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ABSTRACT
Top-k dominating queries combine the natural idea of se-
lecting the k best items with a comprehensive “goodness”
criterion based on dominance. A point p1 dominates p2 if
p1 is as good as p2 in all attributes and is strictly better in
at least one. Existing works address the problem in settings
where data objects are multidimensional points. However,
there are domains where we only have access to the dis-
tance between two objects. In cases like these, attributes
reflect distances from a set of input objects and are dynam-
ically generated as the input objects change. Consequently,
prior works from the literature can not be applied, despite
the fact that the dominance relation is still meaningful and
valid. For this reason, in this work, we present the first study
for processing top-k dominating queries over distance-based
dynamic asttribute vectors, defined over a metric space. We
propose four progressive algorithms that utilize the proper-
ties of the underlying metric space to efficiently solve the
problem, and present an extensive, comparative evaluation
on both synthetic and real world data sets.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

Keywords
Dominating queries, Metric space, Progressive algorithms.

1. INTRODUCTION
Preference-based queries [14] allow users to enforce ad-

ditional constraints and better guide the object selection
process. One way to express such preferences is to provide a
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scoring function over the object’s attributes. Another way is
to give some hints regarding the maximization or minimiza-
tion of attribute values, without giving an explicit scoring
function. Based on these alternatives, there are two classic
preference-based query types that have been studied exten-
sively in the literature: (i) top-k and (ii) skyline queries.

Top-k query processing has been an active research area
spanning disciplines like Web search, p2p-based retrieval,
multimedia databases, to name a few. The query’s power
lies in its flexibility, supporting user-defined and ad-hoc scor-
ing functions, and its ability to bound the number of results
through the parameter k. Unfortunately, the selection of
a meaningful scoring function is not always easy, since dif-
ferent scoring functions generally produce different results.
Moreover, top-k queries are sensitive to value scaling.

On the other hand, skyline queries rely on the dominance
property. More specifically, p dominates q, if p is at least as
good as q in every attribute and it is strictly better that q
in at least one of them. The most important advantage of
skyline queries is that no magic parameters or scoring func-
tions are required. The result also remains unaffected by
attribute scaling. However, the result is a set, i.e., no inher-
ent ranking of the points is supported, and its size depends
on the data set’s underlying properties.

It is easy to realize that these preference-based queries are
complementary. In an attempt to combine their advantages
and cancel out their disadvantages, a hybrid approach was
proposed in [24, 25]: the top-k dominating query. This new
query ranks objects (as in top-k queries) according to a scor-
ing function that relies on dominance (as in skyline queries):
The score of an object pi equals the number of points that
pi dominates. Overall, top-k dominating queries exhibit the
following desirable properties: i) the result size is control-
lable, ii) it is scale invariant, iii) it is based on an intuitive
score value for each object, and iv) no other user-defined
scoring function is required.

The importance of this query has been prominently ex-
emplified by the numerous works on the topic, and is partly
due to its simple, yet intuitive explanation: the more points
that a point p dominates, the better p is. Moreover, it sim-
ulates how users select items, in lack of better alternatives:
e.g., if the “best” camera is out-of-stock, the second best is
picked, etc. The query was initially proposed in [24] and
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Figure 1: A dominating query with two query ob-
jects q1 and q2.

later improved in [25]. It has been found useful in uncertain
databases [16] and in streaming settings [15]. Its practicality
was also demonstrated in subspace dominance queries [22].
Unfortunately, all these techniques work under the as-

sumption that each object is associated with an attribute
vector, and that dominance is based on the attribute val-
ues. This requirement renders them inapplicable in do-
mains where vector-based representation is impossible or
inefficient, e.g., biology, graphs, etc. For instance, consider
a graph that captures object interactions e.g., a protein-
protein interaction network; DNA sequences are another
case, commonly represented by aminoacid strings.
For this reason, we study, for the first time, algorithms for

top-k dominating queries where objects are defined in any
metric space and the attribute values are generated dynam-
ically based on a distance measure respecting the metric
space properties. The dynamic nature of attributes poses
significant challenges in comparison to the static case, be-
cause attribute values are not known in advance and, there-
fore, traditional multidimensional indexing schemes (e.g., R-
trees) cannot be employed to provide efficient access.
Essentially, a top-k dominating query in a metric space

accepts as input a set of user-selected objects {q1, q2, ..., qm}
and returns a set A with k objects, that have the highest
dominance scores according to the distance measure used.
For example, in a protein-protein interaction network, the
query points could be proteins or effector molecules that en-
hance / inhibit a protein’s activity. The distance between
objects could be defined by shortest paths, maximum flow
or other measures [17], and could represent how well pro-
teins interact with the query objects. Proteins that interact
more with all query points are better than points which in-
teract less. A top-3 dominating query will return the 3 pro-
teins which are more frequently better at interacting with
the query points. The result could indicate some under-
lying structural or functional commonalities, which other
researchers can exploit.
To illustrate our idea further, Figure 1 shows a top-3 dom-

inating query in a metric space with 25 2-dimensional points,
under the Euclidean distance. Two query objects q1 and q2
are also depicted. Point p1 is definitely the top-1 object,
as it is the nearest neighbor of both query points q1, q2.
Since no other point lies inside either C1(q1, d(q1, p1)) or

C2(q2, d(q2, p1)), p1 dominates all other points and its domi-
nance score is dom(p1) = 24. The second nearest neighbor of
q1 is p2, whereas that of q2 is p3. Since d(p2, q1) < d(p3, q1)
(p3 lies outside C3q1, d(p2, q1))) and d(p2, q2) > d(p3, q2)
(p2 lies outside C4(q2, d(p3, q2)) ), p2 and p3 do not dom-
inate each other. However, p2 and p3 dominate all other
points since there are no points lying inside the correspond-
ing dotted circles (except p1). Thus their dominance score
is dom(p2)=22 and dom(p3)=22, whereas remaining points
have a dominance score less than 22. Therefore, the set
{p1, p2, p3} is the final answer to the top-3 dominating query
based on query points q1 and q2 .

Finally, a desirable property in preference-based query
processing is progressiveness. A progressive algorithm de-
termines the best object first, then the second best and
so on, until all k objects composing the answer are deter-
mined. Moreover, the user may stop the query execution if
she thinks that the number of returned results is adequate.
Our techniques enable progressive computation, providing
non-blocking query execution plans.

Contributions. In summary, the contributions of our work
are summarized as follows:

1. We introduce, for the first time, the concept of (dy-
namic) top-k dominating queries in metric spaces, gen-
eralizing the concept of dominating queries in multi-
dimensional data sets.

2. We propose efficient techniques for answering metric-
based top-k dominating queries, all of which satisfy
the progressiveness requirement.

3. We present a detailed performance evaluation of our
techniques, based on real-life and synthetic data sets,
under different distance functions. Our pruning-based
algorithms (PBA1 and PBA2) offer a performance im-
provement by one to three orders of magnitude, com-
pared to the alternatives, provided that the underlying
metric access method supports incremental nearest-
neighbor to ensure progressiveness.

Roadmap. The rest of the article is organized as follows:
Section 2 describes briefly related work in the area. Section
3 presents some preliminary concepts regarding the topic of
research and Section 4 studies in detail the query processing
algorithms SBA, ABA, PBA1 and PBA2 as well as the theoretical
infrastructure that these algorithms are based on. Section 5
offers performance evaluation results based on diverse data
sets and distance functions. Finally, Section 6 concludes the
work and discusses briefly future work in the area.

2. RELATED WORK
Top-k dominating queries have been proposed in [24, 25]

as an alternative to general top-k and skyline queries. The
ranking provided by this query is quite intuitive, it does not
require specialized scoring functions and the size of the out-
put is controlled by the parameter k. Among the algorithms
studied, CBT shows the best overall performance. However,
it requires the existence of an aggregate R-tree index and
lacks progressiveness, since all k points must be first deter-
mined before the answer is returned. In addition, query pro-
cessing involves all the available dimensions, which is quite
restrictive taking into account that users usually focus on
few attributes.



In [16] an algorithm has been proposed supporting top-k
dominating queries in uncertain databases. The proposed
approach has the same limitations with the previous one,
since it is again based on aggregate R-trees. The novel fea-
tures of this method is that it handles uncertainty in a clear
and meaningful way in applications where uncertainty can-
not be avoided. In [26] a randomized algorithm is proposed
supporting probabilistic top-k dominating queries in uncer-
tain data. Again, the proposed approach is based on ag-
gregate R-trees. The proposed algorithm is highly accurate
when the data cardinality and the dimensionality is low.
The concepts of top-k dominating queries have been also
used in [21]. That work studies web service discovery is-
sues by using dominance relationships through multi-criteria
matching. Finally, continuous monitoring of top-k dominat-
ing query results has been studied in [15] by taking a sliding
window approach.
The common characteristic of the aforementioned approa-

ches is that they are based on vector spaces, where the
concept of dominance is directly applied on attribute val-
ues, which are a priori available. There is no work in the
literature studying the problem of dominating query pro-
cessing under the dynamic scenario where attribute values
are generated on-the-fly representing distances from user-
defined query objects. Although skyline queries have been
studied over dynamic attributes [20] and metric spaces [6, 7,
12, 9], there is no work studying the problem of top-k dom-
inating query processing in a metric space, where coordi-
nates are dynamically defined by means of a metric function.
This seems a natural generalization, taking into account that
many modern applications rely solely on triangular inequal-
ity to support similarity queries [5].
In addition to the absence of algorithms for metric-based

dominating queries, another limitation of previously pro-
posed methods is that they lack progressiveness. Progres-
siveness is an important property since it enables the incre-
mental production of results (relevant objects are retrieved
one-by-one as soon as they are available). The only related
progressive algorithm is Branch-and-Bound Skyline (BBS)
[18] which has been designed to answer skyline queries in
multi-dimensional data sets indexed by an R-tree. Thus,
BBS is not applicable in our case. Moreover, the algorithm
in [7] although works with metric-based access methods it
is designed to report the skyline, and it is not equipped to
handle the concept of dominance score.
In [22] the authors study efficient progressive algorithms

for top-k dominating queries in multi-dimensional data sets,
where the user may select a subset of the available dimen-
sions. These techniques assume a vertical decomposition of
the data set, where each dimension is organized separately,
and therefore, they are not applicable in the metric case
explored in this paper. However, some results from [22] are
adapted and utilized in the present work, in order to provide:
(i) efficient score computation and (ii) effective pruning.

3. BASIC CONCEPTS
In this section, we present some basic concepts and defi-

nitions regarding the focus of our research, in order to keep
the work self-contained. Table 1 depicts the basic notations
that are frequently used in the sequel. In general, sets of
objects and query results are depicted by uppercase letters.
Let D be a set of data objects and d() a function such

that: d : D × D −→ R, which quantifies the dissimilarity

Symbol Description
D the set of data objects
n = |D| the number of data objects
Q the set of query objects
m = |Q| the number of query object
d() a metric distance function
NN(q, k) k-NN of object q
ANN(Q, k) top-k aggregate NN objects of Q
adist(p,Q) aggregate distance of object p from Q
p ≺ r object p dominates object r
dom(p) domination score of p respecting Q
MSS(Q) metric space skyline with respect to Q
MSD(Q, k) top-k dominating objects with respect to Q

Table 1: Frequently used symbols.

between data objects satisfying the following properties:

∀p, q ∈ D, d(p, q) ≥ 0 (positivity)
∀p, q ∈ D, d(p, q) = d(q, p) (symmetry)
∀p ∈ D, d(p, p) = 0 (reflexivity)
∀p, q, x ∈ D, d(p, q) ≤ d(p, x)+d(x, q) (triangular inequality)

Then, d is called a metric function and the pair (D, d) is
called a metric space. In case that the objects of the metric
space are tuples (records) with numeric attributes, then the
pair (D, d) is called a vector space, and, among others, any
Lp norm may be used as the distance function. Note that a
vector space is a special case of a metric space.

Definition 1. Let D be a data set, q ∈ D and d() be a
distance function. A k-nearest neighbor query based on q,
denoted as NN(q, k), determines the k closest objects with
respect to q. Formally: NN(q, k) = A : |A| = k ∧ ∀p ∈
A, ∀x ∈ (D −A), d(q, p) ≤ d(q, x).

Definition 2. If (D, d) is a metric space, Q is a set of
query objects Q = {q1, q2, ..., qm} and f() is a monotonically
increasing function then the aggregate distance between an
object p and the query set Q is defined as follows:

adist(p,Q) = f(d(p, q1), d(p, q2), ..., d(p, qm))

The result of an aggregate nearest neighbor query, denoted
as ANN(Q, k), contains the k objects with the minimum
aggregate distance computed based on the distances from
Q. An important factor is the selection of the aggregate
function f(), which affects the performance of these queries.
Commonly used aggregate functions are min, max, avg and
sum (see [19]).

Definition 3. Let (D, d) be a metric space and Q be a
set of query objects Q = {q1, q2, ..., qm}. For any two objects
p, r ∈ D, p dominates r (p ≺ r) if the following condition
holds:

∀i : 1 ≤ i ≤ m, d(p, qi) ≤ d(r, qi) ∧ ∃qj ∈ Q, d(p, qj) < d(r, qj)

Therefore, p dominates r, if and only if p has an equal or
smaller distance than r to all query objects qi ∈ Q, and p
has a smaller distance than r to at least one query object.
The set of objects in D which are not dominated by any
other object (according to the distances from Q) is called the
metric space skyline with respect to Q, denoted as MSS(Q).



In [24] top-k dominating queries were defined for objects
with fixed coordinates. In this paper, we generalize this
concept by considering metric space dominating queries, de-
noted as MSD(Q, k). We use the function dom(p) to denote
the number of objects dominated by an object p with respect
to a particular query set, i.e., dom(p) = |{r ∈ D : p ≺ r}|.
The answer to such a query consists of the set of k objects
that have the highest scores with respect to the ranking
function dom(). In some cases, the distance vectors of two
or more objects with respect to a query set may be the same.
In this case, we say that these objects are equivalent:

Definition 4. Two objects p1 and p2 are called equiv-
alent with respect to a query set Q = {q1, q2, ..., qm}, if
∀i : 1 ≤ i ≤ m, dist(p1, qi) = dist(p2, qi).

In the following section, we study progressive algorithms
for efficient processing of metric space dominating queries.
The performance of the algorithms is measured by consid-
ering the CPU and I/O cost and most notably, the number
of distance computations applied. In applications where the
distance measure is computationally expensive (e.g., protein-
protein interaction, DNA sequences), the cost of distance
computations is the most significant performance index, dom-
inating the overall processing cost. Note that this problem
poses some non-trivial challenges such as: (i) objects are
defined in a metric space, (ii) the dominance relationship
is defined in a dynamically generated set of attributes, (iii)
progressive computation is desirable.

4. ALGORITHMIC TECHNIQUES
In this section, we present algorithms for metric-based

top-k dominating queries. Initially, we discuss briefly some
basic issues regarding the indexing mechanisms and some
important properties and then we study the details of the
algorithms.

4.1 Indexing Issues
One of the most important factors that may affect perfor-

mance is the indexing scheme used. Since we focus on met-
ric spaces, metric-based access methods may be employed.
Among the available metric-based access methods studied in
the literature [5, 2, 3, 4, 13] we select the M-tree [8] which is
well appreciated due to its simplicity, its resemblance to the
B-tree, its excellent performance and its ability to handle
dynamic data sets (i.e., insertions and deletions). However,
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Figure 2: Access methods employed.

our methods are orthogonal to the indexing scheme used,
as long as incremental k-nearest-neighbor queries are sup-
ported.

Figure 2 depicts the access methods utilized by the stud-
ied techniques. In addition to the M-tree, an auxiliary B+-
tree (denoted as AuxB+-tree) is being used, which serves
as a temporary index for intermediate computations. Each
record contains the object ID and specific counters that
keep the current cardinalities of intermediate set calculations
such as the number of times that an object retrieved during
scanning, a clone counter used for exact score computation
during backward scanning, its current max-rank position in
the nearest neighbor order from the query objects. Dur-
ing execution, the scanned object ID’s are inserted into the
AuxB+-tree and their corresponding counters are updated.
The usefulness of this structure will be clarified later. Both
the M-tree and the AuxB+-tree are supported by an LRU
buffer which reduces I/O cost due to locality of references.

4.2 The Skyline-Based Algorithm (SBA)
The first algorithm we study is based directly on the ob-

servation of [18] that the top-1 object of a monotone scoring
function belongs to the skyline.

Lemma 1. The top-1 dominating object is always a met-
ric skyline object, i.e., MSD(Q, 1) ⊆MSS(Q).

Proof. The top-1 dominating object t has the maximum
dominance score in D, i.e., dom(t,Q) ≥ dom(r,Q), ∀r ∈ D.
Object t cannot be dominated by any other object x, because
in that case x would have a greater dominance value than t
(x ≺ t⇒ dom(x) > dom(t)) which does not hold. Therefore
t, is definitely a skyline object.

The concept of the Skyline-Based Algorithm (SBA) is very
simple: to compute the skyline S of D, we determine the
top-1 dominating object TopObject in D from S, remove
TopObject from D and repeat the same process until all
top-k results have been reported.

The outline of SBA is given in Algorithm 1. The metric
skyline set S (Line 2) is computed using the B2MS2 algo-
rithm proposed in [12], which is the state-of-the-art algo-
rithm for general metric-based skyline queries, since it out-
performs previously proposed algorithms, such as MSQ [6,

Algorithm 1 SBA(D,Q,k)

Input: D data set, Q query objects, k number of results
Output: the k best objects

01. for i← 1 to k
02. S ← MSS of D with respect to Q using B2MS2;
03. Max← 0;
04. TopObject← ∅;
05. for each object o ∈ S
06. dom(o)← 0;
07. for each object p ∈ D, p 6= o
08. if (o ≺ p) dom(o) + +;
10. if (dom(o) > Max)
11. Max← dom(o);
12. TopObject← o;
15. report TopObject;
16. remove TopObject from D;



7]. The B2MS2 algorithm in our case operates over an M-
tree index. The objects of the skyline set S and their cor-
responding dominance values are kept and updated into the
AuxB+-tree. Therefore, both random and sorted accesses
are supported.
SBA reports the top-k results in a progressive manner.

However, this method has two important limitations: (i)
it performs many unnecessary score computations, since the
skyline is often larger than k and (ii) when there is a large
number of query objects (|Q|), the skyline grows significantly
and in some cases approaches the data set cardinality |D|.
These characteristics may lead to significant performance
degradation due to increased processing costs.

4.3 The Aggregation-Based Algorithm (ABA)
The next algorithm we study uses the concept of aggrega-

tion. The following lemma shows the relationship between
the results of a sum-aggregate query to those of a metric
top-k dominating query.

Lemma 2. If an object p dominates another object r then
p will be returned before r in the result list of a top-h ag-
gregate nearest neighbor query (ANN(Q,h)) by using the
sum-aggregate function.

Proof. Let p and r two objects such that p ≺ r. Then
we have:

∀qi ∈ Q, d(p, qi) ≤ d(r, qi) ∧ ∃qj ∈ Q, d(p, qj) < d(r, qj)

By summing those m = |Q| inequalities, we derive:

m∑
i=1

d(p, qi) <

m∑
i=1

d(r, qi)⇔ adist(p,Q) < adist(r,Q)

Therefore, p has a strictly smaller aggregate distance than r
and it is located before r in the aggregate nearest neighbor
query results.

Lemma 2 associates a top-k dominating query with a top-
h aggregate nearest neighbor query using the sum-aggregate
function. More specifically, the result set of a top-k domi-
nating query is always a subset of the result set of a top-h
aggregate nearest neighbor query (for a sufficiently large h
such that h ≥ k), i.e., MSD(Q, k) ⊆ ANN(Q,h). This is
useful for defining a specific search region around the query
objects to retrieve candidate objects for the top-k dominat-
ing results.
In order to better show the usefulness of Lemma 2, Figure

3 depicts a simple example in the 2-dimensional Euclidean
space. There are two query objects q1, q2 and let p be an
object of the data set. Each circle is centered at a query
point and the associated radius corresponds to the distance
d(p, q1) and d(p, q2) respectively. It is already known from
[20] that their intersection area is called the dominator re-
gion of p, and contains all points that dominate p. Moreover,
all points that are dominated by p lie outside the area of
both circles, which is called the dominance region of p. On
the other hand, all objects that have smaller sum-aggregate
distances from Q lie into an elliptic area which is defined by
the query points q1, q2 and intersects point p. The ellipsis
crosses the intersection points of the previous two circles,
thus the corresponding elliptic area contains the dominator
region of p. This suggests that all points which dominate p
have smaller sum-aggregate distances than p.

 q2

 q1

 p

 candidates 

Figure 3: Example for ABA description.

In the case where we have more query points the shapes
of these regions become more complicated and more difficult
to compute. Details for some interesting cases can be found
in [19, 20]. The main difficulty is that we do not know in
advance a convenient value of h such that MSD(Q, k) ⊆
ANN(Q,h) to answer a top-k dominating query. The fol-
lowing lemma (the corresponding proof is omitted) will help
in our quest.

Lemma 3. The first sum-aggregate nearest-neighbor of Q
is always a metric space skyline object, i.e., ANN(Q, 1) ⊆
MSS(Q).

Assume that we have at hand a convenient value of h such
that MSD(Q, k) ⊆ ANN(Q,h). Under this assumption, we
may first execute a top-h sum-aggregate nearest-neighbor
query and then select the k objects with the highest dom-
inance scores. However, this is not feasible because such a
value of h is not known at the beginning of query execu-
tion. Thus, an alternative methodology is being followed.
Initially, the top-1 sum-aggregate nearest-neighbor object p
of Q is computed, i.e., p = ANN(Q). Since p is a skyline
object, there is no object that dominates p. Therefore, there
are no objects inside p’s dominator region and additionally
p dominates all other objects lying into its dominance re-
gion. This ensures that the top-1 dominating object cannot
lie into the dominator/dominance regions of p. Thus, we
should search for the top-1 object in the rest of the data
set. Candidates are collected in set C by performing sim-
ple range queries centered at the query objects q1, q2, ..., qm
with radius d(p, q1), d(p, q2), ..., d(p, qm) respectively. Then,
we compute the dominating scores of all objects in C and
we determine the top-1 dominating object TopObject. Next,
we remove the TopObject from D and we repeat the same
process until all top-k results are reported. The outline of
ABA is given in Algorithm 2.

In order to have a better view of those candidates let us
consider the example of Figure 3. The candidates are the
objects contained inside the circles with centers the query
points and radii their corresponding distances from p. In our
case, there are no objects inside the circle intersection area
(dominator region), as p cannot be dominated. Moreover,
there are no objects inside the elliptic area, since p is the
first sum-aggregate nearest-neighbor of Q.

For the aggregate nearest neighbor query ANN(Q) of Line
2 we use the MBM algorithm of [19] which is the state-of-



Algorithm 2 ABA(D,Q,k)

Input: D data set, Q query objects, k number of results
Output: the k best objects

01. for i = 1 to k
02. p ← 1st sum-aggregate NN of Q using MBM ;
03. C ← ∅;
04. for each query object qj ∈ Q
05. R ← range query from qj with radius d(p, qj);
06. C ← C ∪R;
08. Max← 0;
09. TopObject← ∅;
10. for each object o ∈ C;
11. dom(o)← 0;
12. for each object x ∈ D,x 6= o
13. if (o ≺ x) dom(o) + +;
15. if (dom(o) > Max)
16. Max← dom(o);
17. TopObject← o;
20. report TopObject;
21. remove TopObject from D;

the-art algorithm for ANN queries with the sum-aggregate
function. The main difference is that we implemented the
MBM method to manage M-tree nodes instead of R-tree
nodes supported by the original proposal. Range queries
(Line 5) are efficiently supported by the M-tree structure.
The candidate objects of the set C and their dominance
values are kept and updated into the AuxB+-tree.
ABA reports the top-k results in a progressive manner. It

benefits from the fact that in most cases it is expected that
the cost of the ANN query of Line 2 plus the cost of the
simple range queries of Line 5, is lower than the cost of a
complete skyline computation (as performed by SBA). The
limitations of ABA are as follows: (i) it recalculates up to k
times the dominance values of some nearest neighbor can-
didate objects of C, (ii) when the cardinality of Q increases
we must perform a large number of range queries (Line 5),
which deteriorates the performance of the algorithm, and
(iii) when the query objects are far from each other, the
range queries may return a large number of candidates, thus
C grows significantly leading to high computational costs.

4.4 The Pruning-Based Algorithm (PBA)
Based on the significant limitations of SBA and ABA, we

center our attention to a third alternative. The key idea
behind the Pruning-Based Algorithm (PBA) is to incremen-
tally retrieve the nearest neighbors of the query objects in
a round-robin fashion, to compute the dominance scores of
common neighbors, and, under certain conditions, to extract
the top-k results in a progressive manner. We differenti-
ate between two variations, PBA1 and PBA2, that will be de-
scribed after the presentation of the general idea. Briefly, we
use the following techniques which contribute significantly
to the reduction of CPU time, I/O cost and the number of
distance computations performed:

• alternative techniques are used to compute the score
of an object, resulting in more efficient processing, and

• effective pruning is employed, toward eliminating ob-
jects that cannot be part of the answer.

In particular, we exploit the following result:

Lemma 4. When we have more than one query objects
q1, ..., qm (m = |Q| > 1) and p has been found as the nearest
neighbor of all query objects (not necessary with the same
nearest neighbor order position), then p dominates all the
following nearest neighbors that have not yet been seen in
the nearest neighbor order from any query object.

Proof. Let pj1, pj2, ..., pjn be the nearest neighbor order
of the n objects from the query object qj , ∀j = 1, ...,m.
First, we examine the case that these orderings are unique
(without equal distances from the query objects), i.e.

d(qj , pj1) < d(qj , pj2) < ... < d(qj , pjn), ∀j = 1, ...,m (1)

If p has been found as the kj-th nearest neighbor of qj ,
∀j = 1, ...,m, and x is any not found yet object, then: p =
pjkj , ∀j = 1, ...,m and x is an object pji where i > kj ,∀j =
1, ...,m. Then, using inequality 1 we have: d(qj , pj1) < ... <
d(qj , pjkj ) = d(qj , p) < ... < d(qj , pji) = d(qj , x) < ..., ∀j =
1, ...,m. Therefore, d(qj , p) < d(qj , x), ∀j = 1, ...,m, thus p
dominates x. In case we have equal distances:

d(qj , pj1) ≤ d(qj , pj2) ≤ ... ≤ d(qj , pjn),∀j = 1, ...,m

the object p again dominates x, as x belongs to the next
nearest neighbors and not to the objects which have: d(qj , p) =
d(qj , x), ∀j = 1, ...,m.

Some necessary notations follow: (i) we denote by oj1,
oj2, ... , ojn the nearest neighbor order of the n objects
from query object qj , ∀j = 1, ...,m. We have: d(qj , oj1) ≤
d(qj , oj2) ≤ ... ≤ d(qj , ojn), ∀j = 1, ...,m, (ii) we denote by
rank(oi, qj) the rank position of the object oi in the near-
est neighbor order from the query object qj , ∀i = 1, ..., n,
∀j = 1, ...,m and (iii) we say that two objects x and y are
equivalent when they have the same distances from the query
objects.

The following lemma offers an upper bound for the exact
dominance score of a retrieved object oi. We use this bound
as an estimation of the dominance score of oi denoted as
estdom(oi).

Lemma 5. If an object oi has been retrieved as the (ri,j)-
th nearest-neighbor of query object qj, where ri,j=rank(oi, qj),
then:

dom(oi) ≤ n−max
j

rank(oi, qj) + eq(oi)

Proof. The object oi cannot dominate all objects lo-
cated before its rank position in the nearest neighbor order
from the query object qj . Since this holds for the near-
est neighbor order from any query object, it holds also for
the order from the query object which maximizes the rank
position of oi. Therefore, max

j
rank(oi, qj) objects cannot

be dominated by oi (including itself). Moreover, oi can-
not dominate all its equivalent objects eq(oi). But, as the
equivalent objects of oi may lie in neighbor order positions
before or after oi, they may be already included into the
max

j
rank(oi, qj) counted objects. Therefore, oi may domi-

nate at most n− (max
j

rank(oi, qj)− eq(oi)) objects.

PBA uses incremental nearest neighbor retrieval, which is
efficiently supported in the M-tree implementation of [8].



Algorithm 3 PBA(D,Q,k)

Input: D data set, Q query objects, k number of results
Output: the k best objects

01. H = ∅
02. for i← 1 to k
03. do
04 if (H ← ∅)
05. call NextCommonNeighbor(D,Q,H);
06. call NextCommonNeighbor(D,Q,H);
07. oa ← H.top;
08. H.deheap(oa);
09. ob ← H.top;
10. if (oa has an estimated dominance score)
11. dom(oa) ← ExactScore(oa, D,Q,H);
12. if (dom(oa) < dom(ob) ∨ dom(oa) < estdom(ob))
13. H.enheap(oa);
14. while (dom(oa) < dom(ob) ∨ dom(oa) < estdom(ob))
15. report oa as the top-i dominating object;
16. end for

Incremental retrieval is performed by using all query objects
in a round robin fashion (i.e., 1st NN from q1, ... , 1st NN
from qm, 2nd NN from q1, ... , 2nd NN from qm, etc.).
This idea was first proposed in the Threshold Algorithm of
[11], and used in several other problems as for example: in
distributed skyline queries [1], in aggregate nearest neighbor
queries [19], etc.
Using this round-robin incremental retrieval, every time a

common neighbor object o is detected, it is inserted into a
maxheap data structure (H) along with its estimated domi-
nance score (estdom(o) = n−max

j
rank(o, qj) + eq(o)). The

heap is prioritized according to the dominance scores of the
stored objects (either estimated or exact). It is important
to note that H maintains only the common neighbor objects
determined so far.
The first two common neighbors are retrieved and inserted

into the heap, then the current top object is deheaped and its
exact dominance score is calculated (if not available). After
that, and before the extraction of the next candidate object
from the heap and its score calculation, we always detect and
insert into the heap the next common neighbor object with
its estimated score. Therefore, there will be always inside
the heap a common neighbor object with an estimated score
greater than or equal to all subsequent estimated scores.
The next result suggests how the current common neighbor
object should be handled.

Lemma 6. If oa and ob are the top-2 common neighbor
objects into the heap, and oa has an exact dominance score
dom(oa) such that:

dom(oa) ≥ estdom(ob) or dom(oa) ≥ dom(ob)

then oa can be immediately reported as the next top domi-
nating object.

Proof. This follows from the fact that any next retrieved
common neighbor object (which is a candidate for the top-
k dominating results), will have a smaller estimated (and
subsequently exact) dominance value.

The result of Lemma 6 provides the progressive behavior
of PBA. If the current examined common neighbor object oa

Procedure 1 NextCommonNeighbor(D,Q,H)

01. do
02. select the next query object qj ;
03. o ← NextNearestNeighbor (qj);
04. insert (if not) and update counters of o in AuxB+;
05. while o has not been retrieved from all query objects;
06. compute number of equivalent objects of o, eq(o);
07. estdom(o)← n−max

j
rank(o, qj) + eq(o);

08. H.enheap(o);

satisfies the condition of Lemma 6, then it is reported as
the next top-i dominating query result. Otherwise, oa is re-
inserted into the heap H with its exact score and the process
is repeated until all top-k results are reported.

The outline of PBA is depicted in Algorithm 3. It is im-
portant to note that the retrieved objects o along with other
useful information (e.g., the number of times retrieved from
the query objects (qcounter), its current max-rank value etc.)
are inserted into the AuxB+-tree (Line 4 of Procedure 1) .
Therefore, all required intermediate calculations are kept on
disk. The only memory resident data structure is the heap
H which stores the ID’s of the retrieved common neighbor
objects determined so far along with their corresponding
dominance values (exact or estimated).

4.4.1 Reducing the cost of score computation
The computation of the exact dominance score of an ob-

ject (Procedure ExactScore of Line 10 in Figure 3) can
be performed using the process of the previous algorithms
(i.e., Lines 6-9 of SBA outline, Lines 11-14 of ABA outline).
However, we can apply a more efficient score computation
method which is based on reverse scanning [22]. Note that
[22] works with a multidimensional space and therefore re-
verse scanning must be adapted in our case to work with a
metric space. The algorithm that uses this type of compu-
tation is termed PBA1.

Let Uj be the set of all retrieved nearest neighbor objects
before o for the query object qj , which have distances strictly
smaller than o: Uj = {x ∈ D : d(qj , x) < d(qj , o)}. Let also
U be the union of the Uj sets defined by all the query objects
qj , ∀j = 1, ...,m: U =

⋃m
j=1 Uj . The following guarantees

the computation of the exact score of o:

Lemma 7. For any common neighbor object o with a union
set U and a number of equivalent objects eq(o), its exact
dominance value is computed using the formula:

dom(o) = n− |U | − eq(o)− 1

Proof. It follows from the fact that o cannot dominate
the following objects: (i) any object x ∈ U , as it holds
d(qj , x) < d(qj , o) for some qj , (ii) its equivalent objects and
(iii) itself.

This result is important as it enables the computation of
the exact dominance score of an object o by just counting
the already retrieved objects located before o in the near-
est neighbor order from the query objects and by count-
ing the number of its equivalent objects. As all these ob-
jects are already retrieved and inserted into the AuxB+-tree,



Procedure 2 ExactScore-RS(o,D,Q,H)

01. |U | ← |AUX| (initial cardinality of U)
02. for each query object qj ∈ Q
03. do
04. x ← PreviousNearestNeighbor(qj);
05. update counters of x in AuxB+-tree;
06. if (qccounter of x = 0) delete x from U ;
07. while d(qj , x) ≥ d(qj , o)
08. end-for
09. dom(o) = n− |U | − eq(o)− 1;
10. return dom(o);

the required counting can be successfully performed inside
the AuxB+-tree, without materializing the sets Uj and U .
Moreover, the formula of Lemma 7 requires only the cardi-
nality of the set U and not its contents. Let us describe this
process in more detail:
Inside ExactScore-RS, object o has already been re-

trieved from all query objects (it is a common neighbor ob-
ject), and due to the round-robin scan it may have been
retrieved for some query objects in earlier rank positions
than the last one. Therefore, inside the AuxB+-tree, some
objects located after o in the nearest neighbor order may
have been counted (qcounter) more than once. To correct
the counting we scan backwards in the corresponding near-
est neighbor orders until we find an object x such that
d(qj , x) < d(qj , o). Then, we update some additional coun-
ters of the retrieved objects in AuxB+-tree. More specif-
ically, we use a copy of the qcounter of x (the qccounter),
which is updated with the total number of the retrievals of
x before the execution of the Compute-Exact-Score proce-
dure, minus the total number of the retrievals of x during
the reverse scanning. Every time the qccounter of an object
x becomes zero, that object must be excluded from the final
union set U .
The outline of the score computation method using the

reverse scanning technique is given in Procedure 2. Note
that the number of equivalent objects of o has already been
computed (Line 6 of Procedure 1) and the corresponding
objects have been inserted in the heap H (Line 8 of Proce-
dure 1). For the following discussion, let AUX be the set
containing all unique objects inserted into the AuxB+-tree.
The exact score computation can be also performed by uti-

lizing information already stored in the AuxB+-tree struc-
ture. We denote by Lposoi(qj) the minimum rank posi-
tion of the objects in the nearest neighbor order from qj ,
which have an equal distance with oi, i.e., Lposoi(qj) =
min
h
{rank(oh, qj) : d(qj , oh) = d(qj , oi)}. It is important

to note that the Lpos rank positions are recorded into the
AuxB+-tree during the incremental nearest neighbor re-
trieval together with the q counters, thus they are avail-
able before start calculating the exact dominance score of
o. However, there is a significant difference between the
common neighbor objects that have been detected so far
(including o) and all other objects that have already been
inserted into the AuxB+-tree: the first group of objects has
all their Lpos rank positions values already recorded into the
AuxB+-tree, while for the second group only some of their
Lpos rank positions values have been recorded (as they have

Procedure 3 ExactScore-AUX(o,Q)

01. domin = 0
02. read all equal-distance groups of o (if still not read)
03. for each object oi ∈ AuxB+-tree
04. ff = true
05. for each query object qj ∈ Q
06. if (Lposoi(qj) 6= NULL) ∧ (Lposoi(qj) < Lposo(qj))
07. ff ← false; break;
08. end-for
09. if (ff = true)
10. fe ← true
11. for each query object qj ∈ Q
12. if (Lposoi(qj) 6= Lposo(qj))
13. fe ← false; break;
14. end-for
15. if (fe = true) ff ← false
16. end-if
17. if (ff = true) domin ++;
18. end-for
19. dom(o)← domin + n− |AUX|;
20. return dom(o);

been detected only from some query objects qj).
The above observation leads to a second alternative for

the exact score computation, which is outlined in Procedure
3. The pruning-based algorithm that uses Procedure 3 for
the exact score computation is denoted as PBA2. Recall that
PBA1 and PBA2 differ only on the way exact scores are com-
puted.

4.4.2 Applying effective pruning
The methodology of algorithms PBA1 and PBA2 enable the

usage of several pruning heuristics, which reduce the runtime
costs further. We propose three different types of pruning
heuristics: (i) Discard Heuristics - DH, which can discard
objects that have not been retrieved yet, (ii) Early Pruning
Heuristics - EPH, which can prune objects before the cal-
culation of their exact dominance scores and (iii) an Internal
Pruning Heuristic - IPH, which can prune objects during
the procedure of the exact dominance score calculation.

Some of the proposed heuristics use a global pruning value
G for the dominance scores. G is initialized to 0, and it is
updated from the first time that we have calculated the exact
dominance scores of k common neighbor objects (which have
been inserted into the heap H), and after any change of
the current exact top-k dominating object ok in the heap
during the retrieval of the next common neighbor objects.
G is always updated with the exact dominance score of the
current exact top-k dominating object minus 1, i.e., G =
dom(ok) − 1. Any object with an exact dominance value
smaller than or equal to G can be pruned safely.

Discard Heuristic DH1: If ok is the current exact top-k
dominating object in the heap H, Uk is its calculated union
set, and {eq(ok)} is the set of its equivalent objects, then
all objects of the set: D − {Uk ∪ {eq(ok)} ∪ {ok}} can be
discarded (pruned before their retrieval).

Discard Heuristic DH2: If op is an object which has
been pruned by any other heuristic, Up is its calculated union
set, and {eq(op)} is the set of its equivalent objects, then
all objects of the set: D − {Up ∪ {eq(op)} ∪ {op}} can be
discarded.

Discard Heuristic DH3: The first time that we have
calculated the exact dominance scores of k objects into the



heap, all objects that have not been inserted yet into the
AuxB+-tree can be discarded.
Early Pruning Heuristic EPH1: If ok is the current

exact top-k dominating object in the heapH, o is the current
retrieved common neighbor object for calculations, and ok ≺
o, then o can be pruned.
Early Pruning Heuristic EPH2: If oi is any exact

calculated dominating object that is after the exact top-k
dominating object into the heap H, o is the current retrieved
common neighbor object for calculations, and oi ≺ o, then
o can be pruned.
The following heuristics require some additional notations.

We denote by Lposo(qj) the rank position of the leftmost
object oi in the nearest neighbor order from qj , which has
an equal distance to o, i.e., d(qj , oi) = d(qj , o). We also
denote by pos the maximum rank position retrieved so far,
i.e., pos = max

j
rank(o, qj), where o is the last retrieved

common neighbor object. Finally, we denote by a the index
of the last selected query object from the round-robin scan
(a = j, if we are in the query object qj).
Early Pruning Heuristic EPH3: If o is the current

retrieved common neighbor object for calculations, then o
can safely be pruned if the following holds:

n−max
j

Lposo(qj) ≤ G

Early Pruning Heuristic EPH4: If o is the current
retrieved common neighbor object for calculations, then o
can be pruned if the following holds:

n− |AUX| − 1 +

m∑
j=1

[pos− Lposo(qj)] + a ≤ G

Early Pruning Heuristic EPH5: If oi is any exact cal-
culated dominating object into the heap H, o is the current
retrieved common neighbor object for calculations, then o
can be pruned if the following holds:

dom(oi) + eq(oi) +
∑

j:Lposoi
>Lposo

[Lposoi(qj)− Lposo(qj)] ≤ G

Internal Pruning Heuristic IPH: If o is the current
retrieved common neighbor object, and during calculations
the following holds:

N−|AUX|+curDom(o)+

m∑
j=1

|curPos(qj)− Lposo(qj)| ≤ G

(where curDom is the current recorded score of o and curPos
is the current rank position in the nearest neighbor order
from qj during the reverse scan), then o can safely be pruned,
and the remaining calculations can be skipped.
Early and internal pruning rules are applied to the heap

objects, whereas all discard pruning rules are applied to both
heap and AuxB+-tree objects. This process results in elim-
inating a significant number of objects.

5. PERFORMANCE EVALUATION
In this section, we present experimental results demon-

strating the performance of the studied algorithms SBA, ABA,
PBA1 and PBA2. We exclude the brute-force algorithm from
all results, because its performance is several orders of mag-
nitude worse than that of the other algorithms. All algo-
rithms have been implemented in C++ and all experiments

have been conducted on a Pentium IV@3GHz machine. The
disk page size is set to 4KB for all access methods and a cost
of 8msec is attributed to each page fault. An LRU buffer
has been used to absorb page faults. Two separate buffers
have been used: one for the M-tree access method (10% of
M-tree size) and one for the rest of the access methods (20%
of db size).

We have used both real-life and synthetic data sets. The
data sets used are briefly described below:

• The FOREST COVER (FC) data set 1 contains 581,012
forest land cells containing 55 attributes. The first ten
numeric attributes have been used, representing posi-
tions, distances to roads, hydrology etc. The distance
function used is the Euclidean distance.

• The ZILLOW (ZIL) data set 2 contains real estate data
used also in [23]. It contains more than 2M records,
but we selected the 1,224,406 records with non zero
or empty values in all their attributes. The data set
has 5 attributes with the following order: number of
bathrooms, number of bedrooms, living area, price,
lot area. The Euclidean distance has been used as the
distance function.

• The CALIFORNIA (CAL) road network 3 contains
1,965,206 nodes and 5,533,214 edges. The average
node degree is equal to 2.55, the average edge weight is
8.78 and diameter (maximum shortest path distance)
is 16,828.54. The distance function used is the shortest
path between network nodes.

• For comparison purposes, we have also used a synthetic
data set (UNI), which contains 1,000,000 4-dimensional
data objects with attribute values respecting unifor-
mity and independence. The distance used is the Man-
hattan (L1) distance.

The values reported are averages from 20 different exe-
cutions of the algorithms, using randomly chosen query ob-
jects. Query objects are selected from the data set D ac-
cording to the parameter c which gives the coverage of the
query set Q. More specifically, the coverage is defined as the
ratio of the minimum radius required to enclose all query
objects in Q over the minimum radius required to cover the
whole data set. The larger the c value the more distant
the query objects contained in Q. Unless otherwise speci-
fied, the parameters take the following values: (i) number of
query objects (m) ranges between 2 and 20 with a default
value of 5, (ii) query coverage (c) takes the values 1%, 5%,
10%, 20%, 30%, 50%, 100% with a default value of 20% and
(iii) the number of results (k) ranges between 1 and 30 with
a default value of 10.

There are three basic criteria used to evaluate and com-
pare the performance of the proposed algorithms: (i) the
CPU time required for computations, (ii) the I/O time de-
voted for disk accesses and (iii) the number of distance com-
putations required. It is important to note that for top-k
dominating queries with k > 1, due to the progressiveness
property of the proposed algorithms, any top-i result with
i < k will be reported earlier. This behavior enables the

1http://kdd.ics.uci.edu
2http://www.zillow.com
3http://snap.stanford.edu/data/index.html
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Figure 4: Running time vs. number of queries m.
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Figure 5: Running time vs. number of results k.
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Figure 6: Running time vs. query coverage c.
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Figure 7: Number of distance computations vs. number of query objects m.
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Figure 8: Number of distance computations vs. query coverage c.



Data number of query objs (m) number of results (k) query coverage (c)
2 5 10 15 20 5 10 20 30 1% 10% 20%

UNI CPU 0.18 11.60 52.52 94.96 125.01 11.12 11.61 13.84 15.32 0.44 3.25 11.61
I/O 6.77 32.22 44.84 50.34 48.50 32.97 32.22 35.21 35.97 5.93 18.92 32.22

FC CPU 0.24 2.83 12.54 30.58 47.34 2.65 2.82 3.32 3.62 0.21 0.43 2.83
I/O 11.62 26.43 37.54 46.74 49.63 26.09 26.43 28.07 28.43 5.24 9.76 26.43

ZIL CPU 0.05 7.54 16.94 17.99 49.64 5.50 7.54 9.41 11.34 0.03 0.46 7.54
I/O 5.71 36.89 41.83 38.03 115.85 36.87 36.89 36.91 32.25 2.01 11.33 36.89

CAL CPU 624.52 3637.64 14828.23 31810.36 42595.36 3627.67 3637.64 3669.07 3646.63 714.01 2111.09 3637.64
I/O 26.00 47.62 140.66 195.28 195.47 59.36 47.62 59.37 59.38 11.34 32.07 47.62

Table 2: CPU and I/O cost (in seconds) for PBA2.

Data number of query objs (m) number of results (k) query coverage (c)
2 5 10 15 20 5 10 20 30 1% 10% 20% 50%

UNI 15 16 16 21 24 11 13 29 47 10 15 13 19
FC 14 15 16 16 16 7 14 29 39 12 12 14 20
ZIL 16 115 148 182 50 80 115 164 201 12 21 115 41
CAL 253 272 45 51 51 224 272 312 333 263 87 272 275

Table 3: Number of exact score computations for algorithms PBA1 and PBA2.

retrieval of the first results without the need for waiting the
computation of the complete answer set.
First, we compare the proposed algorithms by varying the

cardinality of the query objects m and by keeping the other
parameters to their default values. Figure 4 depicts the per-
formance results. We observe that as we increase the car-
dinality, the performance cost increases. SBA generally does
not perform well in comparison to ABA, PBA1 and PBA2 but
it performs better than ABA in uniform data and small cov-
erage. This is because the minimum enclosing ball of the
query set (which the algorithm B2MS2 uses) and the uni-
formity of the metric space produce upper bounds that can
prune a significant amount of objects. ABA performs better
than SBA in real-life data and in larger Q covering areas.
PBA2 outperforms the other algorithms in all cases.
In the following experiment series we compare the algo-

rithms, by varying the number of the top results k. Figure 5
depicts the performance results. We observe that as we in-
crease k, SBA and ABA significantly increase their cost because
their outer loop forces them to make many re-calculations
using the same objects. Again, PBA2 outperforms the other
algorithms significantly.
In the next experiment series we compare the proposed

algorithms, by varying the query coverage c and by keep-
ing the other parameters to their default values. Figure 6
depicts the performance results. We observe that as we in-
crease the parameter c (producing a spatial anti-correlation),
the distances between the query objects become larger, the
cardinality of metric space skyline increases and thus, SBA
shows the worst performance incurring significant CPU and
I/O costs. In contrast, ABA performs better, whereas PBA1

and PBA2 outperform the other algorithms significantly (one
to three orders of magnitude).
The number of distance computations invoked by the al-

gorithms are given in Figures 7 and 8 for all data sets. We
note that in many applications a single distance computa-
tion may be more computationally intensive than several
I/O operations. In such a case, the metric function is very
expensive and consequently, the number of distance compu-

tations affects query response time significantly (being the
dominant cost in comparison to I/O time). Thus, it is im-
portant to reduce the number of distance computations as
much as possible toward efficient query processing. Among
the proposed algorithms, PBA2 requires the smallest number
of distance computations in all cases. This behavior is at-
tributed to both the pruning rules applied and the way the
AuxB+-tree structure is exploited.

In the next series of experiments, we focus on PBA1 and
PBA2. In particular, Table 2 reports the CPU and I/O costs
for PBA2. For few query points, low query coverage and
easy-to-compute distance measures, normally the I/O cost
is significantly higher than the CPU cost. However, there
are cases where the large number of distance computations
in association with more expensive distance measures (e.g.,
shortest path distance) leads to a significant increase in the
CPU time, dominating the total cost. In Table 2, this is
shown by the highlighted CPU costs, indicating that I/O
cost is insignificant in comparison to CPU time. This is the
main reason why reducing the number of distance computa-
tions is very important and PBA2 is very successful towards
this direction.

Another important factor that is unique in PBA1 and PBA2,
is the number of exact score computations performed. Table
3 reports the number of exact score computations for all
data sets. It is important to note that in comparison to the
data set size there is only a small fraction of exact score
computations performed by these algorithms, which is one
of the main ingredients for their excellent performance.

In conclusion, the pruning-based algorithms PBA1 and PBA2

perform orders of magnitude better that SBA and ABA and,
therefore, are the preferred choices for top-k dominating
queries, where attributes are generated dynamically from
distances in a metric space. This effect is attributed mainly
to the sophisticated pruning mechanisms employed as well
as on the underlying data structures used for performance
boosting.



6. CONCLUSIONS
Top-k dominating queries combine the advantages of reg-

ular top-k and skyline queries, by bounding the size of the
result without the need for user-defined scoring functions.
This paper contains the first work in metric-based top-k
dominating queries, where distances among objects are com-
puted by means of a metric function and attribute values of
each object are generated dynamically, based on the distance
between the object and a set of query objects.
Four progressive algorithms are studied: the first one (SBA)

is based on metric skyline computation, the second one (ABA)
is an extension of the aggregation-based nearest-neighbor
technique, whereas the third and forth one (PBA1 and PBA2)
use incremental nearest-neighbor search equipped by: (i) a
set of effective pruning rules to reduce the search space and
(ii) an efficient score computation to reduce runtime. All al-
gorithms operate over any metric-based access method (the
M-tree has been used in this work) with the only requirement
that incremental nearest-neighbor queries are supported. The
performance evaluation study shows that the pruning-based
algorithms show the best overall performance in terms of
CPU time, I/O cost and number of distance computations,
offering runtimes that are between one and three orders of
magnitude better than those of SBA and ABA.
An interesting direction for future work is the study of ran-

domized techniques toward reducing computation time by
sacrificing the accuracy of the answer. Another interesting
extension is to consider the problem in a parallel/distributed
setting, offering additional scalability, especially for massive
data sets.
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