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Abstract. Pareto dominance plays an important role in diverse appli-
cation domains such as economics and e-commerce, and it is widely be-
ing used in multicriteria decision making. In these cases, objectives are
usually contradictory and therefore it is not straightforward to provide
a set of items that are the “best” according to the user’s preferences.
Skyline queries have been extensively used to recommend the most dom-
inant items. However, in some cases skyline items are either too few, or
too many, causing problems in selecting the prevailing ones. The num-
ber of skyline items depend heavily on both the data distribution, the
data population and the dimensionality of the data set. In this work, we
provide a dominance-based analysis and querying scheme that aims at
alleviating the skyline cardinality problem, trying to introduce ranking
on the items. The proposed scheme can be used either as a mining or as
a querying tool, helping the user in selecting the mostly preferred items.
Performance evaluation based on different distributions, populations and
dimensionalities show the effectiveness of the proposed scheme.

1 Introduction

Preference queries are frequently used in multicriteria decision making appli-
cations, where a number of (usually) contradictory criteria participate towards
selecting the most convenient answers to the user. Each item is represented as a
multidimensional point.

Assume that someone is interested in purchasing a PDA device. Unfortu-
nately, there are a lot of criteria that should be balanced before a wise choice is
made. Assume further that the customer focuses on two important parameters
of a PDA, the price, and the weight of the device. Therefore, the “best” PDAs
are the ones that are cheap and light-weighted. Unfortunately, these two criteria
are frequently contradictory and therefore, the number of candidates should be
carefully selected.

In this example, we have two attributes, and the user is interested in items
that have values in these attributes as minimum as possible. Depending on the
semantics of each attribute, in other cases the user may ask for maximization of
the attributes, or any combination (minimization in some attributes and maxi-
mization in the others). For example, if the user focuses on price and available
memory, the “best” PDAs are the ones that are as cheap as possible and have



the largest available memory. Without loss of generality, in the sequel we focus
on minimizing the attributes of interest.

A fundamental preference query is the skyline query. The skyline of a set
of points S comprises all points that are not dominated. A point pi dominates
another point pj , if pi is as good as pj in all dimensions and it is better than
pj in at least one of the dimensions. Let d be the total number of attributes
(dimensions) and pi.am denote the m-th dimension value of point pi. Since we
have assumed that “smaller is better”, pi is better than pj in dimension am if
pi.am < pk.am.
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Fig. 1. Skyline example.

The PDA example is depicted in Figure 1. In Figure 1(a) each PDA is repre-
sented by a two-dimensional point (each dimension corresponds to an attribute).
PDA records are shown in Figure 1(b). Points connected by the dashed line com-
prise the skyline of the set of points (PDAs). Any point falling on the right and
top of the dashed line is dominated by at least on skyline point.

The black dots of Figure 1(a) represent the skyline. These points are not
dominated by any other point. On the other hand, points p6, p1, p3, p4 are
dominated by at least one other point. For example, PDA p6 is dominated by
p5 because p5.weight = p6.weight, but p5.price < p6.price. Therefore, none of
these points can be part of the skyline. The skyline is therefore consists of points
p5, p7, p8, p9 and p2.

The number of skyline points depends heavily on the dimensionality of the
data set (number of attributes) and the data distribution. Therefore, according
to these factors, in some cases the number of skyline points are too few, too
many. Moreover, in some cases the skyline points may not be available. In our
PDA example, it is expected that PDAs belonging to the skyline are too popular,
and therefore purchase may not be possible due to lack of stock. In these cases, a
ranking should be enforced to the multidimensional points, and interesting items
should be presented to the user. This is exactly the topic of this paper. More
specifically, we provide a meaningful way of ranking multidimensional points
according to their domination power, towards presenting the items to the user



in an incremental manner. The proposed techniques constitute a way to facilitate
mining and querying for dominance relationships.

The rest of the work is organized as follows. Section 2 presents the related
work in the area, and describes our contributions shortly. Our proposal is given
in Section 3, whereas Section 4 gives some representative experimental results.
Finally, Section 5 concludes the work and briefly describes future work in the
area.

2 Related Work

Skyline queries have received considerable attention recently, due to their aid
in selecting the most preferred items, especially when the selection criteria are
contradictory. Although the problem has been attacked in the past by a number
of researchers [2, 8], only recently it has been tackled under a database point of
view [3].

The current literature is rich in algorithms and organization schemes to facili-
tate skyline query processing. In [11] an efficient skyline query processing scheme
has been proposed based on branch-and-bound, which utilizes the R-tree spatial
access method [5, 1]. This method shows significant improvement over previously
proposed methods. This scheme however, assumes that the skyline is computed
over the whole set of attributes, which in many cases may not be meaningful.

Recently, alternative solutions have been proposed towards helping the user
even further in selecting the most promising items. The output of a skyline
query may contain too few, or too many answers, posing difficulties in selecting
the best items. Towards alleviating this problem, k-dominant skylines have been
proposed in [4]. According to this method, the definition of dominance is relaxed,
in order to enable some points to be dominated, reducing the cardinality of the
skyline point-set.

Another approach has been followed by [6] where the proposed technique
searches for thick skylines. The thick skyline is composed of some skyline points
and some additional points which are close to skyline points but not necessarily
contained in the skyline set. This way, only points in these dense areas are
proposed to the user.

In the same lines, an algorithm is proposed in [10] for selecting skyline points
according to their domination capabilities. More specifically, the algorithm se-
lects a subset of the skyline points aiming at maximizing the number of domi-
nated points. However, this method is NP-hard for high-dimensional spaces, and
therefore approximation algorithms are required towards fast computation.

In [9] the authors study dominance relationships between different data sets
(e.g., products and customers). The authors propose DADA cube, an organiza-
tion scheme to support a number of significant query types towards analyzing
dominance relationships. DADA cube has been designed in accordance to data
cubes utilized in data warehouses.

Finally, [7] study algorithmic techniques to compute approximately domi-
nating representatives (ADRs). ADRs can be computed by appropriately post-



processing the result of a skyline query. The authors show that The authors show
that the problem of minimizing the number of points returned can be solved in
polynomial time in two dimensions, whereas it is NP-hard in higher dimension-
alities. However, there is a polynomial-time logarithmic approximation.

Our research focuses on helping the user quantify the significance of items
based on domination power. Therefore, the proposed scheme is mostly related
to research contributions [6, 10, 9] because: (i) as in [6] items other than skyline
items may be proposed, (ii) as in [10] our scheme returns items according their
domination abilities, and (iii) as in [9] we investigate dominance relationships,
However, our work differs significantly from the previous contributions. A trans-
formation is applied which maps the items from the original d-dimensional space
to a 2-dimensional one. Mining and ranking of items is performed to the new
space (target space), avoiding the excess skyline cardinality that appears in high
dimensions. Additionally, our proposed scheme handles cases where the skyline
points are too few (e.g., in correlated data sets).

3 Domination Mining and Querying

Some skyline points are more significant than others. The quantification of the
significance can be performed in a number of ways. For example, significance can
be measured by means of the number of points dominated by a skyline point. A
skyline point pi is more significant than another skyline point pj if the number
of points dominated by pi is larger than that dominated by pj . This is the main
concept of the scheme proposed in [10] for selecting the most representative
skyline points.

However, in several cases we have to consider non-skyline points as well, which
may also be of interest to the user. This becomes more clear by investigating
Figure 1. It is evident that p2 is a skyline point. However, although the weight
of this PDA is very low, its price is high in relation to the other devices (in fact
it has the largest price of all). It would be better, if PDAs p3 and p4 are also
proposed to the user, since they better compromise the weight/price tradeoff.
This example shows that it would be more appropriate to extend the concept of
significance for all points in the data set, instead of considering skyline points
only as in [10].

Another observation is that thick skylines that have been proposed in [6] do
not solve our problem either, since a skyline point belonging to a dense area
does not necessarily means that is more important than a skyline point lying
in a sparse area. For example, consider a new PDA p with p.price = 100, and
p.weight = 50. Evidently, although this point belongs to a sparse area, it is the
most important skyline point since it has the smallest price and the smallest
weight in comparison to all other PDAs. Moreover, we argue that sparse skyline
points may be very important, since they are far from the competition.



3.1 Determining the Target Space

In the sequel we present three different transformation methods towards taking
into account the domination power of each point. Points with large domination
power should be proposed to the user before points with less domination power.
According to our example, it is evident that the PDA represented by point p8

has more domination power than that represented by p5. In the sequel we will
define domination power in a more formal way.

The first transformation (T1), is the simplest to implement. Each multidi-
mensional point p is transformed to a 2-dimensional point T1(p) = (da(p), 1 −
DA(p)/a), where da(p) is the area dominating p, whereas DA(p) is the area
dominated by p. Evidently, the values of da(p) and DA(p) are distribution in-
dependent, since they are computed based only on the location of p in the data
space. This transformation may be used when only the domination potential of
points is of interest.

T1(p) =
(

da(p)
a

, 1− DA(p)
a

)
(1)

The second transformation (T2), tries to capture the fact that the significance
of a point p is increased when, the number of points dominating p decreases, and
the number of points dominated by p increases. Based on this observation, each
point p is transformed to T2(p) = (dps(p), 1 −DSP (p)/n), where dps(p) is the
number of points dominating p, and DPS(p) is the number of points dominated
by p. In contrast to the previous transformation, this one is distribution depen-
dent, since only domination information is being taken into account, whereas
the absolute location of p in the data space is completely ignored. This transfor-
mation should be used when the domination relationships among points needs
to be investigated.

T2(p) =
(

dps(p)
n

, 1− DPS(p)
n

)
(2)

The next transformation (T3) tries to combine the previous two, by proposing
a hybrid scheme. Each point p is transformed to T3(p) = (da(p)/a,DPS(p)/n),
where again da(p) is the area that dominates p and DPS(p) is the number of
points dominated by p.

T3(p) =
(

da(p)
a

, 1− DPS(p)
n

)
(3)

Note that, all methods transform the d-dimensional points of P to 2-d, in
order to reduce the cardinality of skyline sets in the target space, and provide a
more convenient space for mining and querying dominance relationships.

Next we define two important measures, the domination power of a point
and the domination distance between two points. The first one aims to quantify
the significance of each point, whereas the second one quantifies the difference
between two points in terms of their distance to the target space. Note that,



since the target space is defined in the unit square, the measures assume values
in the interval [0,2].

Definition 1 (domination power)
The domination power P (p) of a point p is the cityblock distance of its image p′

point to the origin of the target space. More formally:

P (p) = p′.x + p′.y (4)

Definition 2 (domination distance)
The domination distance D(p, q) between two points p and q, is the cityblock
distance of their images p′ and q′ in the target space. More formally:

D(p, q) = |p′.x− q′.x|+ |p′.y − q′.y| (5)

3.2 Creating and Maintaining the Target Space

There are two important issues to be resolved regarding the generation of the tar-
get space: (i) target space generation and (ii) target space maintenance. Among
the three different transformations described previously, the simplest to generate
and maintain is the first one (T1), since the image p′ of a point p depends only
on the location of the point itself in the original space. On the other hand, the
most expensive transformation is the second (T2), because the image of a point
depends on the locations of the other points. Moreover, the insertion/deletion
of a point may cause changes in the images of other points. In the sequel, we
describe the generation of the target space according to T2, since the process for
T1 and T3 are similar and less demanding regarding computations.

Without loss of generality, we assume the existence of an R-tree access
method [5, 1] to organize the points in the original space. Other hierarchical
access methods can be utilized equally well. The main issue regarding T2 is that
for every point p we need to calculate the values for dps(p) and DPS(p). A naive
approach to follow is for each point to apply two range queries in the R-tree,
one for the region da(p) and one for the region DA(p). Evidently, da(p) con-
tains all points that dominate p, whereas DA(p) contains all points dominated
by p. By using an arbitrary examination order, it is expected that significant
I/O overhead will take place. Instead, we use an approach which better exploits
locality of references. This approach is based on the Hilbert space filling curve.
In the first phase the value dps(p) is calculated for every point p. In the second
phase the DPS(p) value is calculated. Both phases respect the Hilbert order in
visiting the points. Internal nodes are prioritized based on the Hilbert value of
their MBR centroid.

A significant improvement can be applied to both algorithms towards reduc-
ing the number of I/O requests. This involves the utilization of batched process-
ing. When a leaf node is reached, instead of executing multiple range queries
for each point in the leaf, we execute only one in each phase. Our intuition re-
garding the efficiency of this variation is verified by the computational and I/O



Algorithm CreateTargetSpace (Rtree)
Rtree: the R-tree organizing the original space
minheap: the priority queue of tree entries prioritized by increasing Hilbert values
maxheap: the priority queue of tree entries prioritized by decreasing Hilbert values

1. treeNode = root of the Rtree
2. place entries of treeNode into minHeap
3. while (minHeap not empty)
4. heapEntry = top of minHeap
5. if (heapEntry points to a leaf node)
6. leafNode = the leaf pointed by heapentry
7. execute range query using upper-right corner of leaf MBR
8. update dominance information
9. else
10. internalNode = node pointed by heapEntry
11. calculate Hilbert values and insert all entries of internalNode into minHeap
12. end if
13. end while
14. treeNode = root of the Rtree
15. place entries of treeNode into maxHeap
16. while (maxHeap not empty)
17. heapEntry = top of maxHeap
18. if (heapEntry points to a leaf node)
19. leafNode = the leaf pointed by heapentry
20. execute range query using lower-left corner of leaf MBR
21. update dominance information
22. else
23. internalNode = node pointed by heapEntry
24. calculate Hilbert values and insert all entries of internalNode into maxHeap
25. end if
26. end while

Fig. 2. Outline of CreateTargetSpace algorithm.

time required to build the target space as shown in the experimental results.
The improved algorithm can be used both when all data are memory-resident
or disk-based. The outline of the final algorithm is illustrated in Figure 2.

Since the suggested methodology is focused on analysis and mining, keeping
the target space up-to-date upon every insertion and deletion is not our pri-
mary concern. However, if such a synchronization action is required this is easily
achieved for T1. More specifically, if a new point p is inserted in the original
space, its image is directly calculated by using Equation 1. For T2, two range
queries must be executed in the R-tree, one for da(p) and one for DA(p) to pro-
duce the image of p. Moreover, a complete synchronization requires additional
updates because: (i) the total number of points has been changed, (ii) for each



point px that dominated p the value DPS(px) must be updated, and (iii) for
each point px dominated by p the value dps(px) must be updated. The case of
T3 is slightly more efficient, since only one range query is required, but several
updates of images may be required. To avoid increased maintenance costs when
T2 or T3 is being used, updates in the target space may be performed periodi-
cally. T3 is the best compromise between maintenance efficiency and perception
of domination information.

3.3 Utilizing the Target Space

Domination power and domination distance allow for a number of important
querying and mining operations to be supported. The first important operation
is the determination of the “best” points, by executing a skyline computation
algorithm in the target space, such as the one proposed in [11]. If the user is
not satisfied by the answers, the next layer of skylines can be computed, by
ignoring the previously returned points. This process may continue according to
the user’s request. Note that, since the dimensionality of the target space is 2
and the distribution of the images show a high degree of correlation, the number
of skyline points is not expected to be large. By supporting multiple skyline
layers we alleviate the problem of the small skyline cardinality.

Another important operation is the top-k query, which given an integer k,
returns the k best points, according to domination power. Since the target space
is already computed, such a top-k query is immediately supported by applying
a branch-and-bound search algorithm with a priority queue.

The third operation is related to nearest-neighbors in the target space. Given
a point q, a k-nearest-neighbor (k-NN) query returns the k points closest to q′,
according to the domination distance measure. This way, one can determine
which points “threaten” q with respect to domination distance. A similar query
can be defined by given the query point q and a domination distance threshold
e. In this case, we are interested in determining which point images p′ are within
distance e from q′ (range query). Evidently, if two images are close in the target
space, it is not necessary that the original points will be close to each other in
the original space, and in fact this is one of the most important properties of the
target space.

Apart from using the target space in a online fashion, data mining techniques
can be applied to discover useful knowledge and support the online part in a
number of ways. A useful operation is to detect the outliers in the target space.
Points that are quite “isolated” from the competition are the candidates for being
outliers. Regarding domination relationships, an outlier may be significant, and
therefore it is important to give the chance to the user to check it. However, not
all outliers need to be presented, but only the most significant ones with respect
to domination power. It is up to the user to select all or the most significant
ones for further inspection.

A data mining task related to outlier detection is clustering. In fact, many
clustering algorithms support outlier detection (e.g., DBSCAN). The application
of clustering in the target space will partition the images of points to a number



data set NAIVE (IO/CPU) 2P (IO/CPU) 2P-BATCH (IO/CPU)

IND 1199297/117.73 973156/115.78 25719/4.13

ANTI 412939/32.80 137797/31.34 7873/1.53

CORR 1644380/165.68 1430990/162.70 33747/5.40

GAUSS 1253231/116.45 1030278/113.87 25849/4.00

Table 1. Cost for target space generation (10,000 points in 2-d).

of groups. Each group is expected to contain “similar” points regarding their
domination characteristics. Additionally, clustering can be utilized towards par-
titioning the target space and then use the partitions to suggest items to users.
This way, instead of proposing single points, a whole cluster of points is sug-
gested to the user. Cluster selection may be applied by using the domination
power of the cluster centroid. Therefore, the cluster whose centroid is closer to
the origin of the target space is proposed first.

4 Experiments and Results

In the sequel, we present some representative results. All experiments have been
conducted on a Pentium IV machine at 3GHz, with 1GB RAM running Windows
XP Prof. We have used four synthetically generated data sets with different
distributions: (i) anticorrelated (ANTI), (ii) indepednent (IND), (iii) gaussian
(GAUSS) and (iv) correlated (CORR). The data sets have been generated by
using the generation process reported in [3].

Initially, we present some representative results regarding the efficiency of tar-
get space generation, by comparing the naive method (algorithm NAIVE), with
the two-phase Hilbert-based method (algorithm 2P) and the improved batch-
enabled alternative (algorithm 2P-BATCH). Table 1 illustrates some represen-
tative performance comparison results for 2-dimensional data sets. CPU cost is
measured in seconds, whereas the I/O cost corresponds to the number of disk
accesses performed due to buffer misses. Figure 3 shows the scalability of the
algorithms for different dimensionalities for the IND data set. An LRU-based
buffer has been used which maintains the 25% of the total storage requirements.
Each experiment has been executed on a data set containing 10,000 multidimen-
sional points, whereas the page size of the R-tree has been set to 2 KBytes. It
is evident, that 2P-BATCH has the best overall performance, both in terms of
computational time and I/O cost.

In the sequel, we investigate how clustering algorithms can aid towards ex-
ploration of the target space. Figure 4 illustrates the distribution of the point
images in the target space for all available transformation methods (T1, T2, and
T3), for the ANTI data set containing 1,000 points. We have chosen this set
because the number of skyline points in the original space is quite large, and
therefore there are difficulties in proposing some representative points to the
user.
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Fig. 3. Comparison of methods for different dimensions (10,000 IND points).
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Fig. 4. Target spaces for ANTI data set (1,000 points in 2 dimensions).

By inspecting Figure 4 we can see that the distribution of points in the target
space is completely different than that in the original one. The transformation
performed offers an opportunity to select the “best” points much more easily.
This can be performed by other using the queries described in Section 3.3 or by
performing a partitioning of the target space by means of clustering. To illustrate
this issue, we have applied two fundamental clustering algorithms: (i) DBSCAN
and (ii) K-means. By using DBSCAN we aim at discovering outliers whereas
the use of K-means aims at space partitioning.

Figure 5 shows the outliers determined for ANTI, CORR and GAUSS by
using the transformation T3. In addition to the target space ((a), (b) and (c)), the
position of the each outlier is also given in the original space ((d), (e) and (f)). As
we have already mention, outliers may contain important information since they
refer to points that are away from the competition, and therefore these points
may require further investigation. In fact, as it is shown in Figures 5(a), (c),
(e) and (f), some of the outliers are really important because their domination
power is significant. It is up to the user to request the outliers towards further
study.
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Fig. 5. Outlier detection for ANTI, CORR and GAUSS data sets (1,000 points in 2
dimensions).
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Fig. 6. Data partitioning with K-means for K = 7 (1,000 points, GAUSS data set).

Let us see now how K-means clustering can help. By applying K-means
on the target space, the points are partitioned into groups. We apply clustering
based on the cityblock distance of the points. Figure 6 gives the clustering results
for GAUSS data set, for all transformations. Only the original space partitioning
is shown. Clustering has been performed for 7 clusters. However, other values can
be used as well. By inspecting Figure 6 we observe that clusters in T1 are more
crisp, in the sense that points are grouped together with respect to the diagonal
they belong. This was expected since T1 is based on the coordinates of each point
only, and the image of each point is generated without taking into account the
other points locations. On the other hand, T2 and T3 better express the notion



of domination power. In both transformations, the shape of the clusters is quite
different than that produced with T1. For example, in T2, the points indicated
by arrows although they belong to the skyline, they receive a lower rank because
the number of points they dominate is zero or very small. Moreover, notice
that points in the same cluster does not necessarily share nearby positions in
the original space. The points enclosed by the two ellipses belong to the same
cluster. T3 produces similar results to those of T2, but the emphasis is given on
the number of points that dominate a particular point and the area that this
point dominates (not the number of points dominated).

5 Concluding Remarks
Although the literature is rich in studying efficient algorithms for domination
computation, only recently the issue of analyzing domination relationships has
received some attention. Towards this direction, we have focused on applying
well-established data mining techniques and query operations aiming at a more
convenient scheme for determining the “best” items and extracting useful knowl-
edge from domination relationships. Future research in the area may focus on: (i)
mining domination relationships among different types of items, (ii) measuring
the domination power in a set of items instead of individual ones, (iii) the evalu-
ation of different metrics for domination power and distance and (iv) enhanced
visualization methods for dominance relationships.
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