
time.
The last step is to compute the top lists for all nodes

with heightv ≥ logb k. For each node v with heightv >
logb k, the top(v) list must be computed from the top
lists of v’s children. By simultaneously traversing the
O(b) = O(1) top lists of v’s children we can compute
top(v) in O(k) time. There are O(m/k) nodes with
heightv > logb k and since this process is repeated for
every node, the time required is O(m/k) × O(k) =
O(m).
Finally, we compute the top lists for each node v with

heightv = logb k. Since v’s children are not augmented
with top lists we follow a different approach. We sort
all the points found in v’s subtree3 in O(k log k) time
and store them in top(v). There are O(m/k) nodes with
heightv = logb k and thus this step requires O(m log k)
total time.
Thus, the total time required for the construction of

the (a, b)-tree is O(m log k).

3.1.1 Operations
In this section, we formally describe all the operations

supported by the augmented (a, b)-tree. More specifi-
cally, the augmented (a, b)-tree supports searching for
a point, inserting a new point, or deleting an existing
one. Furthermore, splits and concatenations between
two different (a, b)-trees are also supported.

3There are up to k points in v’s subtree since heightv =
logb k

The search operation search(T, pz) locates in the
augmented (a, b)-tree T a specific point pz and can be
performed with respect to either dimension of pz by
using the appropriate set of keys. Let v be a node
of T , x1, x2, . . . , xb−1 be the x-representative keys of
v’s children and y1, y2, . . . , yb−1 be the y-representative
keys of v’s children. In order to search for a point
pz = (xz, yz, sz) in T , we begin at the root and search
down until we reach a leaf. If the search is performed
on the x dimension, we select the i-th child of v such
that xi−1 < xz ≤ xi. Otherwise, if the search is per-
formed on the y dimension, we select the i-th child of v
such that yi−1 > yz ≥ yi. Since T is height-balanced, a
search operation requires O(b logm) = O(logm) time.
The rest of the operations are based on node splits

and merges. For reasons of clarity, we first describe
how node splits and node merges are handled on the
augmented (a, b)-tree in relation to typical (a, b)-trees.
The node split operation node split(v, v1, v2) is per-

formed similarly to the split operation of typical (a, b)-
trees with a few modifications. More specifically, before
dividing a node v into two nodes v1 and v2 we check
the contents of add(v). If add(v) stores a value differ-
ent than 0, we add the contents of add(v) to the add
variable of v’s children and set add(v) to 0. Afterwards,
v is divided into v1 and v2 and the keys for the x and
y dimensions of v are “shared” between v1 and v2 in
O(b) = O(1) time. After sharing the keys, top(v1) for
v1 and top(v2) for v2 must be recomputed. If heightv >
logb k we can compute top(v1) and top(v2) in O(k) time
by simultaneously traversing the O(b) = O(1) top lists
of v1’s and v2’s children respectively. As a result, the
split operation requires O(k) time in this case.
If heightv = logb k then the children of v1 and v2 are

not augmented with top lists and thus the computation
of top(v1) and top(v2) cannot be performed using the
above procedure. Each of v1 and v2 have up to k points
in their subtree since their height is equal to logb k. To
compute the top lists for v1 and v2 we sort all the points
in v1’s and v2’s subtree in O(k log k) time and store the
result in top(v1) and top(v2) respectively. This results
in the split operation requiring O(k log k) time in this
case. Finally, if heightv < logb k then the split opera-
tion requires O(b) = O(1) time since v is not augmented
with top(v).
For the merge operation node merge(v1, v2, v) we fol-

low a similar procedure to the merge operation of stan-
dard (a, b)-trees. More specifically, before merging two
nodes v1 and v2 into v we check the contents of add(v1)
and add(v2). If add(v1) stores a value different than 0
we add the contents of add(v1) to v1’s children and set
add(v1) to 0. We follow the same procedure for add(v2).
Then, v1 and v2 are merged into v and the keys for the
x and y dimensions of v are derived from the keys of
v1 and v2 in O(b) = O(1) time. After merging the
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keys, top(v) must be recomputed. To achieve this, if
heightv > logb k we simultaneously traverse top(v1) and
top(v2) and store the k points with the highest score in
top(v) in O(k) time. If heightv = logb k we follow a
similar approach to that of a node split and first com-
pute top(v1) and top(v2) by sorting all the points in
v1’s and v2’s subtree respectively. Then by simulta-
neously traversing top(v1) and top(v2) we store the k
points with the highest score in top(v). As in the split
operation, if heightv < logb k the merge operation re-
quires O(b) = O(1) time due to the fact that v is not
augmented with top(v).
Operation insert(T, p), inserts a point p in T . The

point is inserted as a leaf in T and the tree is rebalanced
using node splits. Since there are O(logm) node splits
that cost O(k) time and O(1) splits that cost O(k log k)
time, the time cost to insert a point is O(k logm).
Operation delete(T, p), removes a point p from T .

The leaf corresponding to the point is removed and the
resulting tree is rebalanced. There are O(logm) merges
that cost O(k) time, O(1) merges that cost O(k log k)
time and a possible terminating split and as a result the
time cost to delete a point is O(k logm).
Using the node split and node merge operations as

building blocks, we can define two additional operations
on the augmented (a, b)-trees: Tree Concatenation and
Tree Split. For both the operations, we use the defini-
tion and algorithms provided in [15].
Operation concat(T1, T2, T3), concatenates two aug-

mented (a, b)-trees T1 and T2 into a third augmented
(a, b)-tree T3. This operation assumes that max {T1} ≤
min {T2} where max {Ti} is the largest x coordinate of
all the points in Ti and min {Ti} is smallest x coordinate
of all the points in Ti (a similarly defined order is im-
plied for the y dimension as well). In a tree concatena-
tion one merge operation and up toO(logmax(|T1|, |T2|))
split operations are performed. Since there are O(1)
merge and split operations that cost O(k log k) time
and the rest of the merge and split operations cost
O(k) time, a tree concatenation operation requires O(k
logmax (|T1| , |T2|)) time. Before initiating this opera-
tion, all add variables in the affected path are flashed
to their children (get a zero value).
Operation split(T1, val, T2, T3), splits an augmented

(a, b)-tree T1 into two augmented (a, b)-trees T2 and T3

at element val with respect to the one of the two dimen-
sions, so that T2 ← {z ∈ T1; z ≤ val} and T3 ← {z ∈
T1; z > val}. In a tree split operation the starting (a, b)-
tree is first split into two forests of trees. Then, the roots
of the trees in each forest are merged with each other
recursively. Splitting the tree into two forests requires
O(log |T1|) time and since there are O(1) merge oper-
ations that cost O(k log k) time and O(log |T1|) merges
for both forests, each requiring O(k) time, a tree split
operation requiresO(k log |T1|) time. Similarly to concat,

before initiating this operation, all add variables in the
affected path are flashed to their children. The following
theorem summarizes the discussion on the (a, b)-tree.

Theorem 1. Given a parameter k and m 2-dimen-
sional points pi = (xi, yi, si) where 1 ≤ i ≤ m, we can
construct in O(m log k) time an augmented (a, b)-tree T1

that uses O(m) space. The construction time assumes
that the points are sorted according to their dimensions.
The tree T1 supports the following operations:

• search(T1, p) in O(logm) time,

• insert(T, p) and delete(T, p) in O(k logm) time,

• split(T1, val, T2, T3) in O(k logm) time and

• concat(T1, T4, T5) in O(k logmax (|T1| , |T4|)) time
where T4 is an augmented (a, b)-tree such that the
condition max{T1} ≤ min{T4} holds.

3.2 Insertion
Let p = (xp, yp, sp) ∈ R be a point to be inserted

into S. Furthermore, let L1, . . . , Lk be the first k lay-
ers of minima of S. Before inserting p we compute its
dominance score using the dynamic range counting data
structure proposed in [8]4. We also insert p in the dy-
namic range counting data structure in order to support
score computation for future insertions. The data struc-
ture supports queries and updates in O(log2 n) time and
O(n) space.
Afterwards, we find if p must be inserted in one of

L1, . . . , Lk by searching each of the k respective (a, b)-
trees for p. Starting from L1 and iterating towards Lk,
we search each tree for p both in the x and in the y
dimension and retrieve the predecessor of p in the x di-
mension and the predecessor of p in the y dimension. If
neither of those two points dominate p, we insert p in
the tree’s respective layer and stop the iteration. Other-
wise, the iteration may end without any layer satisfying
the above condition. In that case, p does not become a
member of any of the k first layers.
If we do not insert p in any of the k first layers then

we only have to update the scores of some points in
each of L1, . . . , Lk. Otherwise, assume that p is in-
serted into Li where 1 ≤ i ≤ k. Then we have to
update scores of points in L1, . . . , Li−1 and alter the
structure of Li, . . . , Lk (Figure 4). We first describe
how to handle score updating on a layer and afterwards
how to alter a layer’s structure using tree splits and tree
concatenations.
To update the score of the points in layer L, we per-

form this procedure. We search the augmented (a, b)-
tree of L for xp and yp. All points whose score must be
updated lie to the left of xp and to the right of yp. Since
4The data structure is built only once as a preprocessing
step before the first insertion
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Figure 4: Insertion of a new point p.

updating the score of each point would be time consum-
ing, we only find the two boundary points that define
the above interval and mark the subtrees between them.
For example, in Figure 4 the insertion of p causes a score
increment for the points pi−2

t to pi−2
b in layer Li−2 and

the points pi−1
t to pi−1

b in layer Li−1.
We start from height = logb k + 1 of the two search

paths and move up towards the root, adding +1 to
add(v) if v is a node hanging to the left of the search
path for xp or to the right of the search path for yp.
Using this method we denote that the score of all the
points in v’s subtree must be incremented by one, with-
out actually visiting the points themselves. Adding +1
to add(v) does not change top(v) since we increment
the score of all the points in v’s subtree and thus their
relative order according to score remains unchanged.
For each node v′ on the search paths or hanging on the
search paths with heightv′ = logb k, instead of incre-
menting add(v′), we exhaustively check the points in
the subtree of v′ and individually update their score
based on if they are dominating p. Finally, we sort
the points in the subtree of v′ based on the updated
scores and store the result in top(v′). For each node
with height < logb k no action is necessary since all the
points in its subtree can be found in the top list of its
ancestor with height = logb k. Thus, at the end, we
have indirectly marked all the points between yp and
xp for score increment.
Finally, we update the top lists of the nodes in the

search path as a result of modifying the add fields of
their children. Starting from height = logb k + 1 and
moving towards the root, we recursively compute the
top list of each node v by simultaneously merging the
top lists of its children. While merging the lists, we also
add the contents of each node’s add field to the score of
the node’s top list points so as to take into account the
score changes caused by the insertion of p. At the end,

Li

Li+1

·
·
·

p = (xp, yp)

T

Insertion of p

·
·
·

p = (xp, yp)

T2

T1

1) Split(T, yp, T1, T2)

·
·
·

p = (xp, yp)

T3

Tc

T1

2) Split(T2, xp, T3, Tc)

·
·
·

p

T3

Tc

T1

3) insert(T3, p)

·
·
·

p

Tnew

Tc

4) ConCat(T3, T1, Tnew)

·
·
·

p

Tnew

Tc

Tc is now the input to Li+1

Figure 5: Example of layer restructuring.

the top list found in the root of the (a, b)-tree will have
the correct top-k points for that layer of minima.
Indirectly marking all the points between yp and xp

for score increment requires O(log n+k log k) total time
while merging the top-k lists of a node’s children re-
quires O(bk) = O(k) time and as a result the total
cost for all the nodes in the search paths of the tree
is O(bk log n) = O(k logn) time. Thus, the total time
required to update scores in a layer is O(k log n).
In the second case, the point p may have to be in-

serted in layer of minima Li. Since inserting or delet-
ing points from the layer of minima one-by-one would
be time consuming, we insert the point and remove the
now-dominated points by executing a series of tree splits
and tree concatenations. First, we find the interval of
points dominated by p as previously by querying the
layer of minima tree T for xp and yp. Then we perform
the following sequence of operations in order:

1. split(T, yp, T1, T2),

2. split(T2, xp, T3, Tc),

3. insert(T3, p) and

4. concat(T3, T1, Tnew).

Recall that all add variables of nodes on the affected
paths for operations split and concat are flashed to
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their children, that is in all such paths the add variables
have zero value. The effects of this sequence of opera-
tions on the layers of minima can be seen in Figure 5.
The layer of minima tree Tnew for Li now correctly has
p inserted and every point previously in Li that is now
dominated by p (i.e., Tc) has been discarded.
If Tc is empty, the iteration stops. Otherwise, Tc is

propagated to the next layer of minima Li+1 where we
repeat the above procedure with Tc as the input. Since
Tc may have more than one points, instead of inserting
them one-by-one we perform a tree concatenation at
step (3) instead of an insertion. Finally, the insertion
spot of Tc in Li+1 can be found by querying the tree of
Li+1 for p′ = (x′

p, y
′
p) where x′

p is the x coordinate of
the leftmost point in Tc and y′p is the y coordinate of
the rightmost point in Tc.
In Figure 4, the insertion of p causes the points pit

to pib to be discarded from layer Li. These points are
propagated to layer Li+1 and will, in turn, discard the
points pi+1

t to pi+1
b from Li+1. This procedure is re-

peated until the k-th layer of minima.
In each layer of minima we perform a series of O(1)

splits and concatenations. Since each tree split or con-
catenation requires O(logn) time, the total time re-
quired to alter a layer’s structure given a point or an
(a, b)-tree as an input is O(k logn).
As described in the beginning of the section, after an

insertion a layer must either update the score of some
of its points or alter its structure. Since either case re-
quiresO(k log n) time, the time cost of manipulating the
k first layers after an insertion is O(k2 log n). Adding
the cost of computing the score of the inserted point and
inserting the point in the dynamic range counting data
structure, the total insertion cost is O(log2 n+k2 log n)
amortized time.

3.3 Query
To find the top-k dominating points of S, we apply

Lemma 1 for L = k on all the top-k lists found in the
root of each (a, b)-tree of each of the k first layers of
minima. Let I be the list returned by Lemma 1. By se-
lecting the (|I|−k+1)-th order statistic of I we obtain
the dominance score τ of the k-th top dominating point.
Finally, we traverse all the top-k lists we previously col-
lected and report all points with score larger than τ .
Since the lists are sorted according to their score, we
can stop traversing a list when a point with score lower
than τ has been found. Applying Lemma 1 requires
O(k) time while finding the (|I|−k+1)-th order statis-
tic of I requires O(I) = O(k) time. Finally, traversing
all lists requires O(k) time in total. By combining all
of the above, we achieve O(k) query time.

3.4 Reducing the Update Cost
We can reduce the algorithm’s update cost by shrink-

ing the size of the top list in each node of each (a, b)-
tree. In particular, we store a top list in each node
of the (a, b)-tree but instead of storing k points in each
list we only store 1. This removes the cost of computing
top lists during each node split or merge since each top
list can be computed using O(b) = O(1) comparisons.
As a result, node splits and merges cost O(1) time and
updating the score of points in a layer or altering its
structure costs O(logn) time. This brings the total in-
sertion cost down to O(log2 n+k logn) amortized time.
This change also implies that at the time of a query,

each (a, b)-tree’s root only stores 1 element with the
highest score in the layer and as a result we can no
longer directly apply Lemma 1. To overcome this we
build a Strict Fibonacci Heap [6] by inserting each point
with the highest score from each layer. Strict Fibonacci
Heaps support insertions in O(1) worst-case time and
deletions of the maximum key in O(logn) worst-case
time. By querying the heap we are able to find (and
delete) the top-1 dominating point. After deleting a
point p (belonging in a layer L) from the heap, we have
to replace it by the point of L with the next highest
score. This point can be found by querying L’s tree for
p. Due to the definition of top lists, the point with the
next highest score in L is guaranteed to be amongst the
O(b) top lists of each node in the search path of p. We
insert all O(b log n) = O(logn) such points in the heap
and repeat the process until k points have been deleted
from the heap. In order to not have any duplicate points
in the heap, we also employ a marking process.
Deleting a point from the heap requiresO(logn) time,

while addingO(log n) points also requiresO(log n) time.
Since there aren’t any duplicate points in the heap and
the process is repeated k times, the query phase of the
algorithm requires O(k log n) time.
Lastly, we review the preprocessing cost in both semi-

dynamic algorithms. In the case of the k-list augmented
(a, b)-tree the construction time is equal to O(n logn).
To achieve this, we build Chazelle’s static range count-
ing data structure [8] in O(n log n) time and count the
score of each point using the method we described in
Section 1. We also build Chazelle’s dynamic range count-
ing data structure [8] which is required by our insertion
algorithm in O(n log n) time. The layers of minima can
be computed in O(n log n) time [4]. A subsequent scan
of the output provides us with the points of each layer
of minima in sorted order and as a result we can build
the (a, b)-trees in O(n log k) time (Lemma 4). There-
fore, the construction time is equal to O(n log n). In
the case of the 1-list augmented (a, b)-tree the only dif-
ference is the construction cost of the (a, b)-trees which
is reduced to O(n) since each node in each (a, b)-tree is
augmented with a top list of size 1. The discussion of
this section can be summarized in the following theo-
rem:
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Theorem 2. Given a set of n 2-dimensional points,
we can build a data structure that supports insertions of
new points in O(log2 n + k2 log n) amortized time and
top-k dominating queries in O(k) worst-case time. Al-
ternatively, we can build a data structure that supports
insertions of new points in O(log2 n+k log n) amortized
time and top-k dominating queries in O(k log n) worst-
case time. Both data structures are built in O(n log n)
time and use O(n) space.

4. THE FULLY-DYNAMIC CASE
The algorithms presented so far only support inser-

tions due to the fact that all operations could be re-
stricted in the first k layers of minima of a dataset S.
However, assume the deletion of a point p in layer Lk.
Then we would have to store and manipulate more than
k layers since it is possible that some points from Lk+1

might have to be inserted in Lk as a result of them not
being dominated by any other point in Lk apart from
p. This brings a cascading of restructuring operations
since some of the points in Lk+2 might have to be in-
serted in Lk+1. Thus, a deletion operation may reach
the last layer of S in the worst-case. It should be noted
that a deletion of a point may not always result in layer
restructuring. Consider the example in Figure 6. Delet-
ing pd will cause the layers to be restructured since pf
is not dominated by any other point. However, deleting
pe will not cause any changes to the layers’ structure
since both pg and ph are dominated by at least one
other point in pe’s layer.
A deletion of an existing point can be defined in a

similar way to the insertion of a point with each layer
requiring either score updating or restructuring. To per-
form score updating we follow the same steps as those
discussed in Section 3.2 but instead of adding +1 to
the add field of a node, we add −1. After deleting a
point p = (xp, yp) from a layer Li, we query Li+1 to
find all the points (if any) that must be inserted in Li

due to the deletion of p. The query point in Li+1 is

pd

pe

pf

pg

ph

Figure 6: Deletion of existing points.

p′ = (x′
p, y

′
p) where x′

p is the successor of xp in Li and
y′p is the successor of yp in Li.
Our algorithms for the semi-dynamic setting can be

extended to the fully dynamic setting through the use of
the global rebuilding technique [16]. More specifically
in an update operation, instead of manipulating only
the first k layers we perform score updates and layer
restructuring operations in the first k+

√
n layers. Since

we stop restructuring operations on a predefined point,
after the i-th deletion the (k+

√
n− i+1)-th layer will

have become invalid. As a result, after
√
n deletions,

only the first k layers remain valid and at that point we
rebuild the entire layers of minima data structure. We
also recompute the score of each point and reconstruct
the (a, b)-trees.
The following theorem analyzes the cost of the global

rebuilding operation.

Theorem 3. The global rebuilding cost of the data
structures is O(n log n) time and O(n) space.

Proof. The result is derived from Theorem 2 and
the discussion prior to it. Note that the dynamic range
counting data structure is only built once (in the pre-
processing phase) and it is not built again in any global
rebuilding process applied to the data structures.

We perform the global rebuilding step once in every√
n updates. An update up to the (k +

√
n)-th layer,

requires O(log2 n+(k+
√
n)k log n) amortized time. We

perform
√
n such updates and then we globally rebuild

the data structures in O(n log n) time so the amortized
time for an update over

√
n updates is O(

√
n log n +

(k +
√
n)k log n) = O((k +

√
n)k logn).

The global rebuilding technique can also be applied
on the method of Section 3.4 to obtain a data structure
that handles insertions and deletions with reduced up-
date cost. The results in this section are outlined in the
following theorem:

Theorem 4. Given a set of n 2-dimensional points,
we can support updates in O((k+

√
n)k log n) amortized

time and top-k dominating queries in O(k) time. Alter-
natively, we are able to support insertions and deletions
in O((k +

√
n) log n) amortized time and top-k domi-

nating queries in O(k log n) time. Both data structures
are constructed in O(n log n) time and use O(n) space.

5. RESULTS FOR WORD-RAM
In the previous results we have focused on the RAM

model of computation. We can obtain slightly faster up-
date algorithms for the semi-dynamic algorithm we pre-
sented by extending our results to the word-RAMmodel
of computation. In the unit-cost word-RAM model [11],
the memory is represented as an array of infinite cells
(words) with each word storing w bits. The input ele-
ments are considered to be integers from the universe
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[U ]2 = {0, . . . , 2w − 1}2 so that any word can be ad-
dressed by any other word (through the use of a pointer).
The model supports random access of words as well

as comparisons, arithmetic, shift and bitwise operations
between words in constant time. In this work, we make
the assumption that w = Θ(log n) where n is the in-
put’s dataset size. This fact permits an input point or
an index to the data structure to fit in a single word.
The space cost under the word-RAM model is defined
with respect to the number of words occupied; while the
query and update times with respect to the number of
word accesses and comparisons or operations needed to
answer a query or perform an update respectively. The
word-RAM model is a realistic model of computation,
with integers of bounded precision, that closely emu-
lates the mechanics of many programming languages
(C, Python, Java, etc.).
To obtain our results, we use the dynamic range count-

ing data structure of He and Munro [12] which, for word
size w = Ω(log n), supports queries in O(( log n

log log n )
2)

worst-case time, insertions and deletions inO(( logn
log log n )

2)

amortized time and uses O(n) space.
The construction cost of our data structure is equal

to the cost of constructing the dynamic range count-
ing data structure, computing the score of each point,
computing the layers of minima and constructing the
(a, b)-trees. To build the dynamic range counting data
structure we insert each point in the data structure for
a total of O(n( log n

log log n )
2) amortized time. The score

of all points can be computed using the data structure
in O(n( log n

log log n )
2) total amortized time. The layers of

minima can be built in O(n log n) time.
Lastly, using Lemma 4 the (a, b)-trees are built in

O(n log k) time. Apart from the dynamic range count-
ing data structure, the insertion and query algorithms
remain the same. Combining the above observations we
obtain the following result.

Theorem 5. Given a set of n 2-dimensional points
in the word-RAM model with word size w = Θ(logn),
we can build a data structure that supports insertions of
new points in O( logn

log log n )
2+k2 logn) amortized time and

top-k dominating queries in O(k) worst-case time. Al-
ternatively, we can build a data structure that supports
insertions of new points in O( log n

log log n )
2+k log n) amor-

tized time and top-k dominating queries in O(k log n)
worst-case time. Both data structures are constructed
in O(n( log n

log log n )
2) amortized time and use O(n) space.

6. CONCLUSIONS AND FUTURE WORK
In this work, we have developed for the first time, al-

gorithms for answering semi-dynamic and fully-dynamic
top-k dominating queries in the 2-dimensional space,
with non-trivial performance guarantees. In our solu-
tions, k is a parameter that is considered fixed between

queries.
The algorithms we have studied in this paper con-

stitute the first attempt to process top-k dominating
queries offering asymptotic performance guarantees for
both their time and space cost. Existing work in the
are is based completely on heuristic solutions built on
top of access methods that work well in practice (e.g.,
R-trees).
Since object ranking in databases is a fundamental

operation with many applications, we highlight some
interesting research directions for future work in the
area:

• An interesting and challenging problem is to lower
the update cost for the fully-dynamic algorithms,
by avoiding the global rebuilding technique.

• A second direction is to provide efficient top-k
dominating query processing for any number of di-
mensions.

• A third direction is to design efficient algorithms
for the external memory model. A baseline ap-
proach could be based on the successive computa-
tion of the k first layers of minima using iterative
skyline computation. However, the goal is to offer
more efficient algorithms with better performance
bounds.

• Finally, it is worth investigating top-k dominat-
ing queries under the streaming model of compu-
tation, by offering approximate results as well as
accuracy vs performance trade-offs.
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