
Optimizing Business Processes Through Parallel Task Execution
Konstantinos Varvoutas

Aristotle University of Thessaloniki
Greece

kmvarvou@csd.auth.gr

Georgia Kougka
Aristotle University of Thessaloniki

Greece
georkoug@csd.auth.gr

Anastasios Gounaris
Aristotle University of Thessaloniki

Greece
gounaria@csd.auth.gr

ABSTRACT
Optimization of business processes is a persistent topic and a

key goal in business process management (BPM). In this work, we
investigate how a given resource allocation in business processes
can drive optimizations in an underlying BPMN diagram. More
specifically, the main contribution is a proposal to leverage a variant
of representation of processes as Refined Process Structure Trees
(RPSTs) with a view to enabling novel resource allocation-driven
task re-ordering in a principled manner. The re-orderings targeted
enforce the parallelism redesign heuristic that allows for multiple
resources operating concurrently, which yields improvements in
the process cycle time.

CCS CONCEPTS
• Applied computing→ Business process management sys-
tems; • Information systems → Enterprise information systems.

KEYWORDS
business process optimization, process models, resequencing

ACM Reference Format:
Konstantinos Varvoutas, Georgia Kougka, and Anastasios Gounaris. 2022.
Optimizing Business Processes Through Parallel Task Execution. In Inter-
national Conference on Management of Digital EcoSystems (MEDES ’22),
October 19–21, 2022, Venice, Italy. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3508397.3564842

1 INTRODUCTION
Digital ecosystems and business processes are tightly coupled in

practice, given that the latter are largely facilitated by the former.1
Business Processes (BPs) have nowadays become quite complex
as the business requirements are increasing, e.g. to accommodate
multiple and evolving customer needs. This situation renders the
significance of Business Process Management (BPM) even higher.
BP optimization, also covered by terms such as BP reengineering
and redesign, is a key aspect in modern BPM. However, up to date,
there is no automated optimization technique for BPs that can take
advantage from the overlapping task execution in order to improve
latency (a.k.a. cycle time) and is generally applicable. In general,

1https://www.cleo.com/blog/digital-ecosystems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEDES ’22, October 19–21, 2022, Venice, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9219-8/22/10. . . $15.00
https://doi.org/10.1145/3508397.3564842

automated solutions for BP optimization have not been explored
as deeply as process modelling, as discussed in several places, e.g.,
[3, 13, 19].

We target scenarios where a BP is modelled with the help of a
procedural approach, such as BPMN2, and the optimizations on
which we focus fall under the BP behavior heuristics according to
the taxonomy in [3]. This category of heuristics includes activity
resequencing and parallelism, and the impact of their application
is reflected on the model diagram. In other words, the optimized
model is different than the initial one. The latter is modified so that
certain objectives, such as cycle time or total cost, are improved. To
date, resequencing has been explored in a manner that it is tightly
coupled with the existence of knock-out activities either directly
or indirectly [8, 15, 18]; knock-out activities are the activities that
can lead to immediate process termination, such as automatically
reject an application if it does not meet certain criteria. In addition,
principled parallelism, where different activities overlap in the time
domain and are executed concurrently, is an overlooked area in BP
in the sense that although it is a well-recognized heuristic, to date,
no algorithmic technique has been proposed to leverage it.

In this work, we introduce a novel combination of resequencing
and parallelism enforcement, with the aim of reducing the cycle
time of the process in question. To this end, we leverage the task-
based variant [4] of representation of processes as Refined Process
Structure Trees (RPST) [17]. This representation allows us check
valid resequencing actions systematically, while it is more amenable
to cycle time computations. A key aspect in our solution is that we
annotate the tree vertices with the resource allocated, i.e., we take
into account both the control flow and the resource perspective
of the process. We illustrate and validate the effectiveness of our
approach through a use-case example.

The remainder of this work is structured as follows. Next, we
present our exemplary use case. In Section 3, we provide the back-
ground regarding RPST. In Section 4, we discuss our proposal. We
continue with a discussion of the related work in Section 5. We
conclude in Section 6.

2 OUR CASE STUDY
Our case study is shown in Figure 1 and refers to common real-

world BP regarding an employee expense reimbursement request3.
Briefly, the BP consists of eight activities that are required to anal-
yse, approve and pay an expense statement submitted by an em-
ployee of a business, while accounting for essential steps, such as
money transfer, notifications and validation that an account exists.
Despite its simplicity, this process is amenable to optimizations,
where the relative order of some parts can change, e.g., the initial

2https://www.bpmn.org/
3https://www.businessprocessincubator.com/

- 24 -

https://doi.org/10.1145/3508397.3564842
https://www.cleo.com/blog/digital-ecosystems
https://doi.org/10.1145/3508397.3564842
https://www.bpmn.org/
https://www.businessprocessincubator.com/

MEDES ’22, October 19–21, 2022, Venice, Italy Varvoutas et al.

Figure 1: The process model of an Employee Expense Reimbursement Request.

Figure 2: The well-structured process model of an Employee Expense Reimbursement Request

check regarding the account existence can be performed in paral-
lel with other activities. Furthermore, the activities are performed
by different actors (automated services, ordinary employees and
supervisors), which may result in configurable execution ordering
and therefore, lower waiting times at the expense of higher human
effort cost. As such, this type of business process forms an excellent
candidate to benefit from the advances in automated cost-based
flow optimization that we aim to introduce.

More specifically, we handle the example case study as follows.
In our approach, we start with the modelling quality and we con-
sider only well-structured models. It is out of our scope to advocate
specific automated transformations, but there exist several propos-
als in the literature, e.g. [12]. Therefore, the model we process is
transformed to the well-structured form as shown in Figure 2.

Next, a closer examination of the activities reveals that the re-
view and approval of claims above $200 can be seen as a knock-out
activity because one of its outcome can lead to immediate process
termination under an additional assumption that the task of advis-
ing employees of the rejection has zero cost and can be replaced by

a message. Therefore, it makes sense to move the knock-out activity
as early as possible using a rank formula that considers both activ-
ity cycle time and cost. This is already covered by previous works,
e.g., [8, 15]. Our approach can encapsulate these proposals, but, to
better show the novelty of this work, in our case study, we treat
every activity, including this specific one, as not being a knock-out
one, i.e., as if all claims are approved. So, the question that arises
is: “If there are no knock-out activities, what type of resequencing is
beneficial?"

Our answer to this question is to move the block with the re-
view and approval of claims above $200, which is performed by the
supervisor, in parallel with the early blocks of account existence val-
idation and possible creation of an employee account. This allows
two distinct types of resources, namely both the supervisor and the
supervisee employee, to operate in parallel, so that their cycle times
are overlapped. However, it is valid to claim that such resequencing
cannot happen because the activity performed by the supervisor
should follow the activity for the analysis of the request for the au-
tomatic authorization. Therefore, the latter task needs to be moved

- 25 -

Optimizing Business Processes Through Parallel Task Execution MEDES ’22, October 19–21, 2022, Venice, Italy

ID Path Activity Name Cost Time
1 1 Send Email to Employee - Treatment in Progress 1 1 Minute
2 1 Send Email to Employee - Notice of Re-Submission 1 1 Minute
3 2 Validate if Employee Account Exists 2 1 Day
4 2 Create Employee Account 4 1 Day
5 2 Analyze the Request for Automatic Authorization 3 1 Hour
6 2 Review and Approve Request (Supervisor) 8 1 Day
7 2 Transfer the Money to the Employee Account 2 2 Days
8 2 Advise Employee of the rejection of the request 0.1 1 Hour

Table 1: Case Study Activity Cycle Times and Costs.

Name of Gate Path Probability

XOR_block1 Path_Account 0.8
XOR_block1 Path_No_Account 0.2
XOR_block2 Path_Amount 0.8
XOR_block2 Path_Otherwise 0.2
XOR_block3 Path_Transfer 0.6
XOR_block3 Path_Advise 0.4
Table 2: Case Study Path Probabilities.

earlier as well. In our solution, we deal with these issues and in
a nutshell, we propose a principled technique that puts blocks of
activities in parallel. This movement of activities in the diagram
leads to lower cycle times, and entails the incorporation of AND
gateways in the model, while ensuring that precedence constraints
are met through also moving the necessary activities upstream. I.e.,
the validity of the optimized model is always guaranteed.

2.1 Statistical metadata
The solution that we propose is principled in two senses: (i) we

follow a cost-based approach, according to which the alternative
models are quantitatively annotated in terms of their cycle time
and cost; and (ii) we cast our solution as an algorithm that can be
easily followed (and re-implemented) by third parties in arbitrary
scenarios.

To support the first point above, it is necessary to obtain statisti-
cal metadata for the activities that are present in the model. If we
are interested in cycle time and cost, there are at least three types
of statistical metadata required, namely (a) the activity cycle times;
(b) the activity costs and (c) the probability to follow a specific path
after (X)OR gateways. These are adequate to compute the process
cycle time, as is recorded in several textbooks, e.g., [3]. Tables 1 and
2 present such example metadata for our case study.

3 PROCESS MODEL DECOMPOSITION
We employ a convenient representation of a process, where

convenience means that the representation should naturally lend
itself to resequencing operations, and process total cycle time and
cost can be easily computed. The cost (resp. cycle time) of the entire
process is calculated by combining the costs (resp. cycle times)

of the individual fragments using appropriate cost functions, e.g.,
sums, minimum, maximum and so on. We advocate the usage of the
Refined Process Structure Tree (RPST)[17] and more specifically
a specific variant of RPST, called Task Based Process Structure
Tree (TPST) [4]. Both can be deemed as decomposition techniques
separating a business process into its individual fragments exactly
as we desire.

3.1 Task Based Process Structure Tree (TPST)
The construction of TPST entails a decomposition approach that

is based on RPST [4], where a business process model is separated
into blocks, which are then organised in a hierarchical way. The
main differences between TPST and RPST are the following:

• The leaf nodes of a TPST represent a node (i.e., a BPMN
activity) of its corresponding process model instead of an
edge. This allows us to compute total times and costs based
on the activity times and costs, respectively, and also to
reorder (blocks of) activities.

• There are multiple types of process fragments into which a
process may be separated instead of one generic type. These
types include 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , 𝐿𝑜𝑜𝑝 , 𝑋𝑂𝑅 and 𝐴𝑁𝐷 . These are
the same types that are typically employed in flow analysis-
based cost computation.

• The leaf nodes of a TPST are ordered, thus making the TPST
a semi-ordered tree.

• The internal (i.e., non-leaf) nodes of a TPST represent the
control flow.

A subtle point regarding the model in Figure 2 is that, although
it is well-structured, an AND split gateway is paired with an XOR
merge gateway. Normally, such a situation may lead to erroneous
lack of synchronization, but in our case, only a single token is
guaranteed to arrive at the merge XOR gateway, as required in valid
BPMNmodels. However, we need to employ a specific𝐴𝑁𝐷 −𝑋𝑂𝑅
fragment type to cover this case. In the appendix, we present an
alternative modelling of the same process, which employs boundary
events in a sub-process in order to show that our approach is not
specific model-dependent as long as the model to be optimized is
in a well-structured form.

- 26 -

MEDES ’22, October 19–21, 2022, Venice, Italy Varvoutas et al.

Figure 3: The TPST of our case study BP model.

3.2 Decomposition of our scenario and cost
modelling

The TPST of the model in Figure 2 is depicted in Figure 3. All the
leaf nodes of the TPST correspond to BP activities and the waiting
events. The root of the TPST represents the complete BP of Figure
2 and it is a Sequence. The children of this sequence are (i) a starting
event, (ii) an 𝐴𝑁𝐷/𝑋𝑂𝑅 gateway node and (iii) an end event. At
the next level, there are two other sequences that are children of
the𝐴𝑁𝐷/𝑋𝑂𝑅 gateway node. The left sequence represents the top
path of the BPMN model, while the right sequence represents the
bottom path. Similarly, each of these sequences is connected with
its children activities and/or 𝑋𝑂𝑅 blocks comprising activities.

After the decomposition of the BP model to its fragments using
the TPST approach, the total cost and cycle time of the process can
be calculated in a straightforward manner. When a token arrives at
the𝐴𝑁𝐷/𝑋𝑂𝑅 gateway, both upper and bottom paths are initiated.
In the upper path, due to the timer activities, the token proceeds
when each timer runs out. The two parallel paths are executed
independently and the cycle time of the 𝐴𝑁𝐷/𝑋𝑂𝑅 subprocess
block is the minimum of the two paths, while the cost is the cost of
the path with the minimum cycle time plus the costs of all TPST
nodes that have completed in the other path.

Let 𝑐𝑡 (𝑎𝑖) denote the cycle time of activity 𝑎𝑖 , where 𝑖 is the
activity id as defined in Table 1. Then, based on the above, the cycle
time of the case study process is the minimum of the two sequences
in Figure 3. These are computed as follows based on the classical
formulas in textbooks, such as [3] while assuming the metadata in
Tables 1 and 2 and that a day is equal to 8 hours.

𝑐𝑡 (𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒1) = 𝑐𝑡 (𝑇𝑖𝑚𝑒𝑟7) + 𝑐𝑡 (𝑎1) + 𝑐𝑡 (𝑇𝑖𝑚𝑒𝑟23) + 𝑐𝑡 (𝑎2) =
30 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 2𝑚𝑖𝑛𝑠

𝑐𝑡 (𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒2) = 𝑐𝑡 (𝑎3) + 0.2𝑐𝑡 (𝑎4) +𝑎5 + 0.2𝑐𝑡 (𝑎6) + 0.6𝑐𝑡 (𝑎7) +
0.4𝑐𝑡 (𝑎8) = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 6.2 ℎ𝑜𝑢𝑟𝑠

The total cycle time of the TPST model is calculated by the
equation: 𝑐𝑡 (𝑇𝑃𝑆𝑇) = min{𝑐𝑡 (𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒1), 𝑐𝑡 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒2)}

The total cost can be calculated using a similar rationale, but we
omit details, since, in this case study, we target the reduction in
cycle time.

3.3 Limitations of this approach and discussion
This cost model is limited to reflect the cost of the execution paths

without considering the available resources and the advantage of
executing in parallel independent paths. For example, in our case
study, if there were more reimbursement requests than request
handlers, there would be resource contention that leads to increases
in the cycle time. Under such conditions, some instances and their
corresponding tasks are put on hold until the required resources
become available. Also, the statistics in Table 1 reflect expected
times, which lead to a situation that the cycle time computations for
all instances will always consider that Sequence2 is the fastest one
for all instances. Obviously, it would be more realistic to consider
time variations; however these improvements in the cost modelling
do not affect our solution.

Essentially, our resequencing technique is independent of any
model to compute the process cycle time and cost. During rese-
quencing, several alternative model are implicitly generated and
checked as towhether they lead to cycle time improvements. Instead
of using the technique described above for cycle time computation,
advanced simulators, e.g., BIMP4 or digital twins [2], can be also
employed.

4 TPST-BASED TASK RE-ORDERING
Our methodology accepts as input the TPST representation of

the BPMN model and aims to produce an optimized model. To this

4https://bimp.cs.ut.ee/simulator/

- 27 -

https://bimp.cs.ut.ee/simulator/

Optimizing Business Processes Through Parallel Task Execution MEDES ’22, October 19–21, 2022, Venice, Italy

Activity constraints Description
Precedence(𝑎1, 𝑎2) Whenever activity 𝑎2 is executed, the execution of 𝑎1 must precede

Not co-existence(𝑎1, 𝑎2) Either activity 𝑎1 or 𝑎2 can be executed, but not both
Chain succession(𝑎1, 𝑎2) Activity 𝑎2 directly follows 𝑎1

Table 3: Behavioral constraints considered.

end, it takes into account (i) the metadata of the input model’s tasks,
(ii) any behavioral constraints that may apply; and (iii) the given
resource allocation. The former item has already been introduced
(see also Tables 1 and 2), thus, in this section we focus on the
constraints and the resource allocation.

4.1 Notation and cycle time computation
considerations

The main notation required to explain our approach is summa-
rized below.

• 𝐴 = {𝑎1, ..., 𝑎𝑛} defines a set of 𝑛 activities that appear in the
BPMN business process model. The cycle time (resp. cost) of
each activity 𝑎𝑖 , 𝑖 = 1...𝑛 is denoted as 𝑐𝑡 (𝑎𝑖) (resp. 𝑐 (𝑎𝑖))

• 𝑅 = {𝑟1, ..., 𝑟𝑚} denotes a set of𝑚 resources, where the set
of activities 𝐴 are allocated to.

• 𝐴 → 𝑅 defines the mapping of activities to resources; 𝑎 𝑗
𝑖

denotes that 𝑎𝑖 is mapped to 𝑟 𝑗 , where 𝑖 ∈ 1...𝑛 and 𝑗 ∈ 1...𝑚.
In addition, we consider a subset of the constraints defined by

DECLARE [10], as depicted in Table 3. Without loss of generality,
we assume that the precedence constraint subsumes the chain suc-
cession one, and their existence prohibits the existence of the not
co-existence constraint. These constraints are used in many works,
e.g., [1], and can be accompanied by additional ones, such as ex-
istence of alternating ordering, which, however, add no further
knowledge in our case and thus are not required by our technique.

The main implication of the resource allocation regarding the
computation of the process cycle time is when considering AND
blocks: instead of returning the maximum of all branches always,
we do so only if the resources are different. Activities belonging to
different branches but executed by the same resource are treated
as executing sequentially in terms of their cycle time.

4.2 Cost-based task-reordering algorithm
We annotate each leaf node of the TPST with the resource allo-

cated. Each parent node with all its children annotated with the
same resource is annotated accordingly as well; if there are mul-
tiple different resource annotations among the node children, the
resource annotation of the parent is the union of all children re-
sources. The resequencing algorithm is applied to such a resource-
annotated TPST representation of the input model. The next step of
the algorithm is to traverse the TPST through performing breadth-
first-search. For each Sequence node encountered, every possible
node pair in the specific sequence is considered as a candidate
for parallel execution through the following procedure (see also
Algorithm 1).

(1) First, it is checked whether any precedence constraints are
violated. I.e., for any two activities 𝑎1 and 𝑎2 that are con-
sidered to be placed in a parallel (AND) block, behavioral
constraints must not include both Precedence(𝑎1, 𝑎2) and

Algorithm 1 TPST-based re-ordering
1: Annotate TPST with resource allocation info
2: Perform BFS on TPST
3: if 𝑛𝑜𝑑𝑒.𝑡𝑦𝑝𝑒 is "Sequence" then
4: for each node_pair do
5: check pair validity for parallel execution
6: assess impact on cycle time
7: resolve additional constraint violations
8: end for
9: end if

Precedence(𝑎2, 𝑎1). If a node is not an activity one but a com-
plete fragment, e.g., a XOR block, then this check is per-
formed for all activities in the block. In essence, the absence
of these two constraints suggests the existence of the relation
of potential parallelism [3].

(2) The impact on the cycle time and execution cost is examined
when moving the downstream node in parallel with the
upstream one in the sequence. If the downstream node has
already been moved in parallel with another node in an
earlier pair consideration, it is checkedwhether the upstream
node in the initial sequence should be added to the branch of
the AND block that does not contain the downstream node.
Basically, the cycle time is improved if the nodes considered
for parallel execution are assigned to different resources, i.e.,
the intersection of their resource annotations is null. The
total cost remains unaffected unless a knock-out activity is
executed in parallel instead of as early as possible. If there is
no improvement, this pair is not further considered.

(3) A final check whether creating an AND block leads to viola-
tion of precedence constraints involving one activity other
than 𝑎1 or 𝑎2 is performed. If this the case, we need to con-
sider if the violation can be resolved by reordering the other
activity just before the AND block. If such a reordering is
not feasible due to the constraints of the model, then the
changes under consideration are rejected and we continue
with the next pair.

The complexity of the above solution in 𝑂 (𝑛3), where 𝑛 is the
total number of activities. The maximum number of pairs is 𝑂 (𝑛2)
while each node can participate in 𝑂 (𝑛) behavioral constraints.
Actually, the complexity is lower, since it is cubic in the length of
the longest sequence. Apart from the polynomial complexity, it is
important to stress that even in large processes, 𝑛 does not typically
grow very large. Finally, due to the same reasoning as in [6, 7],
we can characterize the problem in question as NP-hard, thus the
polynomial algorithm presented does not aim to find the optimal
solution but just to improve the BPMN diagram considered.

4.3 Application in our example case study
As a proof of concept, we present the application of our proposed

methodology to the example case study that was presented in Sec-
tion 2.5 The algorithm accepts as input the TPST representation of
the input model as shown in Figure 3. The resource annotation (not

5Our prototype implementation can be found at https://github.com/kmvarvou/bpmn_
tpst_optimization

- 28 -

https://github.com/kmvarvou/bpmn_tpst_optimization
https://github.com/kmvarvou/bpmn_tpst_optimization

MEDES ’22, October 19–21, 2022, Venice, Italy Varvoutas et al.

Constraint Activity1 Activity2
Precedence 7 Days Send Email to Employee - Treatment In Progress
Precedence 7 Days 23 Days
Precedence 7 Days Send Email to Employee - Notice of Resubmission
Precedence Send Email to Employee - Treatment In Progress 23 Days
Precedence Send Email to Employee - Treatment In Progress Send Email to Employee - Notice of Resubmission
Precedence 23 Days Send Email to Employee - Notice of Resubmission
Precedence Review and Approve Request (Supervisor) Transfer the Money to the Employee Account
Precedence Review and Approve Request (Supervisor) Advise the Employee of the Rejection of the Request
Precedence Validate if Employee Account Exists Create Employee Account
Precedence Create Employee Account Transfer the Money to the Employee Account
Precedence Create Employee Account Advise the Employee of the Rejection of the Request
Precedence Validate if Employee Account Exists Transfer the Money to the Employee Account
Precedence Validate if Employee Account Exists Advise Employee of the rejection of the request
Precedence Analyze the Request for Automatic Authorization Review and Approve Request (Supervisor)

Table 4: Case Study Behavioral Constraints

Figure 4: The result of applying our proposed methodology to the case study BPMN.

0 0.5 1 1.5 2 2.5

Cycle time of activity Review and Approve Request (Supervisor)

 in terms of Days

0

5

10

15

20

25

C
y
c
le

 t
im

e

0 0.2 0.4 0.6 0.8 1

Probability of activity Review and Approve Request (Supervisor)

being executed in XOR_block_2

0

5

10

15

20

25

30

C
y
c
le

 t
im

e

Figure 5: Process cycle times for different values in terms of cycle time of the Review and Approve Request (Supervisor) activity
(left) and the probability of the activity being executed in XOR_block_2 (right). The blue bars refer to the original model and
the orange bars to the optimized one.

- 29 -

Optimizing Business Processes Through Parallel Task Execution MEDES ’22, October 19–21, 2022, Venice, Italy

shown) is based on the activity names: all activities but one are exe-
cuted by a single resource, while the remaining activity is executed
by a different resource named supervisor. The constraints are pre-
sented in Table 4. The first sequence Sequence1 has no valid candi-
date node pairs due to the behavioral constraints in place. However,
when applying the algorithm on Sequence2, the result is that activ-
ity Validate if Employee Account Exists and block XOR_Block_2 are
reordered for parallel execution, and then XOR_Block_1 is placed
in the same branch as the former activity.6 The resulting BPMN is
presented in Figure 4.

In the optimized model, the average total cycle time becomes 2
days and 4.6 hours. In other words, the introduction of parallelism
leads to a decrease of 7.3 % in terms of cycle time. In Figure 5, we
present the results of applying our methodology for a variety of
values in terms of cycle time (of the activity Review and Approve
Request (Supervisor)) and XOR branch probability; all the other
values remain the same as the example ones already provided in
Section 2. In the two plots in the figure, the improvements are up
to 13.5% and 23.8%, respectively.

4.4 Further Issues
This work aims to pave the way for a new line of research work

that revisits cost-based activity reordering and the parallelism re-
design heuristic in BPMN diagrams. Apart from the loosely coupled
role of the cost model already discussed, we focus also on two
additional aspects below.

4.4.1 Metadata Acquisition. The proposed technique, similarly to
any cost-based technique, relies on accurate quantitative and quali-
tative metadata. We expect that the individual cycle times, possibly
dependent on the resource allocation and allowing for uncertainty,
can be provided by process mining techniques applied on previous
logs or domain experts or both. This also applies to constraints
derivation, which is a topic already considered in depth in process
mining. Finally, we assume that for the specific BP instance, the
resource allocation is known. However, a more complete solution
would consider a batch of process instances, for which the resource
allocation could be looser and referring to resource types rather
than individual resources.

4.4.2 Knock-out activities. Our claim is that we do not neglect
but extend task resequencing techniques considering knock-out
activities, as these are discussed in [8]. More specifically, in the
algorithm provided, before examining each pair in the sequencing,
we can apply node reordering and then to proceed to parallelism
investigation.

5 RELATEDWORK
The main cost-based techniques that perform activity reordering

in BPMN diagrams leverage the existence of knock-out activities,
as explained in [15]. These techniques are extended with recent
advances in dataflow and query processing optimization [7], as
explained in [8]. Similar techniques based on heuristics have been
also proposed for declarative models, such as PDM (e.g., [16]). As

6According to the example metadata, actually this last movement does not lead to
improvements (the cycle time remains the same) but we include it for completeness,
since it may yields lower times if the cycle time of the supervisor task was longer.

already stated, we differ in that we perform cost-based resequencing
without relying on the existence of knock-outs.

Up to date, a plethora of objective functions and cost models have
already proposed and applied both for dataflows and business pro-
cesses, but there are have not examined in parallel and distributed
environments sufficiently. Therefore, there is a need to adopt a
cost model that will take account the parallel execution of the BP
activities. The BP execution requires to take into consideration
the probability distributions of the input data tokens, the waiting
times or the cost of the occupied resources in a realistic manner;
these challenges are aligned to the effort to construct digital twins
for BPs [2] and are orthogonal to our proposal; the optimization
we described relies on a good and realistic cost model but is not
tightly coupled with any specific one. Similarly, the authors of [14]
propose building predictive and prescriptive models. The former
model estimates the undesired case outcome probability. The latter
one refers to a causal model that estimates the impact of a given
intervention. Our resequencing proposal can benefit from advances
in cost models for BPs to better assess the impact of resequencing.

Our work also relates to resource optimization proposals but
differs in that it leverages an existing, potentially optimized resource
allocation for activity resequencing, rather than deciding on the
resource allocation in its own right. Examples of resource allocation
appear in [9], where the trade-off between cycle time and resource
cost is examined. Additionally, the proposal in [5] discusses an
allocation technique to minimize the cloud infrastructure costs
in the terms of resource (CPU, RAM, Database size) consumption
when executing real-world BPs with different number of simulated
users. Other examples of resource allocation techniques achieving
resource balancing can be found in [11, 20]. All these proposals are
orthogonal to our work as well.

6 CONCLUSIONS
In this work, we advocate to leverage a given resource allocation

with regards to a BPMN model in order to reorder activities so that
they can be executed in parallel and their cycle times to overlap;
to this end, we automatically modify the BPMN diagram through
inserting AND blocks and moving (blocks of) activities to other
places. We employ TPST as an intermediate representation format,
while we respect all relevant behavioral constraints. Example results
in a real-world case study reveal that there can be tangible benefits
in the process cycle time, e.g., reductions of above 20%.

In the future, we aim to extend our work in two main direction.
Firstly, to optimize both the model structure and the resource allo-
cation, and secondly to optimize several process instances together
rather than treating each process instance in isolation.

Acknowledgments. The research work was supported by the Hel-
lenic Foundation for Research and Innovation (H.F.R.I.) under the
“First Call for H.F.R.I. Research Projects to support Faculty members
and Researchers and the procurement of high-cost research equip-
ment grant” (Project Number:1052, Project Name: DataflowOpt).

REFERENCES
[1] Johannes De Smedt, Galina Deeva, and Jochen De Weerdt. 2020. Mining Behav-

ioral Sequence Constraints for Classification. IEEE Transactions on Knowledge
and Data Engineering 32, 6 (2020), 1130–1142. https://doi.org/10.1109/TKDE.
2019.2897311

- 30 -

https://doi.org/10.1109/TKDE.2019.2897311
https://doi.org/10.1109/TKDE.2019.2897311

MEDES ’22, October 19–21, 2022, Venice, Italy Varvoutas et al.

Figure 6: The well-structured process model of an Employee Expense Reimbursement Request

Figure 7: The TPST of our case study BP model.

[2] Marlon Dumas. 2021. Constructing Digital Twins for Accurate and Reliable What-
If Business Process Analysis. In Proceedings of the International Workshop on BPM
Problems to Solve Before We Die (PROBLEMS 2021) (CEUR Workshop Proceedings,
Vol. 2938). 23–27.

[3] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. 2018. Fun-
damentals of Business Process Management, Second Edition. Springer.

[4] Jing Fan, Jiaxing Wang, Weishi An, Bin Cao, and Tianyang Dong. 2017. Detecting
Difference between Process Models Based on the Refined Process Structure Tree.
Mob. Inf. Syst. 2017 (2017), 6389567:1–6389567:17.

[5] Vincenzo Ferme, Ana Ivanchikj, and Cesare Pautasso. 2016. Estimating the Cost
for Executing Business Processes in the Cloud. In Business Process Management
Forum, Marcello La Rosa, Peter Loos, and Oscar Pastor (Eds.). 72–88.

[6] Georgia Kougka and Anastasios Gounaris. 2019. Optimization of data flow
execution in a parallel environment. Distributed Parallel Databases 37, 3 (2019),
385–410.

[7] Georgia Kougka, Anastasios Gounaris, and Alkis Simitsis. 2018. The many faces
of data-centric workflow optimization: a survey. Int. J. Data Sci. Anal. 6, 2 (2018),
81–107.

[8] Georgia Kougka, Konstantinos Varvoutas, Anastasios Gounaris, George Tsaka-
lidis, and Kostas Vergidis. 2020. On Knowledge Transfer from Cost-Based Opti-
mization of Data-Centric Workflows to Business Process Redesign. Trans. Large
Scale Data Knowl. Centered Syst. 43 (2020), 62–85.

[9] Orlenys López-Pintado, Marlon Dumas, Maksym Yerokhin, and Fabrizio Maria
Maggi. 2021. Silhouetting the Cost-Time Front: Multi-objective Resource Opti-
mization in Business Processes. In Business Process Management Forum. 92–108.

[10] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. 2007. DECLARE:
Full Support for Loosely-Structured Processes. In 11th IEEE International Enter-
prise Distributed Object Computing Conference (EDOC 2007), 15-19 October 2007,
Annapolis, Maryland, USA. 287–300.

[11] S. P. F. Peters, R. M. Dijkman, and P. W. P. J. Grefen. 2021. Resource Optimization
in Business Processes. In 2021 IEEE 25th International Enterprise Distributed Object
Computing Conference (EDOC). 104–113.

[12] Artem Polyvyanyy, Luciano García-Bañuelos, and Marlon Dumas. 2012. Struc-
turing acyclic process models. Inf. Syst. 37, 6 (2012), 518–538.

[13] Hajo A. Reijers, Irene T. P. Vanderfeesten, Marijn G. A. Plomp, Pieter Van Gorp,
Dirk Fahland, Wim L. M. van der Crommert, and H. Daniel Diaz Garcia. 2017.

Evaluating data-centric process approaches: Does the human factor factor in?
Software and Systems Modeling 16, 3 (2017), 649–662.

[14] Mahmoud Shoush and Marlon Dumas. 2021. Prescriptive Process Monitoring
Under Resource Constraints: A Causal Inference Approach. CoRR abs/2109.02894
(2021).

[15] W. M. P. van der Aalst. 2001. Re-engineering Knock-out Processes. Decis. Support
Syst. 30, 4 (2001), 451–468.

[16] Irene T. P. Vanderfeesten, Hajo A. Reijers, and Wil M. P. van der Aalst. 2011.
Product-based workflow support. Inf. Syst. 36, 2 (2011), 517–535.

[17] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. 2009. The refined process
structure tree. Data Knowl. Eng. 68, 9 (2009), 793–818.

[18] Konstantinos Varvoutas and Anastasios Gounaris. 2020. Evaluation of Heuristics
for Product Data Models. In Business Process Management BPM Workshops. 355–
366.

[19] K. Vergidis, A. Tiwari, and B. Majeed. 2008. Business Process Analysis and
Optimization: Beyond Reengineering. Trans. Sys. Man Cyber Part C 38, 1 (2008),
69–82.

[20] Mehdi Yaghoubi and Morteza Zahedi. 2018. Tuning Concurrency of the Business
Process by Dynamic Programming. 1–5.

A ALTERNATIVE MODELLING
A question may arise as to whether our technique is tailored to

the example case study. Furthermore, the inclusion of andAND/XOR
node in the TPST diagram may raise suspicions that we deal with a
very rare case. Although we do not provide formalities regarding
BPMN and TPST, the proposed technique is generic and indepen-
dent of any specific well-structured model. For example, in Figure
6, we provide a different but equivalent well-structured BPMN di-
agram, which corresponds to a modified TPST (see Figure 7). All
optimizations would be the same.

- 31 -

	4 TPST-based task re-ordering
	4.3 Application in our example case study
	4.4 Further Issues

	6 Conclusions
	References
	A Alternative Modelling
	6 Matching CGPs via Strong Containment
	4 Implementation
	4.3 User interface

	References
	4 IoT Data Sharing Management Ontology overview
	4.3 Resource management component

	6 The system architecture
	6 Related Work
	6 Conclusion and future work
	4 Results
	4.3 Shap Analysis
	4.4 Comparing the Risk Analysts risk scoring with the ML-based Credit Scoring System

	6 Conclusion
	4 Methodology/Design
	4.3 Hashtag Based Filtering
	4.4 Text Expansion

	6 Conclusion
	4 Methodology
	4.3 Building Topic Graph Model
	4.4 User profile modeling

	6 Conclusion
	6 Conclusion
	4.3 Physical layer

	6 Conclusions and future work

