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ABSTRACT
This work studies the problem of 2-dimensional searching
for the 3-sided range query of the form [a, b] × (−∞, c] in
both main and external memory, by considering a vari-
ety of input distributions. A dynamic linear main mem-
ory solution is proposed, which answers 3-sided queries in
O(log n + t) worst case time and scales with O(log log n)
expected with high probability update time, under contin-
uous µ-random distributions of the x and y coordinates,
where n is the current number of stored points and t is
the size of the query output. Our expected update bound
constitutes a considerable improvement over the O(log n)
update time bound achieved by the classic Priority Search
Tree of McCreight [23], as well as over the Fusion Priority
Search Tree of Willard [30], which requires O( log n

log log n
) time

for all operations. Moreover, we externalize this solution,
gaining O(logB n+ t/B) worst case and O(logBlogn) amor-
tized expected with high probability I/Os for query and
update operations respectively, where B is the disk block
size. Then, combining the Modified Priority Search Tree
[27] with the Priority Search Tree [23], we achieve a query
time of O(log log n + t) expected with high probability and
an update time of O(log log n) expected with high prob-
ability, under the assumption that the x-coordinates are
continuously drawn from a smooth distribution and the y-
coordinates are continuously drawn from a more restricted
class of distributions. The total space is linear. Finally, we
externalize this solution, obtaining a dynamic data struc-
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ture that answers 3-sided queries in O(logB log n + t/B)
I/Os expected with high probability, and it can be updated
in O(logB log n) I/Os amortized expected with high prob-
ability and consumes O(n/B) space, under the same as-
sumptions.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; H.2.2 [Database Man-

agement]: Physical Design—access methods

General Terms
Theory, Algorithms

Keywords
3-sided range queries, probabilistic guarantees, amortized
complexity

1. INTRODUCTION
Recently, a significant effort has been performed towards

developing worst case efficient data structures for range
searching in two dimensions [29]. In their pioneering work,
Kanellakis et al. [15] illustrated that the problem of in-
dexing in new data models (such as constraint, temporal
and object models), can be reduced to special cases of two-
dimensional indexing. In particular, they identified the 3-
sided range searching problem to be of major importance.

The 3-sided range query in the 2-dimensional space is
defined by a region of the form R = [a, b] × (−∞, c], i.e.,
an “open” rectangular region, and returns all points con-
tained in R. Figure 1 depicts examples of possible 3-sided
queries, defined by the shaded regions. Black dots repre-
sent the points comprising the result. In many applications,
only positive coordinates are used and therefore, the region
defining the 3-sided query always touches one of the two
axes, according to application semantics.

Consider a time evolving database storing measurements
collected from a sensor network. Assume further, that each
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Figure 1: Examples of 3-sided queries.

measurement is modeled as a multi-attribute tuple of the
form <id, a1, a2, ..., ad, time>, where id is the sensor identi-
fier that produced the measurement, d is the total number
of attributes, each ai, 1 ≤ i ≤ d, denotes the value of the
specific attribute and finally time records the time that this
measurement was produced. These values may relate to
measurements regarding temperature, pressure, humidity,
and so on. Therefore, each tuple is considered as a point inRd space. Let F :Rd → R be a real-valued ranking function
that scores each point based on the values of the attributes.
Usually, the scoring function F is monotone and without
loss of generality we assume that the lower the score the
“better” the measurement (the other case is symmetric).
Popular scoring functions are the aggregates sum, min, avg

or other more complex combinations of the attributes. Con-
sider the query: “search for all measurements taken between
the time instances t1 and t2 such that the score is below s”.
Notice that this is essentially a 2-dimensional 3-sided query
with time as the x axis and score as the y axis. Such a
transformation from a multi-dimensional space to the 2-
dimensional space is common in applications that require
a temporal dimension, where each tuple is marked with a
timestamp storing the arrival time [24]. This query may be
expressed in SQL as follows:

SELECT id, score, time
FROM SENSOR DATA

WHERE time>=t1 AND time<=t2 AND score<=s;

It is evident, that in order to support such queries, both
search and update operations (i.e., insertions/deletions) must
be handled efficiently. Search efficiency directly impacts
query response time as well as the general system perfor-
mance, whereas update efficiency guarantees that incoming
data are stored and organized quickly, thus, preventing de-
lays due to excessive resource consumption. Notice that
fast updates will enable the support of stream-based query
processing [4] (e.g., continuous queries), where data may
arrive at high rates and therefore the underlying data struc-
tures must be very efficient regarding insertions/deletions
towards supporting arrivals/expirations of data. There is a
plethora of other applications (e.g., multimedia databases,
spatio-temporal) that fit to a scenario similar to the previ-
ous one and they can benefit by efficient indexing schemes
for 3-sided queries.

Another important issue in such data intensive applica-

tions is memory consumption. Evidently, the best practice
is to keep data in main memory if this is possible. How-
ever, secondary memory solutions must also be available to
cope with large data volumes. For this reason, in this work
we study both cases offering efficient solutions both in the
RAM and I/O computation models. In particular, the rest
of the paper is organized as follows. In Section 3, we discuss
preliminary concepts, define formally the classes of used
probability distributions and present the data structures
that constitute the building blocks of our constructions.
Among them, we introduce the External Modified Prior-
ity Search Tree. In Section 4 we present the two theorems
that ensure the expected running times of our construc-
tions. The first solution is presented in Section 5, whereas
our second construction is discussed in Section 6. Finally,
Section 7 concludes the work and briefly discusses future
research in the area.

2. RELATED WORK AND CONTRIBUTION
The usefulness of 3-sided queries has been underlined

many times in the literature [7, 15]. Apart from the sig-
nificance of this query in multi-dimensional data intensive
applications [8, 15], 3-sided queries appear in probabilistic
threshold queries in uncertain databases. Such queries are
studied in a recent work of Cheng et. al. [7]. The prob-
lem has been studied both in main memory (RAM model)
and secondary storage (I/O model). A basic solution for
the main memory case is provided in [23] by using the Pri-
ority Search Tree. A more complicated, but more efficient
solution is the Fusion Priority Search Tree of [30].

Many external data structures such as grid files, various
quad-trees, z-orders and other space filling curves, k-d-B-
trees, hB-trees and various R-trees have been proposed. A
recent survey can be found in [12]. Often these data struc-
tures are used in applications, because they are relatively
simple, require linear space and perform well in practice
most of the time. However, they all have highly sub-optimal
worst case (w.c.) performance, whereas their expected per-
formance is usually not guaranteed by theoretical bounds,
since they are based on heuristic rules for the construction
and update operations.

Moreover, several attempts have been performed to ex-
ternalize Priority Search Trees, including [5], [14], [15], [26]
and [28], but all of them have not been optimal. The worst
case optimal external memory solution (External Priority
Search Tree) was presented in [2]. It consumes O(n/B) disk
blocks, performs 3-sided range queries in O(logB n + t/B)
I/Os w.c. and supports updates in O(logB n) I/Os amor-
tized.

In this work, we present new data structures for the
RAM and the I/O model that improve by a logarithmic
factor the update time in an expected sense and attempt to
improve the query complexity likewise. The bounds hold
with high probability (w.h.p.) under assumptions on the
distributions of the input coordinates. We propose two
multi-level solutions, each with a main memory and an ex-
ternal memory variant.

For the first solution, we assume that the x and y co-
ordinates are being continuously drawn from an unknown
µ-random distribution. It consists of two levels, for both



internal and external variants. The upper level of the first
solution consists of a single Priority Search Tree [23] that
indexes the structures of the lower level. These structures
are Priority Search Trees as well. For the external vari-
ant we substitute the structures with their corresponding
optimal external memory solutions, the External Priority
Search Trees [2]. The internal variant achieves O(log n +
t) w.c. query time and O(log log n) expected w.h.p. up-
date time, using linear space. The external solution attains
O(logB n + t/B) I/Os w.c. and O(logB log n) I/Os amor-
tized expected w.h.p. respectively, and uses linear space.

By the second solution, we attempt to improve the ex-
pected query complexity and simultaneously preserve the
update and space complexity. In order to do that, we
restrict the x-coordinate distribution to be (f(n), g(n))-
smooth, for appropriate functions f and g depending on
the model, and the y-coordinate distribution to belong to a
more restricted class of distributions. The smooth distribu-
tion is a superset of uniform and regular distributions. The
restricted class contains distributions such as the Zipfian
and the Power Law. The internal variant consists of two
levels, of which the lower level is identical to that of the
first solution. We implement the upper level with a static
Modified Priority Search Tree [27]. For the external vari-
ant, in order to achieve the desired bounds, we introduce
three levels. The lower level is again identical to that of the
first solution, while the middle level consists of O(B) size
buckets. For the upper level we use an External Modified
Priority Search Tree, introduced here for the first time. The
latter is a straight forward externalization of the Modified
Priority Search Tree and is static as well. In order to make
these trees dynamic we use the technique of global rebuild-
ing [21]. The internal version reduces the query complexity
to O(log log n + t) expected with high probability and the
external to O(logB log n + t/B) I/Os expected with high
probability.

Another more general but less efficient I/O approach was
proposed in [6]. In particular, that work studied a construc-
tive and not a probabilistic approach that achieves expected
doubly logarithmic complexities for the general case where
the x-coordinates are drawn from a smooth distribution and
the y-coordinates are arbitrarily distributed. Its main draw-
backs appear in the I/O-approach, where the block-size fac-
tor B is presented in the second logarithm (O(log logB n)).

3. DATA STRUCTURES AND PROBABIL-
ITY DISTRIBUTIONS

For the main memory solutions we consider the RAM
model of computation. We denote by n the number of ele-
ments that reside in the data structures and by t the size of
the query. The universe of elements is denoted by S. When
we mention that a data structure performs an operation in
an amortized expected with high probability complexity, we
mean the bound is expected to be true with high probabil-
ity, under a worst case sequence of insertions and deletions
of points.

For the external memory solutions we consider the I/O
model of computation [29]. That means that the input re-
sides in the external memory in a blocked fashion. When-
ever a computation needs to be performed to an element,

the block of size B that contains that element is transferred
into main memory, which can hold at most M elements. Ev-
ery computation that is performed in main memory is free,
since the block transfer is orders of magnitude more time
consuming. Unneeded blocks that reside in the main mem-
ory are evicted by a LRU replacement algorithm. Naturally,
the number of block transfers (I/O operation) consists the
metric of the I/O model.

Furthermore, we will consider that the points to be in-
serted are continuously drawn by specific distributions, pre-
sented in the sequel. The term continuously implies that
the distribution from which we draw the points remains
unchanged. Since the solutions are dynamic, the asymp-
totic bounds are given with respect to the current size of
the data structure. Finally, deletions of the elements of the
data structures are assumed to be uniformly random. That
is, every element present in the data structure is equally
likely to be deleted [20].

3.1 Probability Distributions
In this section, we overview the probabilistic distribu-

tions that will be used in the remainder of the paper. We
will consider that the x and y-coordinates are distinct ele-
ments of these distributions and will choose the appropriate
distribution according to the assumptions of our construc-
tions.

A probability distribution is µ-random if the elements
are drawn randomly with respect to a density function de-
noted by µ. For this paper, we assume that µ is unknown.

Informally, a distribution defined over an interval I is
smooth if the probability density over any subinterval of
I does not exceed a specific bound, however small this
subinterval is (i.e., the distribution does not contain sharp
peaks). Given two functions f1 and f2, a density function
µ = µ[a, b](x) is (f1, f2)-smooth [22, 1] if there exists a con-
stant β, such that for all c1, c2, c3, a ≤ c1 < c2 < c3 ≤ b,
and all integers n, it holds that:

∫ c2

c2−
c3−c1
f1(n)

µ[c1, c3](x)dx ≤
β · f2(n)

n

where µ[c1, c3](x) = 0 for x < c1 or x > c3, and µ[c1, c3](x) =
µ(x)/p for c1 ≤ x ≤ c3 where p =

∫ c3
c1

µ(x)dx. Intuitively,

function f1 partitions an arbitrary subinterval [c1, c3] ⊆
[a, b] into f1 equal parts, each of length c3−c1

f1
= O( 1

f1
); that

is, f1 measures how fine is the partitioning of an arbitrary
subinterval. Function f2 guarantees that no part, of the f1

possible, gets more probability mass than β·f2
n

; that is, f2

measures the sparseness of any subinterval [c2−
c3−c1

f1
, c2] ⊆

[c1, c3]. The class of (f1, f2)-smooth distributions (for ap-
propriate choices of f1 and f2) is a superset of both regular
and uniform classes of distributions, as well as of several
non-uniform classes [1, 17]. Actually, any probability dis-
tribution is (f1, Θ(n))-smooth, for a suitable choice of β.

The grid distribution assumes that the elements are in-
tegers that belong to a specific range [1, M ].

We define the restricted class of distributions as the class
that contains distributions used in practice, such as the
Zipfian, Power Law, e.t.c..

The Zipfian distribution is a distribution of probabilities



of occurrence that follows Zipf’s law. Let N be the number
of elements, k be their rank and s be the value of the ex-
ponent characterizing the distribution. Then Zipf’s law is

defined as the function f(k; s, N) = 1/ks

ΣN
k=1

1/ns . Intuitively,

few elements occur very often, while many elements occur
rarely.

The Power Law distribution is a distribution over proba-
bilities that satisfy Pr[X ≥ x] = cx−b for constants c, b > 0.

3.2 Data Structures
In this section, we describe the data structures that we

will combine in order to achieve the desired complexities.

3.2.1 Priority Search Trees
The classic Priority Search Tree (PST) [23] stores points

in the 2-d space. One of the most important operations that
the PST supports is the 3-sided query. The 3-sided query
consists of a half bounded rectangle [a, b] × (−∞, c] and
asks for all points that lie inside this area. Note that by
rotation we can unbound any edge of the rectangle. The
PST supports this operation in O(log n + t) w.c., where n
is the number of points and t is the number of the reported
points.

The PST is a combination of a search tree and a pri-
ority queue. The search tree (an (a, b)-tree suffices) allows
the efficient support of searches, insertions and deletions
with respect to the x-coordinate, while the priority queue
allows for easy traversal of points with respect to their y-
coordinate. In particular, the leaves of the PST are the
points sorted by x-coordinate. In the internal nodes of the
tree there are artificial values which are used for the efficient
searching of points with respect to their x-coordinate. In
addition, each internal node stores a point that has the min-
imum y-coordinate among all points stored in its subtree.
This corresponds to a tournament on the leaves of the PST.
For example, the root of the PST contains a point which
has minimum y-coordinate among all points in the plane,
as well as a value which is in the interval defined between
the x-coordinates of the points stored in the rightmost leaf
of the left subtree and the leftmost leaf of the right subtree
(this is true in the case of a binary tree). A PST imple-
mented with an red-black tree supports the operations of
insertion of a new point, deletion of an existing point and
searching for the x-coordinate of a point in O(log n) worst
case time.

Regarding the I/O model, after several attempts, a worst
case optimal solution was presented by Arge et al. in [2].
The proposed indexing scheme consumes O(n/B) space,
supports updates in O(logB n) amortized I/Os and answers
3-sided range queries in O(logB n + t/B) I/Os. We will re-
fer to this indexing scheme as the External Priority Search
Tree (EPST).

3.2.2 Interpolation Search Trees
In [18], a dynamic data structure based on interpola-

tion search (IS-Tree) was presented, which consumes linear
space and can be updated in O(1) time w.c. Furthermore,
the elements can be searched in O(log log n) time expected
w.h.p., given that they are drawn from a (nα, nβ)-smooth
distribution, for any arbitrary constants 0 < α, β < 1.

The externalization of this data structure, called interpo-
lation search B-tree (ISB-tree), was introduced in [16]. It
supports update operations in O(1) worst-case I/Os pro-
vided that the update position is given and search opera-
tions in O(logB log n) I/Os expected w.h.p. The expected
search bound holds w.h.p. if the elements are drawn by
a (n/(log log n)1+ǫ, n1−δ)-smooth distribution, where ǫ > 0
and δ = 1− 1

B
are constants. The worst case search bound

is O(logB n) block transfers.

3.2.3 Modified Priority Search Trees
A Modified Priority Search Tree (MPST) is a static data

structure that stores points on the plane and supports 3-
sided queries. It is stored as an array (Arr) in memory, yet
it can be visualized as a complete binary tree. Although it
has been presented in [19], we sketch it here again, in order
to introduce its external version.

Let T be a Modified Priority Search Tree (MPST) [27]
which stores n points of S. We denote by Tv the subtree of
T with root v. Let u be a leaf of the tree. Let Pu be the
root-to-leaf path for u. For every u, we sort the points in
Pu by their y-coordinate. We denote by P j

u the subpath of
Pu with nodes of depth bigger or equal to j (The depth of
the root is 0). Similarly Lj

u (respectively Rj
u ) denotes the

set of nodes that are left (resp. right) children of nodes of
P j

u and do not belong to P j
u . The tree structure T has the

following properties:

• Each point of S is stored in a leaf of T and the points
are in sorted x-order from left to right.

• Each internal node v is equipped with a secondary list
S(v). S(v) contains in the points stored in the leaves
of Tv in increasing y-coordinate.

• A leaf u also stores the following lists A(u), P j(u),
Lj(u) and Rj(u), for 0 ≤ j ≤ log n. The list P j(u),
Lj(u) and Rj(u) store, in increasing y-coordinate, point-
ers to the respective internal nodes. A(u) is an array
that indexes j.

Note that the first element of the list S(v) is the point of
the subtree Tv with minimum y-coordinate. Also note that
0 ≤ j ≤ log n, so there are log n such sets P j

u, Lj
u, Rj

u for
each leaf u. Thus the size of A is log n and for a given j,
any list P j(u), Lj(u) or Rj(u) can be accessed in constant
time. By storing the nodes of the tree T according to their
inorder traversal in an array Arr of size O(n), we can imply
the structure of tree T . Also each element of Arr contains
a binary label that corresponds to the inorder position of
the respective node of T , in order to facilitate constant time
lowest common ancestor (LCA) queries.

To answer a query with the range [a, b]×(−∞, c] we find
the two leaves u, w of Arr that contain a and b respectively.
If we assume that the leaves that contain a, b are given, we
can access them in constant time. Then, since Arr contains
an appropriate binary label, we use a simple LCA (Lowest
Common Ancestor) algorithm [11, 13] to compute the depth
j of the nearest common ancestor of u, w in O(1) time.
That is done by performing the XOR operation between the
binary labels of the leaves u and w and finding the position
of the first set bit provided that the left-most bit is placed in



Figure 2: The linear space MPST.

position 0. Afterwards, we traverse P j(u) until the scanned
y-coordinate is not bigger than c. Next, we traverse Rj(u),
Lj(w) in order to find the nodes whose stored points have
y-coordinate not bigger than c. For each such node v we
traverse the list S(v) in order to report the points of Arr
that satisfy the query. Since we only access points that lie
in the query, the total query time is O(t), where t is the
answer size.

The total size of the lists S(u) for each level of T is O(n).
Each of the O(n) leaves stores log n lists Pj , Lj and Rj , each
of which consumes O(log n) space. Thus the space for these
lists becomes O(n log2 n). By implementing these lists as
partially persistent sorted lists [3], their total space becomes
O(n log n), resulting in a total space of O(n log n) for these
lists. Thus, the total space occupied by T is O(n log n).

We can reduce the space of the structure by pruning
as in [9, 25]. However, pruning alone does not reduce the
space to linear. We can get better but not optimal re-
sults by applying pruning recursively. To get an optimal
space bound we will use a combination of pruning and ta-
ble lookup. The pruning method is as follows: Consider
the nodes of T , which have height log log n. These nodes
are roots of subtrees of T of size O(log n) and there are
O(n/ log n) such nodes. Let T1 be the tree whose leaves
are these nodes and let T i

2 be the subtrees of these nodes
for 1 ≤ i ≤ O(n/ log n). We call T1 the first layer of the
structure and the subtrees T i

2 the second layer. T1 and
each subtree T i

2 is by itself a Modified Priority Search Tree.
Note that T1 has size O(n/ log n) = O(n). Each subtree T i

2

has O(log n/ log log n) leaves and depth O(log log n). The
space for the second layer is O(n log n). By applying the
pruning method to all the trees of the second layer we get a
third layer which consists of O(n/ log log n) modified prior-
ity search trees each of size O(log log n). Ignoring the third
layer, the second layer needs now linear space, while the

O(n log n) space bottleneck is charged on the third level. If
we use table lookup [10] to implement the modified priority
search trees of the third layer we can reduce its space to
linear, thus consuming linear space in total.

In order to answer a query on the three layered structure
we access the microtrees that contain a and b and extract
in O(1) time the part of the answer that is contained in
them. Then we locate the subtrees T i

2 , T j
2 that contain the

representative leaves of the accessed microtrees and extract
the part of the answer that is contained in them by execut-
ing the query algorithm of the MPST. The roots of these
subtrees are leaves of T1. Thus we execute again the MPST
query algorithm on T1 with these leaves as arguments. Once
we reach the node with y-coordinate bigger than c, we con-
tinue in the same manner top down. This may lead us to
subtrees of the second layer that contain part of the an-
swer and have not been accessed yet. That means that
for each accessed tree of the second layer, we execute the
MPST query algorithm, where instead of a and b, we set as
arguments the minimum and the maximum x-coordinates
of all the points stored in the queried tree. The argument
c remains, of course, unchanged. Correspondingly, in that
way we access the microtrees of the third layer that contain
part of the answer. We execute the top down part of the
algorithm on them, in order to report the final part of the
answer.

Lemma 3.1. Given a set of n points on the plane we can
store them in a static data structure with O(n) space that al-
lows three-sided range queries to be answered in O(t) worst
case, where t is the answer size.

Proof. See [27].

The External Modified Priority Search Tree (EMPST) is
similar to the MPST, yet we store the lists in a blocked
fashion. In order to attain linear space in external memory
we prune the structure k times, instead of two times. The
pruning terminates when log(k) n = O(B). Since computa-
tion within a block is free, we do not need the additional
layer of microtrees. By that way we achieve O(n/B) space.

Assume that the query algorithm accesses first the two
leaves u and v of the k-th layer of the EMPST, which con-
tain a and b respectively. If they belong to different EMP-
STs of that layer, we recursively take the roots of these
EMPSTs until the roots ru and rv belong to the same
EMPST, w.l.o.g. the one on the upper layer. That is
done in O(k) = O(1) I/Os. Then, in O(1) I/Os we ac-
cess the j-th entry of A(ru) and A(rv), where j is the
depth of LCA(ru, rv), thus also the corresponding sublists
P j(ru), Rj(ru), Lj(ru) and P j(rv), R

j(rv), Lj(rv). Since the-
se sublists are y-ordered, by scanning them in t1/B I/Os
we get all the t1 pointers to the S-lists that contain part
of the answer. We access the S-lists in t1 I/Os and scan
them as well in order to extract the part of the answer
(let’s say t2) they contain. We then recursively access the
t2 S-lists of the layer below and extract the part t3 that
resides on them. In total, we consume t1/B + t1 · t2/B +
... + ti−1 · ti/B + ... + tk−1 · tk/B I/Os. Let pi the proba-
bility that ti = tpi where t is the total size of the answer
and

∑k
i=1 pi = 1. Thus, we need tp1/B +

∑k−1
i=1

tpi

B
· tpi+1

I/Os or tp1/B+
∑k−1

i=1
t
(pi+pi+1)

B
I/Os. Assuming w.h.p. an



equally likely distribution of answer amongst the k layers,

we need t
1
k /B +

∑k−1
i=1

t
1
k

+ 1
k

B
expected number of I/Os or

t
1
k /B +

∑k−1
i=1

t
2
k

B
. Since k >> 2, we need totally O(t/B)

expected w.h.p. number of I/Os.

Lemma 3.2. Given a set of n points on the plane we can
store them in a static data structure with O(n/B) space that
allows three-sided range queries to be answered in O(t/B)
expected w.h.p. case, where t is the size of the answer.

4. EXPECTED FIRST ORDER STATISTIC
OF UKNOWN DISTRIBUTIONS

In this section, we prove two theorems that will ensure
the expected running times of our constructions. They are
multilevel data structures, where for each pair of levels, the
upper level indexes representative elements (in our case,
point on the plane) of the lower level buckets. We call an
element violating when its insertion to or deletion from the
lower level bucket causes the representative of that bucket
to change, thus triggering an update on the upper level.
We prove that for an epoch of O(log n) updates, the num-
ber of violating elements is O(1) if they are continuously
being drawn from a µ-random distribution. Secondly, we
prove that for a broader epoch of O(n) updates, the num-
ber of violating elements is O(log n), given that the elements
are being continuously drawn from a distribution that be-
longs to the restricted class. Violations are with respect to
the y-coordinates, while the distribution of elements in the
buckets are with respect to x-coordinates.

But first, the proof of an auxiliary lemma is necessary.
Assume a sequence S of distinct numbers generated by a
continuous distribution µ = F over a universe U . Let |S|
denote the size of S . Then, the following holds:

Lemma 4.1. The probability that the next element q drawn
from F is less than the minimum element s in S is equal
to 1

|S|+1
.

Proof. Suppose that we have n random observations
X1,. . . ,Xn from an unknown continuous probability density
function f(X), with cumulative distribution µ = F (X),
X ∈ [a, b]. We want to compute the probability that the
(n+1)− th observation is less than min {X1, . . . , Xn}. Let
X(1) = min {X1, . . . , Xn}. Therefore, P

{

Xn+1 < X(1)

}

=
∑

x P
{

Xn+1 < X(1)/X(1) = x
}

· P
{

X(1) = x
}

(α).

It is easy to see that P
{

Xn+1 < X(1)/X(1) = x
}

= F (X)

= P {Xn+1 < x} (β). Also P
{

X(k) = x
}

= n ·f(x) ·
(

n−1
k−1

)

·

F (X)k−1 · (1 − F (X))n−k (γ), where X(k) is the k − th
smallest value in {X1, . . . , Xn}.

In our case k = 1, which intuitively means that we have
n choices for one in {X1, . . . , Xn} being the smallest value.
This is true if all the rest n−1 are more than x, which occurs
with probability: (1 − F (X))n−1 = (1 − P {X < x})n−1.
By (β) and (γ), expression (α) becomes:
P

{

Xn+1 < X(1)

}

=
∫ a

b
n·f(X)

(

n−1
k−1

)

·F (X)·(1 − F (X))n−1

dX. After some mathematical manipulations, we have that:
P

{

Xn+1 < X(1)

}

=
∫ a

b
n·f(X)·(1 − F (X))n−1·F (X)dX =

∫ a

b
[− (1 − F (X))n]

′

F (X) dX =
∫ a

b
[− (1 − F (X))n · F (X)]

′

dX +
∫ a

b
(1 − F (X))n·F

′

(X)dX =
{

− (1 − F (X))n · F (x)|ba
}

+
∫ a

b
−

[

(1−F (X))n+1

n+1

]
′

dX = − (1 − F (b))n·F (b)+(1 − F (a))n·

F (a)−
{

(1−F (X))n+1

n+1
|ba

}

= −
{

(1−F (b))n+1

n+1
− (1−F (a))n+1

n+1

}

=
1

n+1

Apparently, the same holds if we want to maintain the
maximum element of the set S .

Proposition 4.2. Suppose that the input elements have
their x-coordinate generated by an arbitrary continuous dis-
tribution µ on [a, b] ⊆ ℜ. Let n be the elements stored in
the data structure at the latest reconstruction. An epoch
starts with log n updates. During the i-th update let N(i) ∈
[n, r · n], with constant r > 1, denote the number of ele-
ments currently stored into the n

log n
buckets that partition

[a, b] ⊆ ℜ. Then the N(i) elements remain µ randomly
distributed in the buckets per i-th update.

Proof. The proof is analogous to [17, Lem. 2] and is
omitted.

Theorem 4.3. For a sequence of O(log n) updates, the
expected number of violating elements is O(1), assuming
that the elements are being continuously drawn from a µ-
random distribution.

Proof. According to Prop. 4.2, there are N(i) ∈ [n, r·n]
(with constant r > 1) elements with their x-coordinates µ-
randomly distributed in the buckets j = 1, . . . , n

log n
, that

partition [a, b] ⊆ ℜ. By [17, Th. 4], with high probability,
each bucket j receives an x-coordinate with probability pj =
Θ( log n

n
). It follows that during the i-th update operation,

the elements in bucket j is a Binomial random variable with
mean pj · N(i) = Θ(log n).

The elements with x-coordinates in an arbitrary bucket j

are αN(i) with probability
(

N(i)
αN(i)

)

p
αN(i)
j (1−pj)

(1−α)N(i) ∼
[

( pj

α

)α
(

1−pj

1−α

)1−α
]N(i)

. In turn, these are ≤ αN(i) =

pj

2
N(i) (less than half of the bucket’s mean) with proba-

bility

≤
pjN(i)

2
·

[

(pj

α

)α
(

1 − pj

1 − α

)1−α
]N(i)

→ 0 (1)

as n → ∞ and α =
pj

2
.

Suppose that an element is inserted in the i-th update.
It induces a violation if its y-coordinate is strictly the min-
imum element of the bucket j it falls into.

• If the bucket contains ≥
pj

2
log N(i) ≥

pj

2
log n coordi-

nates then by Lemma 4.1 element y incurs a violation
with probability O( 1

log n
).

• If the bucket contains <
pj

2
log N(i) coordinates, which

is as likely as in Eq. (1), then element y may induce
≤ 1 violation.

Putting these cases together, element y expectedly induces
at most O( 1

log n
)+Eq. (1)= O( 1

log n
) violations. We con-

clude that during the whole epoch of log n insertions the
expected number of violations are at most log n · O( 1

log n
)

plus log n· Eq. (1) which is O(1).



Theorem 4.4. For a sequence of O(n) updates, the ex-
pected number of violating elements is O(log n), assuming
that x− coordinates are drawn from a continuous smooth
distribution and the y− coordinates are drawn from the re-
stricted class of distributions (power-law or zipfian).

Proof. Suppose an element is inserted, with its y-coordinate
following a discrete distribution (while its x-coordinate is
arbitrarily distributed) in the universe {y1, y2, . . .} with yi <
yi+1,∀i ≥ 1. Also, let q = Pr[y > y1] and y∗

j the min
y-coordinate of the elements in bucket j as soon as the
current epoch starts. Clearly, the element just inserted in-
curs a violation when landing into bucket j with probability
Pr[y < y∗

j ].

• If the bucket contains ≥
pj

2
log N(i) ≥

pj

2
log n co-

ordinates, then coordinate y incurs a violation with

probability ≤ q
pj
2

log n. (In other words, a violation
may happens when at most all the Ω(log n) coordi-
nates of the elements in bucket j are > y1, that is,
when y∗

j > y1.)

• If the bucket contains <
pj

2
log N(i) coordinates, which

is as likely as in Eq. (1) then coordinate y may induces
≤ 1 violation.

All in all, y coordinate expectedly induces ≤ qΩ(log n)+
Eq. (1) violations. Thus, during the whole epoch of n
insertions the expected number of violations are at most

n·
(

qΩ(log n)
)

+n· Eq. (1) = nqΩ(log n)+o(1) violations. This

is at most c · log n = O(log n) if q ≤
(

c log n
n

)(log n)−1

→ e−1

as n → ∞.

Remark 4.5. Note that Power Law and Zipfian distribu-

tions have the aforementioned property that q ≤
(

c log n
n

)(log n)−1

→ e−1 as n → ∞.

5. THE SOLUTION FOR RANDOM DISTRI-
BUTIONS

In this section, we present the construction that works
under the assumptions that the x and y-coordinates are
continuously drawn by an unknown µ-random distribution.

The structure we propose consists of two levels, as well as
an auxiliary data structure. All of them are implemented as
PSTs. The lower level partitions the points into buckets of
almost equal logarithmic size according to the x-coordinate
of the points. That is, the points are sorted in increasing
order according to x-coordinate and then divided into sets
of O(log n) elements each of which constitutes a bucket. A
bucket C is implemented as a PST and is represented by a
point Cmin which has the smallest y-coordinate among all
points in it. This means that for each bucket the cost for
insertion, deletion and search is equal to O(log log n), since
this is the height of the PST representing C.

The upper level is a PST on the representatives of the
lower level. Thus, the number of leaves in the upper level

is O
(

n
log n

)

. As a result, the upper level supports the op-

erations of insert, delete and search in O(log n) time. In
addition, we keep an extra PST for insertions of violating
points. Under this context, we call a point p violating, when

its y-coordinate is less than Cmin of the bucket C in which
it should be inserted. In the case of a violating point we
must change the representative of C and as a result we
should make an update operation on the PST of the upper
level, which costs too much, namely O(log n).

We assume that the x and y-coordinates are drawn from
an unknown µ-random distribution and that the µ function
never changes. Under this assumption, according to the
combinatorial game of bins and balls, presented in Section 5
of [17], the size of every bucket is O(logc n), where c > 0 is a
constant, and no bucket becomes empty w.h.p. We consider
epochs of size O(log n), with respect to update operations.
During an epoch, according to Theorem 4.3, the number of
violating points is expected to be O(1) w.h.p. The extra
PST stores exactly those O(1) violating points. When a
new epoch starts, we take all points from the extra PST and
insert them in the respective buckets in time O(log log n)
expected w.h.p. Then we need to incrementally update the
PST of the upper level. This is done during the new epoch
that just started. In this way, we keep the PST of the upper
level updated and the size of the extra PST constant. As a
result, the update operations are carried out in O(log log n)
time expected w.h.p., since the update of the upper level
costs O(1) time w.c.

The 3-sided query can be carried out in the standard
way. Assume the query [a, b] × (−∞, c]. First we search
down the PST of the upper level for a and b. Let Pa be the
search path for a and Pb for b respectively. Let Pm = Pa ∩
Pb. Then, we check whether the points in the nodes on Pa∪
Pb belong to the answer by checking their x-coordinate as
well as their y-coordinate. Then, we check all right children
of Pa − Pm as well as all left children of Pb − Pm. In this
case we just check their y-coordinate since we know that
their x-coordinate belongs in [a, b]. When a point belongs
in the query, we also check its two children and we do this
recursively. After finishing with the upper level we go to
the respective buckets by following a single pointer from the
nodes of the upper level PST of which the points belong in
the answer. Then we traverse in the same way the buckets
and find the set of points to report. Finally, we check the
extra PST for reported points. In total the query time is
O(log n + t) w.c.

Note that deletions of points do not affect the correctness
of the query algorithm. If a non violating point is deleted, it
should reside on the lower level and thus it would be deleted
online. Otherwise, the auxiliary PST contains it and thus
the deletion is online again. No deleted violating point is
incorporated into the upper level, since by the end of the
epoch the PST contains only inserted violating points.

Theorem 5.1. There exists a dynamic main memory data
structure that supports 3-sided queries in O(log n + t) w.c.
time, can be updated in O(log log n) expected w.h.p. and
consumes linear space, under the assumption that the x and
y-coordinates are continuously drawn from a µ-random dis-
tribution.

If we implement the above solution by using EPSTs [2],
instead of PSTs, then the solution becomes I/O-efficient,
however the update cost is amortized instead of worst case.
Thus we get that:



Figure 3: The internal memory construction for the

restricted distributions

Theorem 5.2. There exists a dynamic external memory
data structure that supports 3-sided queries in O(logB n +
t/B) w.c. time, can be updated in O(logB log n) amor-
tized expected w.h.p. and consumes linear space, under the
assumption that the x and y-coordinates are continuously
drawn from a µ-random distribution.

6. THE SOLUTION FOR THE SMOOTH AND
THE RESTRICTED DISTRIBUTIONS

We would like to improve the query time and simulta-
neously preserve the update time. For this purpose we will
incorporate to the structure the MPST, which is a static
data structure. We will dynamize it by using the technique
of global rebuilding [21], which unfortunately costs O(n)
time.

In order to retain the update time in the same sublog-
arithmic levels, we must ensure that at most a logarith-
mic number of lower level structures will be violated in a
broader epoch of O(n) updates. Since the violations con-
cern the y-coordinate we will restrict their distribution to
the more restricted class, since Theorem 4.4 ensures exactly
this property. Thus, the auxiliary PST consumes at most
O(log n) space during an epoch.

Moreover, we must waive the previous assumption on
the x-coordinate distribution, as well. Since the query time
of the previous solution was O(log n) we could afford to pay
as much time in order to locate the leaves containing a and
b. In this case, though, this blows up our complexity. If,
however, we assume that the x-coordinates are drawn from
a (nα, nβ)-smooth distribution, we can use an IS-tree to
index them, given that 0 < α, β < 1. By doing that, we
pay w.h.p. O(log log n) time to locate a and b.

When a new epoch starts we take all points from the ex-
tra PST and insert them in the respective buckets in time
O(log log n) w.h.p. During the epoch we gather all the vio-
lating points that should access the MPST and the points
that belong to it and build in parallel a new MPST on them.
At the end of the O(n) epoch, we have built the updated
version of the MPST, which we use for the next epoch that

just started. By this way, we keep the MPST of the upper
level updated and the size of the extra PST logarithmic. By
incrementally constructing the new MPST we spend O(1)
time worst case for each update of the epoch. As a result,
the update operation is carried out in O(log log n) time ex-
pected with high probability.

For the 3-sided query [a, b]× (−∞, c], we first access the
leaves of the lower level that contain a and b, through the
IS-tree. This costs O(log log n) time w.h.p. Then the query
proceeds bottom up in the standard way. First it traverses
the buckets that contain a and b and then it accesses the
MPST from the leaves of the buckets’ representatives. Once
the query reaches the node of the MPST with y-coordinate
bigger than c, it continues top down to the respective buck-
ets, which contain part of the answer, by following a single
pointer from the nodes of the upper level MPST. Then we
traverse top down these buckets and complete the set of
points to report. Finally, we check the auxiliary PST for
reported points. The traversal of the MPST is charged on
the size of the answer O(t) and the traversal of the lower
level costs O(log log n) expected with high probability. Due
to Theorem 4.4, the size of the auxiliary PST is with high
probability O(log n), thus the query spends O(log log n) ex-
pected with high probability for it. Hence, in total the
query time is O(log log n + t).

Theorem 6.1. There exists a dynamic main memory data
structure that supports 3-sided queries in O(log log n + t)
time expected w.h.p., can be updated in O(log log n) expected
w.h.p. and consumes linear space, under the assumption
that the x-coordinates are continuously drawn from a µ-
random distribution and the y-coordinates are drawn from
the restricted class of distributions.

In order to extend the above structure to work in exter-
nal memory we will follow a similar scheme with the above
structure. We use an auxiliary EPST and index the leaves
of the main structure with and ISB-tree. This imposes that
the x-coordinates are drawn from a (n/(log log n)1+ǫ, n1−δ)-
smooth distribution, where ǫ > 0 and δ = 1− 1

B
, otherwise

the search bound would not be expected to be doubly loga-
rithmic. Moreover, the main structure consists of three lev-
els, instead of two. That is, we divide the n elements into
n′ = n

log n
buckets of size log n, which we implement as EP-

STs (instead of PSTs). This will constitute the lower level
of the whole structure. The n′ representatives of the EPSTs
are again divided into buckets of size O(B), which consti-

tute the middle level. The n′′ = n′

B
representatives are

stored in the leaves of an external MPST (EMPST), which
constitutes the upper level of the whole structure. In total,
the space of the aforementioned structures is O(n′ + n′′ +

n′′ log(k) n′′) = O( n
log n

+ n
B log n

+ n
B log n

B) = O( n
log n

) =

O( n
B

), where k is such that log(k) n′′ = O(B) holds.
The update algorithm is similar to the variant of in-

ternal memory. The query algorithm first proceeds bot-
tom up. We locate the appropriate structures of the lower
level in O(logB log n) I/Os w.h.p., due to the assumption
on the x-coordinates. The details for this procedure in the
I/O model can be found in [16]. Note that if we assume
that the x-coordinates are drawn from the grid distribu-
tion with parameters [1, M ], then this access step can be



Figure 4: The external memory construction for the

restricted distributions

realized in O(1) I/Os. That is done by using an array A
of size M as the access data structure. The position A[i]
keeps a pointer to the leaf with x-coordinate not bigger
than i [27]. Then, by executing the query algorithm, we
locate the at most two structures of the middle level that
contain the representative leaves of the EPSTs we have ac-
cessed. Similarly we find the representatives of the middle
level structures in the EMPST. Once we reached the node
whose minimum y-coordinate is bigger than c, the algo-
rithm continues top down. It traverses the EMPST and
accesses the structures of the middle and the lower level
that contain parts of the answer. The query time spent
on the EMPST is O(t/B) I/Os. All accessed middle level
structures cost O(2 + t/B) I/Os. The access on the lower
level costs O(logB log n+t/B) I/Os. Hence, the total query
time becomes O(logB log n + t/B) I/Os expected with high
probability. We get that:

Theorem 6.2. There exists a dynamic external memory
data structure that supports 3-sided queries in O(logB log n+
t/B) expected w.h.p., can be updated in O(logB log n) ex-
pected w.h.p. and consumes O(n/B) space, under the as-
sumption that the x-coordinates are continuously drawn from
a smooth-distribution and the y-coordinates are drawn from
the restricted class of distributions.

7. CONCLUSIONS
We considered the problem of answering three sided range

queries of the form [a, b] × (−∞, c] under sequences of in-
serts and deletes of points, trying to attain linear space and
doubly logarithmic expected w.h.p. operation complexities,
under assumptions on the input distributions. We proposed
two solutions, which we modified appropriately in order to
work for the RAM and the I/O model. Both of them con-
sist of combinations of known data structures that support
the 3-sided query operation.

The internal variant of the first solution combines Pri-
ority Search Trees [23] and achieves O(log log n) expected

w.h.p. update time and O(log n + t) w.c. query time, us-
ing linear space. Analogously, the external variant of the
first solution combines External Priority Search Trees [2]
and achieves the update operation in O(logB log n) I/Os ex-
pected w.h.p. and the query operation in O(logB n + t/B)
I/Os amortized expected w.h.p., using linear space. The
bounds are true under the assumption that the x and y-
coordinates are drawn continuously from µ-random distri-
butions.

In order to improve exponentially on the query complex-
ity, we proposed a second solution with stronger assump-
tions on the coordinate distributions. We restricted the
y-coordinates to be continuously drawn from a restricted
distribution and the x- coordinates to be drawn from (f(n),
g(n))-smooth distributions, for appropriate functions f and
g, depending on the model. The internal variant of this
solution can be accessed by a IS-tree [18], incorporates
the Modified Priority Search Tree [19] and decreases the
query complexity to O(log log n + t) expected w.h.p., pre-
serving the update and space complexity. The external vari-
ant combines the External Modified Priority Search Tree,
which was presented here, with External Priority Search
Trees and is accessed by an ISB-tree [16]. The update time
is O(logB log n) I/Os expected w.h.p., the query time is
O(logB log n + t/B) I/Os and the space is linear.

The proposed solutions are practically implementable.
Thus, we leave as a future work an experimental perfor-
mance evaluation, in order to prove in practice the improved
query performance and scalability of the proposed methods.
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