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Abstract. Classification based on k-nearest neighbors (kNN classification)
is one of the most widely used classification methods. The number k of near-
est neighbors used for achieving a high accuracy in classification is given in
advance and is highly dependent on the data set used. If the size of data
set is large, the sequential or binary search of NNs is inapplicable due to the
increased computational costs. Therefore, indexing schemes are frequently
used to speed-up the classification process. If the required number of nearest
neighbors is high, the use of an index may not be adequate to achieve high
performance. In this paper, we demonstrate that the execution of the nearest
neighbor search algorithm can be interrupted if some criteria are satisfied.
This way, a decision can be made without the computation of all k nearest
neighbors of a new object. Three different heuristics are studied towards en-
hancing the nearest neighbor algorithm with an early-break capability. These
heuristics aim at: (i) reducing computation and I/O costs as much as possi-
ble, and (ii) maintaining classification accuracy at a high level. Experimental
results based on real-life data sets illustrate the applicability of the proposed
method in achieving better performance than existing methods.

Keywords: kNN classification, multidimensional data, performance.

1 Introduction

Classification is the data mining task [10] which constructs a model, denoted as clas-
sifier, for the mapping of data to a set of predefined and non-overlapping classes. The
performance of a classifier can be judged according to criteria such as its accuracy,
scalability, robustness, and interpretability. A key factor that influences research on
classification in the data mining community (and differentiates it from classical tech-
niques from other fields) is the emphasis on scalability, that is, the classifier must
work on large data volumes, without the need for experts to extract appropriate sam-
ples for modeling. This fact poses the requirement for closer coupling of classification
techniques with database techniques. In this paper, we are interested in developing
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novel classification algorithms that are accurate and scalable, which moreover can be
easily integrated to existing database systems.

Existing classifiers are divided into two categories [12], eager and lazy. In contrast
to an eager classifier (e.g., decision tree), a lazy classifier [1] builds no general model
until a new sample arrives. A k-nearest-neighbor (kNN) classifier [7] is a typical ex-
ample of the latter category. It works by searching the training set for the k nearest
neighbors of the new sample and assigns to it the most common class among its k
nearest neighbors. In general, a kNN classifier has satisfactory noise-rejection prop-
erties. Other advantages of a kNN classifier are: (i) it is analytically tractable, (ii)
for k = 1 and unlimited samples the error rate is never worse than twice the Bayes’
rate, (iii) it is simple to implement, and (iv) it can be easily integrated into database
systems and exploit access methods that the latter provide in the form of indexes.

Due to the aforementioned characteristics, kNN classifiers are very popular and
enjoy many applications. With a naive implementation, however, the kNN classifi-
cation algorithm needs to compute all distances between training data and a test
datum, and requires additional computation to get k nearest neighbors. This im-
pacts the scalability of the algorithm in a negative manner. For this reason, recent
research [5] has proposed the use of high-dimensional access methods and techniques
for fast computation of similarity joins, which are available in existing database sys-
tems, to reduce the cost of searching from linear to logarithmic. Nevertheless, the
cost of searching the k nearest neighbors, even with a specialized access method, still
increases significantly by increasing k.

For a given test datum, depending on which training data comprise its neighbor-
hood, we may need a small or a large k value to determine its class. In other words,
in some cases, a small k value may suffice for the classification, whereas in other
cases we may need to examine larger neighborhoods. Therefore, the appropriate k
value may vary significantly. This introduces a trade-off: By posing a global and ad-
equately high value for k, we attain good accuracy, but the computational cost of
nearest neighbor searching increases for large k values. Higher computational cost re-
duces the scalability in large data sets. In contrast, by keeping a small k value, we get
low computational cost, but this may impact accuracy in a negative manner. What
is, thus, required is an algorithm that will combine good accuracy and low compu-
tational cost, by locally adapting the required value of k. In this work, we propose a
novel framework for a kNN classification algorithm that fulfills the aforementioned
property. We also examine techniques that help us for finding the appropriate k value
in each case. Our contributions are summarized as follows:

– We propose a novel classification algorithm based on a non-fixed number of near-
est neighbors, which is less time consuming than the known kNN classification,
without sacrificing accuracy.

– Three heuristics are proposed that aim at the early-break of the kNN classification
algorithm. This way, significant savings in computational time and I/O can be
achieved.

– We apply the proposed classification scheme to large data sets, where indexing
is required. A number of performance evaluation tests are conducted towards
investigating the computational time, the I/O time and the accuracy achieved
by the proposed scheme.



The rest of our work is organized as follows. The next section briefly describes
related work in the area and summarizes our contributions. Section 3 studies in detail
the proposed early-break heuristics, and presents the modified kNN classification
algorithm. Performance evaluation results based on two real-life data sets are given
in Section 4. Finally, Section 5 concludes our work and briefly discusses future work
in the area.

2 Related Work

Due to its simplicity and good performance, kNN classification has been studied
thoroughly [7]. Several variations have been developed [2], like the distance-weighted
kNN, which puts emphasis on nearest neighbors, and the locally-weighted averaging,
which uses kernel width to control the size of neighborhood that has large effect.
All these approaches propose adaptive schemes to improve the accuracy of kNN
classification in the case where not all attributes are similar in their relevance to the
classification task. In our research, we are interested in improving the scalability of
kNN classification.

Also, kNN classification has been combined with other methods and, instead of
predicting a class with simple voting, prediction is done by another machine learner
(e.g., neural-network) [3]. Such techniques can be considered complementary to our
work. For this reason, to keep comparison clear, we did not examine such approaches.

Böhm and Krebs [5] proposed an algorithm to compute the k-nearest neighbor
join using the multipage index (MuX), a specialized index structure for the similar-
ity join. Their algorithm can be applied to the problem of kNN classification and
can increase its scalability. However, it is based on a fixed number of k, which (as
described in Introduction) if it is not tuned appropriately, it can negatively impact
the performance of classification.

3 Adaptive Classification

3.1 The Basic Incremental kNN Algorithm

An algorithm for incremental computation of nearest neighbors using the R-tree
family [9, 4] has been proposed in [11]. The most important property of this method
is that the nearest neighbors are determined in their order of their distance from the
query object. This enables the discovery of the (k +1)-th nearest neighbor if we have
already determined the previous k, in contrast to the algorithm proposed in [13] (and
enhanced in [6]) which requires a fixed value of k.

The incremental nearest neighbors search algorithm maintains a priority queue.
Queue entries are Minimum Bounding Rectangles (MBRs) and they are prioritized
with respect to their distance from the query point. An object will be examined when
it reaches the top of the queue. The algorithm begins by inserting the root elements
of the R-tree in the priority queue. Then, it selects the first entry and inserts its
children. This procedure is repeated until the first data object reaches the top of
the queue. This object is the first nearest neighbor. Figure 1 depicts the Incr-kNN
algorithm with some modifications, towards adapting the algorithm for classification



purposes. Therefore, each object of the test set is a query point and each object of
the training set, contains an additional attribute which indicates the class where the
object belongs to. The R-tree is built using the objects of the training set.

The aim of our work is to perform classification by using a smaller number of near-
est neighbors than k, if this is possible. This will reduce computational costs and I/O
time. However, we do not want to harm accuracy (at least not significantly). Such an
early-break scheme can be applied since Incr-kNN determines the nearest neighbors
in increasing distance order from the query point. The modifications performed to
the original incremental kNN algorithm are summarized as follows:

– We have modified line 3 of the algorithm. The algorithm accepts a maximum
value of k and is executed until either k nearest neighbors are found (no early
break) or the heuristics criteria are satisfied (early break). Specifically, we added
the condition NNCounter ≤ k in while statement (line 3).

– We have added the lines 10,11,12 and 13. At this point, the algorithm retrieves
a nearest neighbor and checks for early break. Namely, the while loop of the
algorithm breaks if the criteria defined by the heuristic that we use are satis-
fied. So, the new item is classified using NNCounter nearest neighbors, where
NNCounter < k. Lines 11, 12 and 13 are replaced according to the selected
heuristic.

– We have added the lines 25, 26, 27 and 28. These lines perform classification
taking into account k nearest neighbors. This code is executed only when the
heuristic is not capable of performing an early-break.

3.2 Early-Break Heuristics

In this section, we present three heuristics that interrupt the computation of nearest
neighbors when some criteria are satisfied. The classification performance (accuracy
and execution cost) depends on the adjustments of the various heuristics parameters.
The parameter MinnNN is common to all heuristics and defines the minimum num-
ber of nearest neighbors which must be used for classification. After the retrieval of
MinnNN nearest neighbors, the check for early-break is performed. The reason for
the use of MinNN is that a classification decision is preferable when it is based on
a minimum number of nearest neighbors, otherwise accuracy will be probably poor.
These criteria depend on which proposed heuristic is used. The code of each heuristic
replaces lines 11 and 12 of the Incr-kNN algorithm depicted in Figure 1.

Simple Heuristic (SH) The first proposed heuristic is very simple. According to
this simple heuristic, the early-break is performed when the percentage of nearest
neighbors that vote the major class is greater than a predefined threshold. We call
this threshold PMaj.

For example, suppose that we have a data set where the best accuracy is achieved
using 100 nearest neighbors. Also, suppose that we define that PMaj = 0.9 and
MinNN=7. The Incr-kNN is interrupted when 90% of NNs vote a specific class. If
this percentage is achieved when the algorithm examines the tenth NN (9 out of 10
NNs vote a specific class), then we avoid the cost of searching the rest 90 nearest



Algorithm Incr-kNN (QueryPoint q, Integer k)
1. PriorityQueue.enqueue(roots children)
2. NNCounter = 0
3. while PriorityQueue is not empty and NNCounter ≤ k do
4. element = PriorityQueue.dequeue()
5. if element is an object or its MBR then
6. if element is the MBR of Object and PriorityQueue is not empty

and objectDist(q, Object) > PriorityQueue.top then
7. PriorityQueue.enqueue(Object, ObjectDist(q, Object))
8. else
9. Report element as the next nearest object (save the class of the object)
10. NNCounter++
11. if early-break conditions are satisfied then
12. Classify the new object q in the class where the most nearest neighbors

belong to and break the while loop. q is classified using
NNCounter nearest neighbors

13. endif
14. endif
15. else if element is a leaf node then
16. for each entry (Object, MBR) in element do
17. PriorityQueue.enqueue (Object, dist(q, Object))
18. endfor
19. else /*non-leaf node*/
20. for each entry e in element do
21. PriorityQueue.enqueue(e, dist(q, e))
22. endfor
23. endif
24. end while
25. if no early-break has been performed then // use k nearest neighbors
26. Find the major class (class where the most nearest neighbors belong to)
27. Classify the new object q to the major class
28. endif

Fig. 1. Outline of Incr-kNN algorithm with early break capability.

neighbors. Using the Incr-kNN algorithm, we ensure that the first ten neighbors
which have been examined, are the nearest.

Furthermore, if the simple heuristic fails to interrupt the algorithm because PMaj
is not achieved, it will retry an early-break after finding the next TStep nearest
neighbors.

Independent Class Heuristic (ICH) The second early-break heuristic is the
Independent Class Heuristic (ICH). This heuristic does not use the PMaj parameter.
The early-break of Incr-kNN is based on the superiority of the major class. Superiority
is determined by the difference between the sum of votes of the major class and
the sum of votes of all the other classes. The parameter IndFactor (Independency



Factor) defines the superiority level of the major class that must be met in order to
perform an early-break. More formally, in order to apply an early-break, the following
condition must be satisfied:

SV MC > IndFactor ·
(

n∑

i=1

SV Ci − SV MC

)
(1)

where SV MC is the sum of votes of major class, n is the number of classes and SV Ci

is the sum of votes of class i.
For example, suppose that our data set contains objects of five classes, we have

set IndFactor to 1 and the algorithm has determined 100 NNs. Incr-kNN will be
interrupted if 51 NNs vote a specific class and the rest 49 NNs vote the other classes.
If the value of IndFactor is set to 2, then the early-break is performed when the
major class has more than 66 votes.

Studying the Independent Class Heuristic, we conclude that the value of the
IndFactor parameter should be adjusted by taking into account the number of classes
and the class distribution of data set. In the case of a normal distribution, we accept
the following rule: when the number of classes is low, IndFactor should be set to a
high value. On the other hand, when there are many classes, IndFactor should be
set to a lower value.

In ICH, parameter TStep is used in the same way as in the SH heuristic. Specifi-
cally, when there is a failure in interruption, the early-break check is again activated
after determining the next TStep nearest neighbors.

M-times Major Class Heuristic (MMCH) The last heuristic that we present
is termed M-Times Major Class Heuristic (MMCH). The basic idea is to stop the
Incr-kNN when M consecutive nearest neighbors, which vote the major class, are
found. In other words, the while-loop of Incr-kNN algorithm terminates when the
following sequence of nearest neighbors appears:

NNx+1, NNx+2, ..., NNx+M ∈ MajorClass (2)

However, this sequence is not enough to force an early-break. In addition, the
PMaj parameter is used in the same way as in the SH heuristic. Therefore, MMCH
heuristic breaks the while loop when the percentage of nearest neighbors that vote the
major class is greater than PMaj and there is a sequence of M nearest neighbors
that belong to the major class. We note that MMCH does not require the TStep
parameter.

4 Performance Evaluation

In this section, we present the experimental results on two real-life data sets. All
experiments have been conducted on an AMD Athlon 3000+ machine (2000 MHz),
with 512 MB of main memory, running Windows XP Pro. The R*-tree, the incre-
mental kNN algorithm, and the classification heuristics have been implemented in
C++.
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Fig. 2. Accuracy vs k, I/O vs k and accuracy vs I/O for PBC data set.

4.1 Data Sets

The first data set is the Pages Blocks Classification (PBC) data set and contains
5,473 items. Each item is described by 10 attributes and one class attribute. We
have used the first five attributes of the data set and the class attribute. We reduced
the number of attributes considering that the most dimensions we use, the worst
performance the family of R-trees has. Each item of the data set belongs to one of
the five classes. Furthermore, we have divided the data set into two subsets. The first
subset contains 4,322 items used for training and the second contains the rest 1,150
items used for testing purposes.

The traditional kNN classification method achieves the best possible accuracy
when k = 9. However, this value was very low and so the proposed heuristics can
not reveal their full potential. Therefore, we have added noise in the data set in
order to make the use of a higher k value necessary. Particularly, for each item of the
training set, we modified the value of the class attribute with probability 0.7 (the
most noise is added, the highest value of k is needed to achieve the best classification
accuracy). This fact forced the algorithm to use a higher k value. This way, we
constructed a data set where the best k value is 48. This means that the highest
accuracy value is achieved when 48 nearest neighbors contribute to the voting process.
This is illustrated in Figure 2(a), which depicts the accuracy value accomplished by
modifying k between 1 and 48.

As expected, the higher the value of k, the higher the number of I/O operations.
This phenomenon is illustrated by Figure 2(b). We note that if we had used a lower
value for k (k < 48), we would have avoided a significant number of I/Os and there-
fore the search procedure would be less time-consuming. For example, if we set k =
30, then we avoid 5.84 I/Os for the classification of one item of the test set without
significant impact on accuracy. Figure 2(c) combines the two previous graphs. Partic-
ularly, this figure shows how many I/Os the algorithm requires in order to accomplish
a specific accuracy value.

The second data set is the Letter Image Recognition Data set [8], which contains
20,000 items. We have used 15,000 items for training and 5,000 items for testing. Each
item is described by 17 attributes (one of them is the class attribute) and represents
an image of a capital letter of the English alphabet. Therefore, the data set has 26
classes (one for each letter). The data set objective is to identify the capital letter
represented by the items of the test set using a classification method.
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Fig. 3. Accuracy vs k, I/O vs k and accuracy vs I/O for LRI data set.

As in the case of the PBC data set, we have reduced the number of dimensions
(attributes). In this case, dimensionality reduction has been performed by using Prin-
cipal Component Analysis (PCA) on the 67% of the original data. The final number
of dimensions have been set to 5 (plus the class attribute).

Figure 3 illustrates the data set behavior. Specifically, Figure 3(a) shows the
accuracy achieved for k ranging between 1 and 28. We notice that the best accuracy
(77%) is achieved when k = 28. Figure 3(b) presents the impact of k on the number
of I/Os. Almost 43 I/O operations are required to classify an item of the test set for k
= 28. Finally, Figure 3(c) combines the two previous graphs illustrating the relation
between accuracy and the number of I/O operations. By observing these figures, we
conclude that if we had used a lower k value, then we could have achieved better
execution time by keeping accuracy at high levels.

4.2 Determining Parameters Values

Each heuristic uses a number of parameters. These parameters must be adjusted so
that the best performance is achieved (or the best balance between accuracy and ex-
ecution time). In this section, we present a series of experiments which demonstrates
the behavior of the heuristics for different values of the parameters. We keep the best
values (e.g. the parameters that manage to balance execution time and accuracy)
for each heuristic and use these values in a subsequent section where heuristics are
compared.

As we demonstrate, a heuristic shows its best performance for a range of pa-
rameter values. Therefore, for a new data set, these parameters can be adjusted by
applying the classification process to a sample instead of using the whole data set.

Pages Blocks Classification Data Set Initially, we are going to analyze the
MinNN parameter. It is a parameter that all heuristics use. Recall that MinNN is
the minimum number of NNs that should be used for classification. After determining
these NNs, the heuristics are activated. Figure 4 show how the heuristics performance
(accuracy and I/O) is affected by modifying the value of MinNN . The values of the
other parameters have as follows: TStep = 4, IndFactor = 1, PMaj = 0.6, MTimes
= 4, k = 48.

By observing the results it is evident that accuracy is least affected when the
MMCH heuristic is used. Therefore, for this heuristic, we set MinNN = 4, which
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Fig. 4. Impact of MinNN for PBC data set.
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Fig. 5. Impact of IndFactor on the performance of ICH heuristic for PBC data set.
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Fig. 6. Impact of MTimes on the performance of MMCH heuristic for PBC data set.

is the value that provides the best balance between I/O and accuracy. In contrast,
the accuracy of the other two heuristics is significantly affected by the increase of
MinNN . We decide to define MinNN = 11 for the Independency Class Heuristic and
MinNN = 7 for the Simple Heuristic. Our decision is justified by the accuracy and
I/O measurements provided for these parameters values.

We continue our experiments by finding the best value for IndFactor. Recall
that this parameter is used only in ICH heuristic. We modify IndepFactor from 0.4
to 4 and calculate the accuracy achieved. Figure 5 illustrates that the best balance
between accuracy and I/O is achieved when IndFactor = 1. The values of the other
parameters are as follows: MinNN = 11, TStep = 4, k = 48.
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Fig. 7. Impact of TStep parameter for PBC data set.

Next we study the impact of the parameter MTimes, which is used only by the
MMCH heuristic. As it is depicted in Figure 6 for MTimes = 3, the accuracy level
will be high enough and the number of I/O operations is relatively low. So we keep
this value as the best possible for this parameter. The values of the other parameters
have as follows: MinNN = 4, PMaj = 0.6, k = 48.

Next, we study the impact of TStep parameter on the performance of SC and
ICH, since MMCH does not use this parameter. Figure 7 depicts the results. The
values of the rest of the parameters have as follows: MinNN = 6, IndFactor = 1,
PMaj = 0.6, MTimes = 3, k = 48. Both SH and ICH heuristics achieve the best
accuracy when TStep = 4. In fact, SH achieves the same accuracy for TStep = 3
or TStep = 4, but less I/Os are required when TStep = 4. Since MMCH and kNN
classification are not affected by TStep, their graphs are parallel to the TStep axis.
Finally, it is worth to note that although MMCH needs significantly less I/Os than
kNN classification, the accuracy that MMCH achieves is the same as that of kNN
classification.

Letter Image Recognition Data Set Next, we repeat the same experiments using
the LIR data set. The impact of MinNN is given in Figure 8. It is evident that all
heuristics achieve higher accuracy than kNN classification. By studying Figure 8 we
determine that the best MinNN values for the three heuristics are: MinNN = 7 for
SH, MinNN = 12 for ICH and MinNN = 4 for MMCH. These values achieve the
best balance between accuracy and I/O processes. The values of the other parameters
have as follows: TStep = 2, IndFactor = 1, PMaj = 0.6, MTimes = 3, k = 28.

Figure 9 depicts the results for the impact of IndFactor. We see that IndFactor
= 1 is the best value since the ICH heuristic achieve the best possible accuracy value
and at the same time saves almost ten I/O operations per query. The values of the
other parameters are as follows: MinNN = 12, TStep = 5, k = 28.

Next, we consider parameter MTimes, which is used only by the MMCH heuris-
tic. We define MTimes = 3, which results in 13 I/O savings for each query and
achieves the best possible accuracy value. The results are illustrated in Figure 10.
The values of the other parameters have as follows: MinNN = 4, PMaj = 0.6, k =
28.
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Fig. 8. Impact of MinNN for LIR data set.
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Fig. 9. Impact of IndFactor on the performance of ICH heuristic for LIR data set.
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Fig. 10. Impact of MTimes on the performance of MMCH heuristic for LIR data set.

Finally, in Figure 11 we give the impact of TStep. We set TStep = 4 for SH and
TStep = 5 for ICH, since these values give adequate accuracy and execution time.
The values of the rest of the parameters have as follows: MinNN = 4, IndFactor
= 1, PMaj = 0.6, MTimes = 3, k = 28.

4.3 Comparison of Heuristics

In this section we study how the heuristics compare to each other and to the tra-
ditional kNN classification, by setting the parameters to the best values for each
heuristic, as they have been determined in the previous section.

Pages Blocks Classification Data Set Figure 12 depicts the performance results
vs PMaj. When PMaj = 0.6, accuracy is about the same for all heuristics and
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Fig. 11. Impact of TStep parameter for LIR data set.
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Fig. 12. Accuracy and number of I/Os.

very close to that achieved by traditional kNN classification. However, our heuristics
require significant less I/O for achieving this accuracy. When this accuracy value is
accomplished there is no reason to find more nearest neighbors and therefore valuable
computational savings are achieved.

According to our results, ICH achieves an accuracy value of 0.947 (kNN’s accuracy
is 0.9495) while it saves about 6.88 I/Os for the classification of one item. Particularly,
when we use ICH, we find 31.29 nearest neighbors on average instead of 48. Similarly,
when PMaj = 0.6, SH achieves accuracy equal to 0.948 (very close to that of kNN)
by performing an early-break when 38.5 NNs on average have been found (almost 10
less than kNN requires). Therefore, SH saves about 4.385 I/Os per each item of the
test set. Finally, the same accuracy value (0.948) is achieved by MMCH. However,
this heuristic saves less number of I/Os than SH. Specifically, MMCH spends 3.875
I/O less than kNN because it finds 39.767 NNs on average.

Figures 13 and 14 summarize the results of this experiment using bar charts which
have been produced by setting PMaj = 0.6 and maintain the same values for the
other parameters. Figure 13 shows that the accuracy achieved by the heuristics is
very close to that of kNN, whereas the number of required I/Os is significant less
than that of kNN. Figure 14 presents the number of nearest neighbors retrieved on
average by each method.

We can not directly answer the question “which heuristic is the best”. The an-
swer depends on which measure is more critical (accuracy or execution time). If a
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Fig. 13. Accuracy and number of I/Os for PMaj = 0.6
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Fig. 14. Required number of nearest neighbors for PMaj = 0.6.

compromise must be made, Figure 12 will help. We notice that ICH shows the best
performance because it achieves an accuracy that is very close to the accuracy of
kNN posing the minimum number of I/Os. To declare a winner between SH and
MMCH we notice that when PMaj > 0.6 the heuristics achieves almost the same
accuracy, but MMCH poses more I/Os than SH.

As we have already mentioned, we try to find the parameters values that provide a
compromise between accuracy and execution time. However, if one of these measures
is more important than the other, the parameters can be adjusted to reflect this
preference. Suppose that execution time is more critical than accuracy (when for
example a quick-and-dirty scheme should be applied due to application requirements).
If we set PMaj = 0.5, then 23.245 I/Os per query will be required (instead of
33.32 required by kNN) by finding 25.72 NNs instead of 48. However, this means
that accuracy will be significantly smaller than that of kNN (we saw that when
PMaj = 0.6, the difference between the accuracy of SH and kNN is minor). Similar
results are obtained for MMCH when PMaj = 0.5. On the other hand, if accuracy
is more critical than time, we can adjust the heuristics parameters towards taking
this criticality into account. In this case, it is possible that the heuristics achieve
better accuracy than kNN, with execution time overhead. In any case, early-break
heuristics always require less execution time than kNN.

By considering the impact of MinNN shown in Figure 4, it is evident that MMCH
can achieve a slightly better accuracy than kNN. Specifically, if we set MinNN =
8, PMaj = 0.6 and MTimes = 3, then MMCH achieves an accuracy value equal
to 0.950435, whereas 30.793 I/Os are required (while kNN requires 33.3174 I/Os per
query and achieves an accuracy of 0.94956). The early-break heuristic is able to avoid
2.5244 I/O per query, whereas at the same time achieves better accuracy when k is



adjusted to ensure the best accuracy value. Although the number of saved I/Os may
seem small, note that this savings are performed per classified item. Since the PBC
test set contains 1,150 items, we realize that the overall number of saved I/Os is
2903, which is significant.

Similar considerations apply to the other two heuristics. For example, ICH can
outperform the accuracy of kNN when IndyFactor = 1.2, TStep = 4, and MinNN
= 11 (see Figure 5). However, because of the increase of IndFactor from 1 to 1.2,
the I/O requirements are increased from 26.44 to 29.75. Finally, if we set MinNN
= 11 instead of 7, SH also outperforms the accuracy of kNN (see Figure 4). These
results are illustrated in Figures 15 and 16.

Letter Image Recognition Data Set We close this section by presenting the
comparison results using the LIR data set. Similar conclusions can be drawn as in
the case of the PBC data set. The results are given in Figures 17, 18 and 19.

We note that when we PMaj > 0.5 (see Figure 17), the three heuristics ac-
complish better accuracy than kNN and manage to reduce execution time. More
specifically, SH achieves an accuracy of 0.7825 with 32.53 I/Os on average for PMaj
= 0.8, whereas kNN an accuracy of 0.77 spending 42.81 I/Os (see Figure 18). Also,
if we set PMaj = 0.6, SH achieves an accuracy of 0.78 spending 26.7775 I/Os on
average (see Figure 19).

ICH, which is not affected by the PMaj parameter, achieves an accuracy of
0.775 spending 33.52745 I/Os on average. Finally, MMCH achieves the best balance
between accuracy and execution time we set PMaj = 0.6. Particularly, the heuristic
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Fig. 15. Accuracy and number of I/Os (MinNN = 11).
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Fig. 16. Required number of nearest neighbors (MinNN = 11).
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Fig. 17. Accuracy and number of I/Os vs PMaj.
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Fig. 18. Accuracy and number of I/Os for PMaj = 0.8.
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Fig. 19. Accuracy and number of I/Os for PMaj = 0.6.

accomplishes an accuracy of 0.7775 and spends 30.6525 I/Os on average (see Figure
18). Comparing the three heuristics using the Letter Image Recognition data set, we
conclude that the simple heuristic has the best performance since it achieves the best
possible accuracy spending the least possible number of I/Os.

5 Conclusions

In this paper, an adaptive kNN classification algorithm has been proposed, which does
not require a fixed value for the required number of nearest neighbors. This is achieved
by incorporating an early-break heuristic into the incremental k-nearest neighbor
algorithm. Three early-break heuristics have been proposed and studied, which use
different conditions to enforce an early-break. Performance evaluation results based



on two real-life data sets have shown that significant performance improvement may
be achieved, whereas at the same time accuracy is not reduced significantly (in some
cases accuracy is even better than that of kNN classification). We plan to extend
our work towards: (i) incorporating more early-break heuristics and (ii) studying
incremental kNN classification by using subsets of dimensions instead of the whole
dimensionality.
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