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Abstract

In contrast to regular queries that are evaluated only once, a continuous query remains active over a period of time and
has to be continuously evaluated to provide up to date answers. We propose a method for continuous range query pro-
cessing for different types of queries, characterized by mobility of objects and/or queries which all follow paths in an under-
lying spatial network. The method assumes an available 2D indexing scheme for indexing spatial network data. An
appropriately extended R*-tree, that primarily is used as an indexing scheme for network segments, provides matching
of queries and objects according to their locations on the network or their network routes. The method introduces an addi-
tional pre-refinement step which generates main-memory data structures to support efficient, incremental reevaluation of
continuous range queries in periodically performed refinement steps.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Advances in wireless communication technologies, mobile positioning and Internet-enabled mobile devices
have given rise to a new class of mobile applications and services. Location based services (LBS) deliver geo-
information and geo-processing services to the users according to their current location, or locations of the
objects of their interests. Such services, like automatic vehicle location, fleet management, tourist services,
transport management, traffic control and digital battlefield are all based on mobile objects and the manage-
ment of their continuously changing location.

In several applications, the object motion is constrained by an underlying spatial network, i.e., objects can
not move freely in space, and their position must satisfy the network constraints. Network connectivity is
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usually modeled by a graph representation, comprising a set of nodes (intersections) and a set of edges (seg-
ments). Depending on the application, the graph may be weighted (a cost is assigned to each edge) and directed
(each edge has an orientation).

Several types of location-dependent queries are significant in LBS, such as range queries, k-nearest neigh-
bor (k-NN) queries, reverse neighbor queries, distance joins, closest pair queries and skyline queries. In this
paper, we address the problem of processing continuous range queries over mobile objects, whose motion
is constrained by a spatial network. The fundamental type of query for the purpose of monitoring and track-
ing mobile objects is the range query. The query range may represent a user selected area, a map window, a
polygonal feature, a part of the road segment or an area specified by the distance from a reference point. The
map window of the LBS client represents the simplest continuous range query that must be supported in a
monitoring and tracking LBS application. Using such a query, up-to-date information about moving/static
objects in user’s surrounding is continuously represented in the map window. Thus, in contrast to regular que-
ries that are evaluated only once, a continuous query remains active over a period of time. A major challenge
for this problem is how to provide efficient processing of continuous queries with respect to CPU time, I/O
time, main-memory utilization and network bandwidth.

The rest of the article is organized as follows. The next section presents related work in the area and
describes our contributions. Section 3 describes in detail the proposed framework, analyzing the methodology
AND describes the data structures needed for the query processing algorithms. Section 4 presents algorithms
for different steps in continuous query processing methodology. Section 5 presents the results of the experi-
mental evaluation of query processing algorithms. Finally, Section 6 concludes the paper and shortly outlines
directions for the future work.

2. Related work and contribution

One of the challenges in LBS development is how to handle different types of queries in a mobile environ-
ment, where both queries and objects are mobile. The MOST data model proposed in Sistla et al. [27] iden-
tified three categories of such queries:

¢ Instantaneous, for which the query is evaluated immediately after the query issuance and the answer is
transmitted to the user;

e Continuous, which need to be evaluated at every time instant in order to ensure the correctness and validity
of the query answer;

e Persistent, which need to be evaluated at every time instant as well, but the query evaluation must include
all previous mobile object database states starting from the time of query issuance (database history).

According to the mobility of query (client) and the objects queried by the clients, such queries can be fur-
ther classified into three categories:

e Mobile objects querying static objects (e.g. tourist services, m-commerce);
e Static clients querying mobile objects (e.g. fleet management, traffic control and management);
e Mobile clients querying mobile objects (e.g. tourist services, digital battlefield, mobile games).

Continuous spatiotemporal query processing in a location-aware environment is an active area of research,
resulting in the proposal of many query processing methods, techniques and indexing schemes. In Prabhakar
et al. [25], velocity constrained indexing and query indexing (Q-index) has been proposed for efficient evalu-
ation of static continuous range queries. According to the proposed method in-memory data structures and
algorithms are developed and presented in Kalashnikov et al. [16]. The Q-index method assumes static range
queries over mobile objects. The queries are indexed by an R-tree and mobile objects examine the index struc-
ture to find the queries in whose answer they may participate. By indexing queries not mobile objects, Q-index
method avoids frequent updates of the index structure and thus expensive maintenance of this structure. In
addition, it utilizes the concept of safe regions which oblige the mobile object to issue an update only if such
mobile object leaves the region and thus influence the answer of some other queries.
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The MQM method [3,4] focuses on static continuous range queries. It is based on partitioning the query
space into rectangular sub-domains, and assignment the resident domain to each mobile object in the system.
A mobile object is aware only of the range queries intersecting its resident domain, and reports its current loca-
tion to the server only if it crosses the boundary of any of these queries and participates in the query answer.
Thus, the part of the continuous query processing is deployed on the mobile client. When an object exits its
resident region, it request and obtain the new one from the server. To determine the new resident domain for
the object, the server uses a binary partitioning tree which maintains for each sub-division of the space the
queries that intersect it.

Gedik and Liu [10] propose a method and a system for distributed query processing, called Mobieyes.
Mobieyes ships some part of the query processing to the mobile clients while the server mainly acts as a medi-
ator between mobile objects. The method tries to reduce the load on the server and save communication costs
between mobile objects and the server. The workspace is partitioned using grid and the monitoring regions of
the queries are maintained at the server. The monitoring region of a query is defined as the union of the grid
cells it can potentially intersect. When mobile object falls in the monitoring region of the query, it receives the
information about the query position and velocity, and notifies the server only when it enters or leaves the
predicted query region. The mobile object stores locally the information about queries in whose answer it
can participate and monitors its relationships with such queries through time. The queries, actually mobile
objects with specified range about them, issue updates to the server when they change velocity vector, or when
they move out of their current cell. In the paper [11] the authors propose a scheme called motion adaptive
indexing (MAI) which enables optimization of continuous query evaluation according to the dynamic motion
behavior of the objects. They use the concept of motion sensitive bounding boxes (MSB) to model and index
both moving objects and moving queries. This enables decreasing of the number of updates performed on the
indexes, end such a scheme is independent of the underlying index structures, i.e. any spatial index method,
such as an R-tree, can be used to index MSBs.

Wang et al. [29] propose a system leveraging the computing capacities of mobile devices for continuous
range query processing. In their proposal, continuous range queries are mainly processed on the mobile device
side, which is able to achieve real-time updates with minimum server load. They introduce a distributed server
infrastructure to partition the entire service region into a set of service zones and cooperatively handle requests
of continuous range queries. This feature improves the robustness and flexibility of the system by adapting to a
time-varying set of servers. Second, they propose a novel query indexing structure, which records the differ-
ence of the query distribution on a grid model. This approach significantly reduces the size and complexity
of the index so that in-memory indexing can be achieved on mobile objects with constrained memory size.

The concept of mobile continuous queries is considered in Lazaridis et al. [19]. They define a dynamic query
as a temporally ordered set of snapshot queries. They specify the index structures for trajectories of moving
objects and describe their efficient usage for evaluation of dynamic queries that represent predictable or non-
predictable movement of an observer. Such problem definition and solution is in accordance with application
scenario and aims to support rendering of objects in virtual tour-like applications (Table 1).

Mokbel et al. [21] present SINA, a server-side method based on shared execution and incremental evalua-
tion of continuous queries. Shared execution is achieved by implementing query evaluation as a spatial join
between the mobile objects and the queries. Incremental evaluation means that the query processing system
produce only the positive or negative updates of the previously reported answer, not the complete answer
for every evaluation of the query. Both the object and query indexes are implemented as disk-based regular
grids. The method consists of three phases, namely hashing, invalidation and joining phase performed on
in-memory and disk-based index structure. It does not take into account the current location of a mobile
object according to its motion vector (predicted motion), i.e. the objects change their location in a stepwise
manner.

Hu et al. [12] propose a generic framework for monitoring continuous spatial queries over moving objects,
both range and k-NN queries. Besides reducing the evaluation cost of continuous query processing, they also
address the location update mechanism which is aware of currently running queries. Each moving object is
aware of its safe region, the rectangular area computed at the server in such a way that the answers of all que-
ries remain valid as long as all objects reside in their safe regions. The moving object issues location updates to
the server only when it moves out of the safe region. The database server receives this update, reevaluates all
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Table 1

Notation for analyzing the cost of pre-refinement step in query processing methodology

Symbol Meaning

MOi Number of MO in olist of the SR#-tree leaf node entry in whose g/ist is CQi

AQi Number of MO in answer set of CQi after the pre-refinement step

FQi Number of MO in final answer after the refinement setp

)4 0 <p < 1, the selection characteristics of the pre-refinement step (p = 4Qi/ MOi)

r Probablity of MO to issue continuous query (to be the reference object of the query) (0 <r < 1)

Tp Time needed for the pre-refinement step

Tu Time needed for update of pre-refinement data structures upon receiving location update from MO

Te' Time needed for incremental evaluation based on pre-refinement data structures

Te* Time needed for incremental evaluation without pre-refinement data structures

Tr Time needed for the refinement step when using the pre-refinement step

T Time needed for the refinement step without the pre-refinement step

Tinc Time needed for finding the incremental answer

LoS Time needed for calculation of the new MO location along the segment based on previous location and speed

Up Time needed for update of answer period given by the expressions in the previous section

Insidel D Time needed to determine whether the 1D point is within 1D interval

Inside2D Time needed to determine whether the 2D point is within 2D range

FindIncAnswer Time needed to search if MO belongs or not to the previous query answer in order to be included in the incremental
answer (depends on the size of previous query answer)

Nu Number of updates of all mobile objects that are part of the temporal query answer between two successive evaluations

affected queries and computes a new safe region for the object. The framework maintains two index structures
at the server; the object index that stores the current safe regions of all the objects in the form of on-disk R-
tree, and the query index that stores the quarantine area of the query in the form of in-memory grid index. The
quarantine area specifies that the current answer is unchanged as long as all answer objects stay inside it and
all non-answer objects stay outside it. Based on those structures, detailed algorithms for range/k-NN query
evaluation/reevaluation and safe region computation are provided.

To allow for incremental query (re)evaluation, various kinds of virtual constructs (VCs) have been pro-
posed for building query indexes, such as virtual construct rectangles (VCRs) [31]. The VCR-based query
indexing was main-memory based and was shown to outperform other query indexing approaches, such as
the cell-based [16], and the covering tile-based [32] approaches, in terms of total query (re)evaluation time.
It uses a set of predefined VCRs to decompose query regions. Search operations are conducted indirectly
via VCRs. However, many of the VCRs are redundant, unnecessarily slowing down the index search time
and the query (re)evaluation time. Wu et al. [33] introduce a new query indexing method, called CES-based
indexing, for incremental processing of continuous range queries over moving objects. The method is based
on a set of predefined containment-encoded squares (CES), which represent virtual constructs used to decom-
pose query regions and are used to store indirectly precomputed search answers. CES-based indexing aims to
further minimize the total query (re)evaluation time so that the accuracy of the query answers can be addition-
ally improved via more frequent (re)evaluations. The set of defined set in a query space is smaller than cor-
responding set of VCRs, which significantly shorten the search time. Containment relationships among the
CESs and containment encodings make index search operations very efficient. These VC-based approaches
neglect the dynamic nature of mobile objects which continuously move between successive updates and follow
the paths in an underlying network.

Illari et al. [13] propose an interesting solution to distributed processing of continuous location-dependent
queries in mobile environments using mobile agents. The agents are in charge of tracking the location of inter-
esting mobile objects and refreshing the answer to a query efficiently. They present a scalable distributed archi-
tecture as a completely decentralized solution for processing of continuous mobile queries without engaging
the mobile client devices and argue for usefulness and feasibility of their approach.

Papadias et al. [24] describe a framework to support query processing in spatial network. They take advan-
tage of location and network connectivity to efficiently prune the search space. They show the application of
the framework to the most popular spatial queries, namely range, nearest neighbors, closest pairs and e-dis-
tance joins, in the context of static queries and objects positioned on the spatial network.
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Several reported work study processing of range queries over past trajectories of mobile objects moving in
networks and are related to our work since they use the extension of the R-tree to represent network segments
and the trajectories of mobile objects over those segments. Two index structures for indexing the past trajec-
tories of mobile objects in networks have been proposed. The Fixed Network R-Tree (FNR-Tree) [9] consists
of a top level 2D R-Tree, whose leaf nodes contains pointers to 1D R-Trees. The 2D R-Tree is used to index
the edges of the network, and for every leaf node of the 2D R-Tree, there is a 1D R-Tree indexing the time-
interval of each object’s movement inside the line segments of the network. The main disadvantages of this
approach is very high number of entries and lots of updates in the index structures, as well as the limitation
that an object cannot end or change its movement within the network edge, but only at nodes. The other index
structure is proposed by Almeida and Gueting in De Almeida and Guting [6] and is called Moving Objects in
Networks Tree (MON-Tree). They describe two network models that can be indexed by the MON-Tree. The
first model is edge oriented and represents the network by edges and nodes, and the second one is route ori-
ented, represents the network by routes and junctions and is more suitable for road networks. The MON-Tree
was experimentally evaluated against FNR-Tree and it showed better performance in answering range queries
on complete moving object trajectories. In their tests, the MON-Tree indexing the route oriented network
model showed the overall best results.

There is also a lot of work on continuous k-nearest neighbor (k-NN) queries. Some of the methods, such as
SINA [21,12] provide extensions of range query processing to processing of nearest neighbor queries as well,
and some new methodologies for A-NN query processing are developed independently [34,36]. Yoo and She-
khar [35] propose the methods and algorithms that based on given a static dataset and a query path, retrieve
the object that causes the shortest detour if included in the path. Jensen et al. [14] propose the road network
model suitable for processing of k-NN queries over the network constrained mobile objects and present a pro-
totype system for such query processing. Recent work of Mouratidis et al. studies k<-NN monitoring in road
networks where the distance between a query and a data object is determined by the length of the shortest path
connecting them [23]. Although their research is focused on continuous k-NN queries, they propose similar
main-memory index and data structures to support query processing. They propose three main-memory index
structures: the spatial index on the network edges (PMR quad tree), the edge table, which maintains network
and data object information, and the query table, which maintains information about the queries. They pro-
pose two methods employing these data structures, the first one that maintains the query answers by process-
ing only updates that may invalidate the current NN sets, while the second one follows the shared execution
paradigm to reduce processing time. Their data structures for representing and indexing spatial network and
object and queries that continuously move along the edges of the network looks very similar to ours. The net-
work representation of the road network is a simple graph (nodes are connected by straight line segments and
the degree of nodes can be 2 as well). For the second method, group monitoring algorithm (GMA) they intro-
duce sequence (segments in our proposal) as polyline path between two nodes/intersections. But they also
neglect the real dynamics of the environment where objects and queries change their location according to cur-
rent motion parameters (speed, direction, route, etc.) without explicit updating of the mobile object database
and employ of stepwise motion of the objects (up to 20% of them move change their location between two
successive timestamps).

In this work, we propose a framework for continuous range query processing for objects moving on net-
work paths. The framework introduces the methodology, the data structures and the query processing algo-
rithms for processing continuous range queries over mobile objects, when queries may be both static and
mobile. Similar to most continuous monitoring algorithms and methods reviewed in this section, we assume
main-memory query evaluation. Our methodology is based on an extension of main-memory R*-tree index
that indexes network data, named SR*-tree (Segment R#*-tree) and memory-resident data structures that sup-
port query processing and maintaining up-to-date query answers. The SR *-tree is also used for map matching
purpose. The methodology introduces an additional step in traditional spatiotemporal query processing strat-
egy (filter refinement), namely, the pre-refinement step. The filter step selects the candidate objects according
to fulfillment of the spatial query condition using the SR*-tree index on the spatial network. The pre-refine-
ment step is performed after the filter step, to further refine the mobile objects obtained by the filter step and to
build the main-memory data structures to support periodical and incremental refinement steps. The pre-refine-
ment step aims to surpass the shortcomings of the query processing methods and algorithms reviewed so far
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that neglect the real nature of the movement that between two successive location updates objects move at
certain speed. Those methods mostly assume the stepwise motion of the mobile objects [27]. Thus, at time
instant 7., t; <t. < ti+1, where t; and 4, are time instants of location updates, the location of an object is
on (f. — t;) - v. distance along the route in the network from the location determined at ;.

The benefits of the pre-refinement step are in generating and maintaining temporal answers of continuous
queries which are only updated upon receiving update of the motion parameters (speed, segment change) of
the mobile objects. The answer generated by the pre-refinement step is represented by the set of pairs (mo, tp),
indicating that the mobile object mo is the answer of the continuous query from time p.begin until the time
tp.end. The refinement step is performed periodically by processing in-memory data structures generated by
the pre-refinement step and generates the incremental query answer.

3. Proposed methodology and data structures

The methodology for processing continuous range queries in a mobile environment is developed as a part of
ARGONAUT, a service platform for mobile object data management [26]. We base our approach on the appli-
cation scenario appropriate in LBS for monitoring and tracking mobile objects. In this scenario, users have
wireless devices (e.g., mobile phones or PDAs) that are online via some form of wireless communication net-
work. We assume that users can obtain their positions using global positioning system (GPS) technology. A
setting is assumed in which a central database at the LBS server stores a representation of each mobile object’s
current position. Each mobile object stores locally its position assumed by the server. Then, an object updates
the database whenever the deviation between its actual position (as obtained from a GPS device) and the local
copy of the position that the server assumes exceeds the uncertainty threshold. The mobile objects move along
the paths in an underlying spatial network. In order to perform tracking with as few updates as possible, the
LBS server matches the position received from the mobile object to the network segment, by a map matching
technique. Map matching is a technique that positions an object on a network segment, at some distance from
the start of that segment, based on location information from a GPS device. Knowing the mobile object’s
speed and the time of the position update, the server determines the current position of the object till the next
intersection (node) assuming that it moves at a constant speed. Reduction of updates reduces communication
between clients and the server, as well as server-side update processing. When a mobile object reaches the end
of his current segment (the intersection) and enters the new segment on its route the server must determine its
new segment. The possible approach is that the server assumes that the predicted position remains at the end
of the segment until the mobile object issues an update when reach the uncertainty threshold [5]. Another
approach requires storage capacities on the mobile object to store road network data (as in current AVL sys-
tems) and obligation of mobile object to send an update also when it changes the network segment. The pos-
sible approach proposed in Ding and Guting [7] requires extension of the road infrastructure where in every
intersection there are a group of installed sensors. Whenever a moving object transfers from one segment to
another via intersection it gets notification from the sensors which will trigger the location update.

The ArRGoNAUT methodology employs an incremental continuous query evaluation paradigm [21]. Thus the
server reports to the clients only the changes of the answer from the last evaluation time of their continuous
queries. This significantly saves the network bandwidth by limiting the amount of transmitted data to the
updates of the answer only rather than the whole query answer. Two types of updates are distinguished: posi-
tive updates and negative updates. The positive/negative update indicates that a certain object needs to be
added/removed to/from the query answer.

The methodology employs and maintains two representations of the network data in two corresponding
main-memory data structures. These structures support the filter step of the query processing algorithm
and the map matching procedure. The first representation organizes network segments according to Euclidean
distance in a main-memory R*-tree index structure [1], that stores MBR (Minimal Bounding Rectangle) rep-
resentation of segments belonging to a spatial network. This structure is named SR*-tree (Segment R*-tree).
The graph representation of a spatial network is maintained by the Network Connectivity Table (NCT), a
data structure that stores information about the connectivity of network segments. Both network representa-
tions are interconnected, i.e. there is a reference from SR*-tree segment representation to the corresponding
NCT segment representation and vise versa.
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Since both objects and queries move on a spatial network, their spatial properties (location or partial route)
are indexed within the same index structure. The leaf nodes of the SR *-tree is appropriately modified to enable
indexing of both mobile objects and queries. The leaf node entry of the general R* tree has the form (o, mbr),
where o is either a unique identifier of the spatial object or an address of the spatial object in the main-mem-
ory/secondary storage, and mbr is its minimal bounding rectangle. The leaf node entry of our extended SR*
tree is represented as a quadruple (segid, mbr, olist, qlist), where olist and glist is the list of identifiers of objects
and queries, respectively moving along the segment identified by segid. The SR*-tree structure enables efficient
map matching in order to find the network segment and position on that segment from the start of the segment
according to the location (X, Y coordinates) received from the mobile object.

The connectivity graph of the spatial network is maintained in main memory by the Network Connectivity
Table (NCT) which stores information about the connectivity of network segments. A NCT entry is described
as (segid, rtEntry, segLength, startCon, endCon), where rtEntry is the pointer to the SR*-tree leaf node entry
which represents that network segment (segid) whose length is given by segLength, and provide access to the
lists of objects and queries that reside or move along the segment. The elements startCon and endCon are
pointers to the lists of records described as (segid, dir), where segid represents the identifier of the segment con-
nected to the start/end node and dir is the direction of that segment in the connection. The NCT is indexed on
the segid attribute. Any main-memory index structure such as hash index or B-tree index can be used for the
implementation of the NCT. The NCT is maintained to improve the updating of the index structure when
mobile object/query issues a location update after changing its network segment. The NCT also improves
map matching performed at the server in order to find the appropriate network segment according to the cur-
rent location of a mobile object. Also, the connectivity structure maintained in NCT is more effective for LBS
queries (range, k-NN, etc.) over objects on the spatial network, where the distance between two objects is not
determined by the Euclidean metric, but by means of a network-based metric.

The insertion of the object into the index structure and the generation of the object list (o/ist) attached to
the leaf node entries are performed according to the following rules:

e A static object is inserted in the o/ist attached to the leaf node entry of the SR*-tree index that corresponds
to the network segment at which such object resides.

¢ A mobile object is inserted in the olist attached to the leaf node entry of the SR*-tree index that correspond
to the network segment along which the object currently moves (the segment is the known route of the
mobile object).

The insertion of the query in the same SR*-tree index is performed according to following rules:

e A static range query is inserted in each glist attached to the leaf node entry of the SR *-tree index if its range
overlaps the MBR of the corresponding network segment.

¢ A mobile range query is inserted in each ¢list attached to the leaf node entry of the SR*-tree index if its
known route overlaps with the MBR of the network segment. The known route of the mobile query is
defined by MBR of the network segment along which its reference object moves, extended by the query
range.

The SR*-tree index structure performs the matching between mobile objects and mobile/static queries
according to their spatial relations and fulfillment of the spatial condition of a query. It enables the calculation
of the initial answer set of the continuous query (filter set). Since, the index structure maintains only the spatial
properties of objects and queries, it is not selective enough, and the initial answer set contains false positive
answers. The methodology thus introduces an additional step in query processing scheme, the pre-refinement
step, that creates additional main-memory data structures and support subsequent incremental refinement
steps. The pre-refinement step refines the initial query answer set with regard to temporal information of
objects’ and queries’ motion, as well as their exact geometries. The pre-refinement step creates the data struc-
tures in main memory to support incremental refinement steps.

In addition to the previous data structures two additional main-memory data structures are defined. The
continuous query table (CQT) is used to store information about continuous range queries. A CQT entry



84 D. Stojanovic et al. | Data & Knowledge Engineering 64 (2008) 77-100

is of the form (gid, oid, range, validPeriod, answerSet) and stores information regarding continuous queries.
The table is indexed on the gid attribute which is the unique query identifier. The oid is the identifier of the
reference object of the query, static or mobile, and range defines the shape of the spatial query range around
the reference query object, or the distance along the network that represents the network range. The validPe-
riod represents the period for which the query is valid. The answerSet is the initial query answer obtained by
the filter step with additional, temporal information about satisfaction of a query condition. The initial answer
is a list of elements of type CQAnswer defined as (moid, aperiod, status), where moid is mobile object identifier
which belongs/will belong to the answer of the query during the period aperiod, while its current status in the
query answer is described by the status attribute. The values of the status attribute are INIT_ ANSWER,
NEW_ANSWER, OLD_ANSWER and NO_ANSWER. In the simplified case, when the period is a single
time period, the mobile object, during its motion and/or query motion, change all status values sequentially.
Thus, an object has INIT_ANSWER status when it will be the answer of the query in some period(s) in the
future. The status NEW_ANSWER is associated to an object, when it becomes the new member of the query
answer. The status OLD_ANSWER is associated to an object when it is the member of the current query
answer, as well as was a member of the query answer in the previous evaluation of the query. An object
has status NO_ANSWER when it is not a member of the current query answer, nor will be in the future,
but was the member of previous query answers. Due to time progress, every mobile object candidate for
the query answer changes its status in a strict sequence [INIT_ANSWER — NEW_ANSWER — OLD_
ANSWERIn— NO_ANSWER, where [...]n indicates that the part of the status sequence can be repeated
if the answering period of an object is a multi period (Fig. 1).

For each mobile object in the system, an in-memory Mobile Object Table (MOT) is created and main-
tained. The mobile object entry is described as (moid, loc, time, speed, querySet), where moid is the unique
mobile object identifier, /oc is the last received location, time is the time instant of the location update and
speed is the last received speed, which has positive or negative value depending on the mobile object’s direction
along the segment (from the start to the end intersection or vice versa). The querySet attribute represents the
list of queries in which such object participates, either in a query answer, or as a reference object of a query.
Each query in this list is represented by an element of type CQ Reference which contains two attributes: gid, the
query identifier and ans, the reference to the appropriate CQAnswer element of this query maintained for the
mobile object. If a mobile object is the reference object of a query, this reference is set to NULL value.

To support fast and efficient updates of leaf node entries (object and query lists), which do not require
changes in the SR#*-tree non-leaf node entries and the structure of the SR#*-tree, we extend two auxiliary
main-memory index structures according to proposals of LUR-tree [17] and bottom-up update of R-tree
[20]. For each mobile object in MOT there is a pointer to the corresponding entry in the leaf node of SR *-tree
(mind), which represent the current segment of the mobile object. This MOT extension enables fast access to
the olist(s) of the corresponding leaf node entry(-ies). Analogously, the CQT is extended by a gind pointer to
the list of SR*-tree leaf node entries that store that query in corresponding glists. Fig. 2 illustrates the structure
of the SR*-tree and the main-memory data structures mobile for objects and continuous queries.

Mobile objects in a real-world setting very often move following a particular route, which represents a path
in road networks (Brinkhoff, 2003; [15]). Most humans do not move around aimlessly, but move towards a
known destination choosing the best/fast/shortest paths depending on the cost criteria (time, distance, etc.).
Therefore, LBS server can predict correctly the route on which a service user travels as an ordered set of
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>
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Mobile object’s route

Fig. 1. Changing the status of a mobile object in a continuous query answer.
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Fig. 2. Structure of SRx*-tree, as well as MOT and CQT auxiliary structures.

segments from the starting position to the destination. Using the correct route in place of a network segment
reduces the number of updates needed to maintain a user’s position within uncertain threshold as well as main-
tains the correct answer (valid period of answer) of continuous queries. Updates occur only because of speed
changes. When a user changes its future route, because of sudden circumstances on that route (traffic accident,
traffic jam, etc.) the server needs to calculate the new route for the user towards the same destination. If the
partial or complete route of the mobile object is known in advance, the last element of the MOT entry is trans-
formed in the head of the list of SR*-tree leaf node entries that represent road segments as the known future
route of the mobile object. In that case, the first element in the list contains the pointer to the leaf node entry of
the current segment, and the other contains pointers to the leaf node entries which represent the known future
route of the mobile object.

4. Continuous range monitoring algorithms

In this section we describe the algorithms for continuous range monitoring, which include the algorithms
for the filter step, the pre-refinement step, and the refine step. The continuous range monitoring generates the
incremental query answer. Also the algorithm for maintenance of temporal query answer generated by the pre-
refinement step upon location/speed/segment updates of mobile objects/queries is given in Section 4.1. Section
4.2 gives numerical analysis of the cost of the pre-refinement step and estimates the threshold for which this
step is justified. This section discusses the highly dynamic situation, where the size of incremental query answer
can be at most two times larger than the full answer.

4.1. Algorithms

The insertion of the mobile object into the SR*-tree index structure and the generation of the object list
attached to the leaf node entries are performed according to the following algorithm (Fig. 3).
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Algorithm Insertion of mobile object in SR*-tree
Input: MO - the new mobile object

1. Search SR*-tree on MO.loc and find SR*-tree leaf node entries
2. for each rtEntry in found SR*-tree leaf node entries

3. Apply Map matching to find rtEntry.segid for MO.loc

4. end for

5. rtEntry.olist. Add(MO)

Fig. 3. Insertion of mobile object in SR*-tree.

The insertion of the query in the same SR*-tree index is performed according to the algorithm in Fig. 4,
where range is represented as rectangular area, and in Fig. 5 for range represented as distance along the net-
work from reference object.

The algorithms for creating these tables are slightly different for the cases of static and mobile continuous
queries. The input argument of the algorithms is the set of mobile objects that represent the potential query
answers obtained by the filter step, by the examination of the SR*-tree index. The pre-refinement algorithm is
performed on exact spatial and temporal geometries of mobile objects and mobile/static queries and creates
necessary data structures. The algorithm for static queries over mobile objects is given in Fig. 6.

After updating the CQT and MOT tables (lines 2-4), the algorithm examines the spatial relation intersects
on a mobile objects route (the geometry of the current network segment or the predicted route) and the static
query range (line 8). This step enables removing false spatial positives obtained by the filter step. False pos-
itives are mobile objects whose MBR of the current segment overlaps with the query range, but their actual
route does not intersect the query range. For those objects satisfying the spatial relation intersects, the time
period (multi time period) in which the mobile object is (was, will be) within the query range is calculated,
based on current motion parameters (speed, route) of the mobile object (line 9). The operators for spatiotem-
poral geometric calculations and topological relations in space+time (such as Intersects, Within, When, etc.)
are developed and integrated in the ARGONAUT mobile object data management framework [28]. For
objects whose answer period ends somewhere in the future, the new CQAnswer and CQReference elements

Algorithm Insertion of a query in SR*-tree
Input: CQ (o - reference object, range)

1 if CQ.o is a static object then

2 Search SR*-tree on CQ.range around o.loc and find SR*-tree leaf node entries
3 for each rtEntry in found SR*-tree leaf node entries

4. rtEntry.qlist. Add(CQ)

5. end for

6. else

7 Search SR*-tree on o./oc and find SR*-tree leaf node entries

8. for each rtEntry in found SR*-tree leaf node entries

9. Apply Map matching to find rtEntry.segid for o.loc

10. end for

11. Construct extendedMBR from rtEntry.mbr and cq.range

12. Search SR*-tree on etxendedMBR and find SR*-tree leaf node entries
13. for each rtEntry in found SR*-tree leaf node entries

14. rtEntry.qlist. Add(CQ)

15. end for

16. end if

Fig. 4. Insertion of static/mobile query in SR#-tree according to range in Euclidean space.
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Algorithm Insertion of a query in SR*-tree
Input: CQ (o - reference object, distance)

1. Search SR*-tree on CQ.o.loc and find SR*-tree leaf nodes

2. for each rtEntry in SR*-tree leaf node

3. Apply Map matching to find rtEntry.segid with CQ.o.loc

4.  end for

5. Get NCT entry for rtEntry.segid

6. if CQ.o is a static object then

7. Using NCT entries, segLength, startCon and endCon obtain the list of segments (NCT entries) that are
8. within network distance from CQ.o.loc

9. else

10. Using NCT entries, segLength, startCon and endCon obtain the list of segments (NCT entries) that are
11. within network distance from startintersection and endlIntersection from rtEntry.segid

12. endif

13. for each ncte in selected NCT entries

14. ncte.rtEntry.qlist. Add(CQ)

15. end for

Fig. 5. Insertion of static/mobile query in SR#-tree according to range in a network.

Algorithm Pre-refinement step for static queries over mobile objects
Input: filterSet: a list of MO obtained by accessing the SR*-tree

1. Add new entry SMquery in CQT
2. for each MO in filterSet

3. if not exist MO in MOT with such MO.moid then

4. Add new MOT entry for MO

5. else

6. Find MOT entry with MO.moid

7. endif

8. if MO.route() Intersects SMquery .range then

9. ap €TimePeriod and ap <~ When (MO.loc Within SMquery.range)
10. if ap.end > currentTime then

11 cqanswer <—new CQAnswer(MO.moid, ap, INIT_ANSWER);
12. SMquery.answerSet.Add(cqganswer);

13. cqref < new CQReference(SMquery.qid, cqanswer);

14. MO .querySet.Add(cgref);

15. end if

16. end if

17.end for

Fig. 6. Pre-refinement step for static query-mobile objects.

are created and added to the lists of corresponding CQT and MOT entries (lines 11-14). Such condition selects
the mobile objects which currently are, or will be, the part of the query answer.

The pre-refinement step in processing of mobile query over mobile objects is slightly different, because the
relationship between two moving objects is not linear in time. Thus it is impossible to exactly determine the
answer period for each mobile object as potential answer of the mobile query. Therefore, for mobile queries,
the spatial condition given in line 8 of the previous algorithm is changed. Instead of examining the query range
in lines 8 and 9, the query route is examined, which is determined as a Minkowski sum of the query’s network
segment and defined range.

The periodic, incremental evaluation of continuous range queries is performed by scanning and examining
the CQT by refinement step. The refinement step is performed periodically and evaluates the temporal query
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condition. It determines the incremental answer in regard to the previous evaluation (refinement step), which
is sent to the mobile client issuing a continuous query. The incremental answer represents the set of IncAnswer
elements containing the moid of the object and the Boolean attribute indicating that the object becomes the
part of the answer of the query (true value), or that it is not the answer any longer (false value). The incremen-
tal answer can be location- aware [13] if the user is interested not only in the set of objects that satisfy the
constraints in the query, but also in their current geographic location (for instance, to locate such objects
on a map). In that case the incremental answer contains location and other useful attributes of the mobile
objects included in the answer. The refinement step is performed for all continuous queries active in the sys-
tem, according to the algorithm shown in Fig. 7.

If the answering period contains current time, the mobile object is either the positive update of the query
answer (lines 6-9) and thus the part of the incremental answer, or is already included in some previous
query answer, and thus is not included in the new incremental answer (line 10). If a mobile object enters
the query range several times during its motion (the answer period is a set of time periods), when one period
from the set is expired, the objects status is INI'T_ANSWER again, until the beginning of the next time period
(lines 13 and 14). If the answer period of an object expires, the negative query answer update is generated and
the corresponding element is removed from the query answer (lines 16-19). The refinement step for the case of
mobile queries over mobile objects must include an additional test of the spatial condition on exact mobile
object and query location, for those objects that already satisfy the temporal condition. Thus, the line 4 of
the algorithm in Fig. 7 introduces the changed condition and becomes:

4. if cqanswer.period contains currentTime and MO.currentLoc() within CQ.current Range() then

The functions currentLoc() and currentRange() calculate the location/range of the mobile object/query at
the current time, given the last received location, time and speed of the object/query reference object, as well
as its current route (network segment). As mentioned previously, a mobile object moves on its network seg-
ment with the last reported speed. When its predicted location (obtained by the currentLoc() function) differs

Algorithm Refinement step for static queries over mobile objects
Output: incAnswerSet, a set of IncAnswer objects

1. for each CQ in CQT

2. if CQ.validPeriod Contains currentTime then

3 for each cqanswer in CQ.answerSet

4 if cqanswer.aperiod Contains currentTime then
5. if cqanswer.status = INIT_ANSWER then

6 cqanswer.status < NEW_ANSWER;

7 ia < new IncAnswer (cqanswer.moid, true)
8

. incAnswerSet. Add(ia);
9. else
10. cqanswer.status<— OLD_ANSWER
11. end if
12. else if cqanswer.status = OLD_ANSWER then
13. if cqanswer.aperiod is a TimePeriodSet and has_ periods_in_the_ future then
14. cqanswer.status <~ INIT_ANSWER
15. else
16. cqanswer.status < NO_ANSWER
17. ia < new IncAnswer(cqanswer.moid, false)
18. incANSWERSet. Add(ia)
19. remove cqanswer from CQ.answerSet
20. end if
21. end if
22. end for
23. end if
24. end for

Fig. 7. Refinement step for the set of static continuous queries over mobile objects.
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from its exact location by the specified threshold, the object must send location, time and speed updates. Upon
receiving updates, the server must determine if the mobile object changes its network segment using map
matching techniques. If the mobile client is augmented with road network data or network infrastructure is
extended with specific sensors, the mobile object itself could determine the change of the network segment
and report it to the server (as mentioned at the beginning of the section).

The location update for each mobile object requires scanning and updating both tables, MOT and CQT
(Fig. 8). If the mobile object remains on its network segment, the update algorithm scans the pre-refinement

Algorithm Location/speed/network segment update of a mobile object
Input: newloc, newspeed, newtime of the mobile object MO

1. Update MOT entry for MO.moid;

2. MO.loc <newloc;

3. MO.speed < newspeed;

4. MO.time < newtime;

5. Search SR*-tree on MO.loc and find SR*-tree leaf nodes

6.  for each rtEntry in SR*-tree leaf node

7. Apply Map matching to find rtEntry.segid for MO.loc

8. end for

9.  if MO not change network segment according to entry MO.moid in MOindex then
10. for each gr in MO.querySet

11. cq <—CQ with qr.qid

12. if gr.ans /= NULL then

13. Update(cq.answerSet, gr.ans, MO)

14. else

15. for each res in cq.answerSet

16. Update(cq.answerSet, ALL, MO)

17. end for

18. end if

19. end for

20. else // MO changes the network segment

21. Remove the first element in MOIndex entry list associated to MO.moid which points to the old_rtEntry
22. old_rtEntry.olist. Remove(MO)

23. if there is a predefined route then

24. Check if MO follows its route

25. else

26. Add the pointer to the new_rtEntry of the new segment in MO.mind list associated to MO.moid
217. end if

28. new_rtEntry.olist. Add(MO)

29. for each CQ in old_rtEntry.qlist \ new_rtEntry.qlist

30. CQ.answerSet.Remove(MO)

31. end for

32 for each CQ in new_rtEntry.qlist

33. if CQ exists in MO.querySet then

34. Update corresponding CQAnswer in CQ.answerSet

35. else

36. Add new CQAnswer to CQ.answerSet and new CQReference to MO.querySet
37. end if

38. end for

39. for each CQ with MO as a reference object

40 for each rtEntry pointed by CQ.qgind list elements for CQ.qid
41. Remove CQ from the rtEntry.qlist

42 end for

43, Insert CQ in SR*-tree (Algorithms on Figure 4 or 5)

44, end for

45. endif

Fig. 8. Location/speed/network segment update of a mobile object.
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data structures and updates the corresponding MOT entry, as well as all CQT entries of the affected queries
and their answers using the simple expressions (lines 10-19). If the mobile object leaves its network segment
and starts moving along a new one, the pre-refinement data structures (querySets, answerSets) related to the
mobile object and the new set of queries obtained by the new SR*-tree glist, should be updated or new entries
should be added according to the algorithms for the pre-refinement steps depicted in Fig. 6(lines 29-38). If the
mobile object is also the reference object of the mobile query, the new SR*-tree olists must be examined and
the corresponding answerSet and querySet should be updated (lines 39-44).

The update of the answer period of an object (aperiod) issuing location and speed updates at a certain time
instance is based on the threshold value ut, previous speed v,, the new speed v,, and the time ¢, of the new
update. The update function (lines 13 and 16 of Fig. 8) updates the answer period aperiod of a mobile object
(or every time period in the set of time periods) according to the following expressions:

v, (aperiod .start — t,) + ut v, (aperiod.end — t,) + ut

aperiod .start = +1t, aperiod.end = +t,
Un U

The uncertainty threshold value uf in this formula is added if the mobile object is advanced in regard to its
predicted location, and it is subtracted if it is late in regard to its predicted location. Thus, the system provides
an up to date and accurate answer for every continuous range query it maintains, according to location/speed
updates of mobile objects.

4.2. Analysis of algorithms

We now analyze the cost of pre-refinement step in terms of CPU time needed to maintain continuous query
answer up-to-date for static queries over mobile objects. The notation used in this section is summarized in
Table 1. We compare the time needed to perform incremental query evaluation using the pre-refinement step
with time for continuous range query processing without this step, using only SR*-tree and NCT. The proposed
methodology includes the times needed for the pre-refinement step, for the update of temporal query answer
upon change of motion parameters of mobile objects within the same segment and for periodic incremental
evaluation. When the methodology does not use the pre-refinement step, to perform periodic query evaluation
we need the time for calculation of mobile object locations and query ranges at the time of evaluation, as well
calculation of spatial predicate inside for point and rectangular geometric object. The analysis gives the number
of updates per network segment that justifies the inclusion of pre-refinement step in the query processing meth-
odology. We do not analyse the cost of changing network segment upon receiving mobile object’s update, since
both evaluation strategies perform the same actions in SR*-tree when such change occurs.

The costs of the continuous query evaluation with the pre-refinement step and without the pre-refinement
step are as follows:

Te' = Tp+ Nu- Tu + Tr Te* = Trt + Tinc (1)

We are interested in the value of Nu that satisfies Te' < Te®. We simplify the expression for Te' and assume
that all mobile objects that are the part of the CQ temporal answer set simultaneously update their location/
speed. We take that the average probability that a mobile object issue continuous query is between 0 and 1.
The cost of the pre-refinement step is mostly influenced by the determination whether the route of the mobile
object intersects the query range and determination of the time stamps between which the mobile objects is/
will be within the query range.

fi(MOiaLOSalnSidezD) + Nu f2(MOl7p7 Up? I") +ﬁ(M OiapalnSidelD)

Tp Tu Tr
< 8,(MO;, LoS, Inside2D) + g,(FQi, MOi) (2)
Tr Tinc

This analytical expression shows that for particular query and defined settings: the number of mobile
objects obtained in the filter step, the number of mobile objects obtained in the pre-refinement step (the selec-
tivity of pre-refinement), the characteristics of the underlying network (long polyline segments, short straight
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segments, etc.), the query range, there is a threshold in Nu value which gives the benefits when applying the
pre-refinement step. The number of updates between successive evaluations is directly proportional to the
duration of evaluation period and agility of mobile objects/queries (the frequency of changing motion param-
eters between successive evaluations). We will experimentally determine the threshold for the period between
successive evaluations for various parameter settings in Section 5.2.

For highly dynamic situation where especially both objects and queries are mobile, and the longer period
between successive continuous query evaluations, the size of incremental query answer can be larger than the
full answer. Let Answer(t;) be the answer of continuous query CQ in ¢;, and Answer(t; 1) be the answer of con-
tinuous query generated at #;+;. Then, incremental query answer IAnswer(t;11) at t,+1 is represented as:

IAnswer(t;,1) = (Answer(t;) \ Answer(t:11),0) U (Answer(t;11) \ Answer(t;), 1), (3)

where 0 stands for objects that those objects are removed from the query answer, and 1 defines objects that
must be added to the query answer. Depending on speed profile of mobile objects and eventually queries and
characteristics of the network for duration of time between successive evaluation ¢ = t;1; — ¢; the size of incre-
mental answer is greater than the size of the full answer, IAnswer(t;+,) > Answer(t;+,) (we do not take into ac-
count the status bit of mobile objects in the incremental query answer). In highly dynamic environment and
long periods between successive continuous query evaluation the answers of two successive evaluations can
be completely different, i.e. Answer(t.+1) N Answer(t;) = . In that case IAnswer(t;11) = Answer(tir1) U
Answer(t;), For uniform distribution of objects and queries, Size(Answer(t;+1)) ~ Size(Answer(t;)), and then
Size(IAnswer(t+1)) = 2 -Size(Answer(t;11)). Thus, the size of the incremental answer at certain time stamp
can be equal to the double size of the full answer. In the experimental section we perform experiments to deter-
mine the duration of period between successive evaluations for which incremental evaluation is not justified.

5. Experimental evaluation

In this section, we present the results of some experiments to analyze the performance of our continuous
query processing methodology.

5.1. Experimental setup

We used the Network-based Generator of Moving Objects [2] to generate a set of 10,000 mobile objects and
1000 mobile queries. The input to the generator is the road map of Oldenburg (a city in Germany). The road
network consists of 2873 intersections and 3803 segments. The output of the generator is a set of moving
objects that move on the road network of the given city with probability of 5% to report its location update
at each time stamp. Thus, every mobile object changes its motion parameters within 20 seconds period. We
choose some objects randomly and consider them as reference objects and centers of rectangle range queries.
All the experiments have been conducted on an Intel Pentium IV CPU 3.0 GHz with 512 MB RAM running
Windows XP Professional. The page size is set to 4 KB. We have implemented the SR*-tree based on the ori-
ginal implementation of R*-tree [1]. ARGONAUT continuous query processing algorithms and main-memory
data structures have been implemented using Microsoft Visual Studio C++ and the STL library. Our perfor-
mance measures are: (i) the CPU time required for the pre-refinement step and the creation of in-memory data
structures, (ii) the CPU time for the refinement step and the generation of incremental answers and (iii) the
CPU time for updating the main-memory data structures upon receiving location/speed/network segment
update of a mobile object. Since the performance for access and update of SR*-tree which index network seg-
ments highly depends on size and characteristics of the underlying spatial network, we do not present the
results of those experiments.

We start our performance consideration using the set of objects produced by the filter step, which are the
candidates for the final answer according to their spatial characteristics, i.e., location and range for the static
queries and routes for mobile objects/queries. We perform the experiments for 10,000 mobile objects and 1000
mobile (static) queries and measure the average CPU time (in milliseconds) necessary for the pre-refinement
step of a continuous query and the generation of the necessary data structures in main-memory for refinement
steps which are performed periodically and produce incremental query answers. The average number of
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mobile objects per query obtained in the filter step for different query ranges is given in Fig. 9. We vary the
query range from 0.001 to 0.2 of each dimension of the data space.

5.2. Experimental results

We perform experiments to obtain the performance of the filter step in the query processing methodology.
In our experimental setup, inserting 10,000 mobile objects in SR*-tree requires 0.34 seconds. Insertion of the
continuous queries in the SR*-tree depends on query range and the query type, i.e. whether the query is static
or mobile. The performance of the filter step for 1000 continuous queries, both static and mobile is presented
in Fig. 10, when query range varies between 0.001 and 0.2 of the data space. The difference in performance of
the filter step for the static and mobile queries is caused by the larger MBR of the mobile queries which is
represented either as the extension of the MBR of the current segment by the actual query range, as described
in Algorithm on Fig. 4, or by distance from the start and end intersections of the current segment, as described
in Algorithm in Fig. 5.

The experiments on the performance of the pre-refinement step show that it requires a very small amount of
CPU time (milliseconds) (Fig. 11). More specifically, for 10,000 mobile objects and 1000 continuous range
queries, the pre-refinement step needs approximately 1.8 milliseconds for queries whose query range represents
0.1 of the data space.
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Fig. 11. The CPU time for the pre-refinement step per query for 10,000 MO/1000 (a) static CQ (b) mobile CQ.

During the refinement step an access to the main-memory data structures and the examination of the tem-
poral part of the query condition are performed. The refinement step is performed periodically, i.e., once every
T seconds. For each object in the answer of the continuous query, the refinement step should select those
objects that constitute the current answer of the query as well as to generate the incremental answer in regard
to the previous refinement step and evaluation of the query. We examine the duration of the refinement step
for 1000 continuous queries over 10,000 objects, using different query ranges. Fig. 12 depicts the CPU time
required for the incremental evaluation of 1000 static and mobile continuous queries over mobile objects
depending on query range, according to the algorithm shown in Fig. 7 and its extension for mobile queries.

The average number of mobile objects in the query answer is given in Fig. 13 for different query ranges. The
filter characteristics of SR*-tree and pre-refinement data structures, can be determined as the size of the real
answer divided by the size of the average filter answer (depicted in Fig. 9). For our experimental settings the
filter characteristics of SR*-tree take values from 0.12 for query range 0.001 of the data space, to 0.9 for the
query range 0.2 of the data space.
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When the mobile object (query) issues a location/speed/segment update, the main-memory data structures
should be updated appropriately, to reflect the new location and the motion parameters of the mobile object/
query, as well as its new route (network segment). According to the algorithm shown in Fig. 8, a mobile object
should update the answering periods for all continuous queries in which it participates, according to its new
location and new reported speed. When a mobile object is the reference object of a query (queries) the answer-
ing periods of all answers in the set should be updated accordingly. The CPU time per mobile object required
for updating the main-memory data structures, under the load of 10,000 mobile objects and 1000 continuous
queries is presented in Fig. 14. The CPU time shown represents the average time per object needed for the
update of MOT and CQT data structures that preserves the consistency of the temporal query answer sets.
If a mobile object changes its underlying network segment, it is necessary to update also the SR*-tree, accord-
ing to the filter algorithm. In that case it is necessary to perform the filter and the pre-refinement step for each
such object and generate the new querySets and answerSets elements of the MOT and CQT entries, respec-
tively. Thus, this experiment shows the cost of update of main-memory data structures SR*-tree, MOT
and CQT when the mobile object move to another network segment.

To prove the benefits of the pre-refinement step in the continuous query processing methodology the set of
experiments were performed to prove the numerical analysis in Section 4.2. We compare the CPU time for
incremental query evaluation without the pre-refinement step, and the CPU time for query evaluation which
include the pre-refinement step, necessary updates of pre-refinement data structures upon location/speed
update of mobile objects and the refinement step based on pre-refinement data structures. We do not take into
account the CPU time needed for changing network segment upon receiving mobile object’s update, since
both evaluation strategies perform the same actions in SR*-tree when such change occurs. We set the period
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Fig. 14. The average CPU time per mobile object needed for data structures update upon location/speed/segment update.
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between two successive evaluations at 10 time stamps (seconds), and vary the agility of mobile objects in range
5%, 10% and 20%. The agility of 5% mobile objects per time stamp means that within evaluation period 50%
of mobile objects change their motion parameters (location/speed). Analogously, for 10% and 20% agilities, all
mobile objects change the motion parameters once or twice, respectively between two successive evaluations.
To compare the performance of our data structures SR*-tree and NCT in continuous query evaluation, we
implement the hash-based approach in the form of basic 40 X 40 main-memory grid according to Kwon
et al. [18]. The performance results are given in Fig. 15.

The experiments show that our methodology and algorithms based on main-memory SR*-tree and other
data structures, both with and without the pre-refinement step, outperforms the simple hash-based approach
using grid. The reason for this behavior is worse selectivity features of grid for objects in the road networks in
regard to SR*-tree, and thus is expected. The experiments also show that there is a threshold for the benefits of
the pre-refinement step. For smaller query range the query evaluation with pre-refinement step needs less CPU
time then the query evaluation without pre-refinement step for all agilities. In our experimental settings and
according to Fig. 9, the filter characteristic of the pre-refinement step, the parameter p in Section 4.2, vary
from 0.5 from query range 0.001 of data space to almost 1 for the maximum query range. Because we assume
10,000 mobile objects and 1000 continuous queries, the parameter r defined also in Section 4.2 is set to 0.1. For
larger query ranges and greater mobile objects agilities the CPU cost of updating the large answer set gener-
ated by the pre-refinement step surpass the CPU costs of maintaining incremental query answer for query
evaluation without pre-refinement and thus degrades the overall performance of query evaluation with
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Fig. 15. The average CPU time for evaluation of continuous query with and without the pre-refinement step for different MO agilities and
the evaluation period of 10 seconds.
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Fig. 16. The relation between incremental and full continuous query answer for different evaluation periods.
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pre-refinement step. Therefore, for longer network segments, small query ranges and less frequent location/
speed updates of mobile objects, the inclusion of the pre-refinement step is fully justified.

We perform the experiments to determine the duration of period between successive continuous query eval-
uations for which the size of incremental answer becomes greater than the size of the full answer (Fig. 16). We
measure average sizes of the full answers and incremental answers of static continuous queries.

According to experimental settings and characteristics of simulated mobile objects, for evaluation period of
14 seconds for continuous queries with range of 0.1% of data space the incremental answer becomes greater
than the full answer and thus continuous query processing methodology can switch to response with full
answer rather than incremental answer. For queries with smaller range, i.e. less than 0.1 of the data space
and especially for mobile queries which brings more dynamics in query answers, the threshold for which
the incremental answer become greater then the full answer is even shorter. Most of the research work neglects
this dynamics in query answer, which is also continuously changed with motion of objects and/or queries. For
example, the SINA incremental evaluation experiments based also on data from Brinkhoff generator [2] adopt
the query with side length 0.01, and reevaluation for every 10 seconds, while 10% of mobile objects explicitly
change their locations within that period (stepwise motion). Kwon et al. in Ref. [18] use similar experimental
setup, where 10% of objects report their locations every 3 min moving in a stepwise manner and the query
window is set to 0.002 of the entire range.

5.3. Summary of the experiments

With respect to the above experimental results, the ARGoNaUT methodology offers acceptable performance
in updating the answering periods of the continuous query answers, when receiving new values for the location
or speed of a mobile object. The optimal solution for the continuous query processing methodology is to
employ the pre-refinement step for longer segments and less frequent location/speed updates between succes-
sive query evaluations, and bypass the pre-refinement with higher agility of mobile objects and longer evalu-
ation periods. For longer periods between successive evaluations the methodology must switch to issuing the
full answer rather than the incremental answer. Thus, the pre-refinement step offers better performance for
evaluation of continuous queries over objects in highways and main motorways; in situations that are char-
acterized by less frequent changes and updates of motion parameters (speed) and moderate frequency of eval-
uation. For continuous queries over objects in city streets, which frequently change their speed and
acceleration, the pre-refinement step causes unnecessary overhead and must be avoided. In all cases the use
of main-memory index and data structures, SR*-tree, NCT, MOT and CQT is fully justified. Therefore,
the proposed methodology can be used to solve real-life problems and aid real-life applications which require
the storage and manipulation of mobile objects moving in road networks.

6. Concluding remarks

This paper introduces the ARGONAUT framework and methodology for evaluating continuous range queries
over mobile objects moving on a spatial network. The ARGONAUT methodology is based on both traditional
indexing schemes (SR*-tree) implemented in main-memory and main-memory data structures. It employs
an incremental evaluation paradigm to achieve scalability and efficiency in processing of continuous range
queries. It introduces an additional step in traditional spatiotemporal query processing strategy (filter/refine-
ment), the pre-refinement step. The filter step selects the candidate objects according to fulfillment of the spa-
tial query condition and using appropriately extended SR *-tree index on spatial network. The pre-refinement
step is performed after the filter step to further refine the mobile objects obtained by the filter step and builds
the required main-memory data structures to support periodical and incremental refinement steps. The filter
and pre-refinement steps are performed only once, unless the reference query object changes its underlying net-
work segment. The refinement step is performed periodically by processing in-memory data structures gener-
ated by the pre-refinement step.

To the best of our knowledge this is the only reported work that studies continuous range queries over
mobile objects whose motion is constrained by a spatial network. We perform comprehensive experiments
measuring the required CPU times needed for the pre-refinement step, for the update of pre-refinement data
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structures upon receiving location/speed update from a mobile object, and for the periodical refinement steps
with variable query parameters. We also determine threshold at which it is justified to include the pre-refine-
ment step in query processing strategy, and provide experiments to define the threshold for which the size of
incremental query answer becomes greater than the full answer and thus utilize more network bandwidth for
query answer response. The experimental results show that the performance of the ARGONAUT query processing
methodology is satisfactory for real-world settings in LBS applications for monitoring and tracking mobile
objects.

With this goal in mind and according to Jensen [15] we choose to implement our query processing meth-
odology in wireless/wired Web prototype applications for monitoring and tracking mobile objects and fleet
management. There are a only few reported implementations of continuous query processing systems, with
regard to many proposed access methods and indexing structures dedicated to continuous query processing,
reviewed in Section 2. Those are DOMINO (Databases fOr MovINg Objects) [30], PLACE (Pervasive Loca-
tion-Aware Computing Environments) [22] and MODIS (Moving Object Database Interface System) [8]. We
implement ARGONAUT Server as a mobile object server with mobile object data management and query process-
ing functionality. The ARGoNAUT Server provides Web service interface for ARGONAUT clients, which can be
classical Web clients or mobile clients. The Web client for monitoring and tracking mobile objects is imple-
mented using AJAX technology and SVG. Mobile client is implemented on J2ME technology. The continuous
query processing methodology implemented within the ARGONAUT Server enables efficient processing of static
and mobile queries with respect to the CPU time and main-memory utilization of the server, as well as net-
work bandwidth in communications with mobile clients.

We plan to continue working on query processing in mobile environments, especially on the issues of dis-
tributed and mobile query processing techniques which ship some part of the query processing to the mobile
objects which have the computational and storage capabilities to perform some part of the query processing
algorithms. The promising direction will be to include some form of adaptation in our methodology, men-
tioned in Section 5.3 that will provide adaptive techniques to efficiently support the dynamic workload of
objects and queries and current characteristics of their motion. We also plan to extend our query processing
methodology to processing of different types of continuous queries, like k~-NN queries, as well as to provide
processing of persistent queries, which are continuous in nature and span over a time-interval and require
reevaluation over the history of mobile objects’ motion.
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