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1 Introduction and Problem Statement

In many real-world applications, the corresponding graphs are inherently associated
with uncertainty, which can be due to various reasons, such as uncertainty introduced
by the data-collection process or for privacy-preserving reasons. For example, in the
case of protein-protein interaction networks (PPI) in the domain of biology, each node
corresponds to a specific protein and the edges capture information about the interaction
of two proteins. Since in many cases those interactions are indicated either by noisy
laboratory experiments or by prediction algorithms based on features of the proteins
(instead of being actually observed), a level of uncertainty is introduced in the edges of
the graph. This uncertainty can be captured by the model of uncertain or probabilistic
graphs, where each edge is associated with a probability of existence.

In this work, we are interested in a widely applied graph analytics tool, namely the
one of k-core decomposition [4]. Let H be a subgraph of graph G. Subgraph H is de-
fined to be a k-core of G, denoted by Gk, if it is a maximal connected subgraph of G
in which all vertices have degree at least k. Based on that, vertex i has core number
coreG(i) = k, if it belongs to a k-core but not to any (k+ 1)-core. Due to its simplic-
ity and computational efficiency, the k-core decomposition has been applied in many
domains, including community detection and identification of influential spreaders in
social networks. Then, the following questions arise, which also describe the goals of
this work: how to define the concept of core decomposition in uncertain graphs and how
to efficiently compute it? Bonchi et al. [2] proposed an extension of the k-core decom-
position to uncertain graphs which requires that the probability that each vertex v within
the core subgraph H has degree at least k, is greater than or equal to a parameter η . Nev-
ertheless, this definition has two main weaknesses: (i) an extra probability threshold η
is required in order to define the core structure – making the resulting decomposition
dependent on this user-defined parameter; (ii) the increased computational cost for per-
forming the decomposition. Based on that, our goal is to define a simple-yet-effective
core decomposition of uncertain graphs. To do so, we consider the expected degree
of each vertex in the uncertain graph, and in particular the concept of representative
instance.
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2 Cores in Probabilistic Graphs

Let G = (V,E, p) be an uncertain graph, where p : E → (0,1] is a function that assigns
probabilities to the edges of the graph. A widely used approach to analyze uncertain
graphs is the one of possible worlds, where each possible world constitutes a determin-
istic realization of G . According to this model, an uncertain graph G is interpreted as
a set {G = (V,EG)}EG⊆E of 2|E| possible deterministic graphs [3]. Let G ⊑ G indicates
that G is a possible world of G . Then, the probability that G = (V,EG) is observed as
a possible world of G is given by Pr(G|G ) = ∏e∈EG

p(e) ∏e∈E\EG
(1− p(e)). In our

approach, we are using this general framework to derive an analogous of the k-core de-
composition in uncertain graphs. In particular, we use the property of expected degree
[d](v) of each node v ∈ G , leading to the concept of uncertain [k]-core decomposition.

Definition 1 (Uncertain [k]-core). Given an uncertain graph G = (V,E, p), the uncer-
tain [k]-core of G is the maximal subgraph H = (C,E|C, p) such that each vertex v ∈C
has expected degree at least k in H , where k ∈ R+.

According to this definition, in order to compute the decomposition, we can extract a
deterministic representative instance G ⊑ G that preserves the expected degree, i.e., the
degree of any vertex v ∈ G to be as close as possible to the expected degree of v ∈ G
– therefore, casting the problem to a weighted version of the k-core decomposition
on deterministic graphs. That way, the proposed algorithm comprises of two phases:
(i) extraction of a representative instance of the uncertain graph; (ii) apply a modified
version of the k-core decomposition, suitable for fractional degree values.

For the first step of the algorithm that converts the uncertain graph to a determin-
istic one by preserving the expected degree, we rely on conversion algorithms that aim
at minimizing the discrepancy of each vertex of the graph [3]. In particular, the dis-
crepancy disG(v) of a vertex v in the representative instance G ⊑ G , is defined as the
difference between the degree in the representative instance and expected degree in
the uncertain graph, i.e., disG(v) = d(v)− [d](v). As the existence of the edges of the
graph are independent of each other, the expected degree [d](v) of a vertex v ∈V is the
sum of the probabilities of the incident edges, i.e., [d](v) = ∑e=(v,u)∈E p(e). The overall
discrepancy of the representative instance G ⊑ G is defined as ∆(G) = ∑v∈V |disG(v)|.
Then, the problem of finding a “good” representative instance G∗ can be expressed as a
minimization optimization problem: G∗ = argminG⊑G ∆(G).

After extracting an average degree-preserving representative instance of the uncer-
tain graph, the core number of a vertex is not an integer anymore but a real number.
Thus, the second phase of the proposed technique consists of a modified k-core decom-
position algorithm that operates on a deterministic graph with fractional node degrees.

3 Experimental Results and Discussion

We have performed preliminary experiments on a co-authorship network (DBLP) de-
rived from DBLP (http://dblp.uni-trier.de), that consists of 404,892 nodes and 1,422,263
edges. Since the DBLP dataset is not inherently uncertain, we are using a method to
convert the graph to uncertain by examining the similarity between the neighborhood



Table 1. Properties of the [k]-core decomposition on the DBLP graph.

Correlation Partial Full

τB 0.66 0.12
r 0.79 −0.02

of two nodes – towards computing the probability of being linked. In particular, we
have applied the Jaccard similarity coefficient to quantify the similarity of two nodes,
following two different approaches. The first one, denoted by Partial, is adding a prob-
ability of existence only to current edges of the graph. However, it does not allow to
consider more pairs of nodes, than the already existing edges in the graph. The second
approach, denoted by Full, is computing the Jaccard similarity coefficient for all pairs
of nodes. To overcome the complexity of examining all possible pairs, we restrict our
interest to pairs that have at least one neighbor in common. Then, we compute the core
decomposition on both the original graph and the uncertain one, and examine the cor-
relation among them using the Kendall rank correlation coefficient τB (which measures
how much the ranking output is the same in both cases), and Pearson’s correlation r
(which measures how much the core numbers are linearly related).

Table 1 depicts the results. As we observe, computing the similarity only for existing
edges retains the structural properties of the decomposition in both cases. Nevertheless,
notice that in this case the original graph can easily be recovered from the uncertain
one (for example, when obfuscating the graph for privacy preserving reasons making
it uncertain, this approach is not possible). However, computing the probabilities for
all pair of nodes (Full), erases all the structural information of cores (both correlation
measures are close to zero).

Currently, we are working towards examining practical applications of the proposed
[k]-core decomposition in uncertain graphs. For example, in the DBLP graph, it would
be interesting to conduct an exploratory study comparing the authors (i.e., nodes) be-
longing to the maximal core subgraph extracted by the algorithms on the deterministic
and uncertain graphs respectively. Moreover, we plan to examine the performance of
the high core number nodes detected by the proposed decomposition, in the task of
influence maximization.
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