
Mapping DMN to PDM to Enable Optimizations
Konstantinos Varvoutas1, Anastasios Gounaris1 and Georgia Kougka1

1Department of Informatics, Aristotle University of Thessaloniki, Greece

Abstract
Decision modeling is a key aspect in modern BPM complementing and working alongside process models, such as BPMN.
DMN is themain standard for decisionmodeling and in this workwe aim to tackle amain drawback of DMNs, namely the lack
of optimization techniques in terms of minimizing the execution time and execution cost. We address this limitation through
mapping DMNs to PDMs. PDMs are declarative and emphasize on the data input requirements for performing operations to
derive additional data elements, one of which is the final target of the process. Moreover, effective optimization heuristics
have been proposed for PDMs. We also present two illustrative examples showing the benefits stemming from our approach.

Keywords
data-centric processes, decision modelling, process optimization, DMN, PDM

1. Introduction
Organizations are interested in executing their pro-

cesses efficiently, in an attempt to remain competitive.
To this end, they make use of Business Process Manage-
ment (BPM). BPM is defined as a body of methods, tech-
niques and tools to discover, analyze, redesign, execute
and monitor the business processes of an organization
[1]. BPM does not focus only on the control flow of
processes, e.g., through employing the Business Process
Model and Notation (BPMN) standard. Given that most
processes involve decisions of various kinds, there is an
additional focus on the decision-making aspect of pro-
cesses. To address this need, the Decision modeling and
Notation (DMN) standard has been introduced. Accord-
ing to [2], DMN covers the decisions that are enacted
through a flow of processes. It is a declarative approach,
with the purpose of segregating the decision logic from
business processes, as the decisions are separated from
the other process information, such as the flow of tokens
across activities.

Decisions inDMNare usually based on a number of in-
put data, which can be the outcome of one or more other
decisions upstream. As such, the decision inputs, espe-
cially of intermediate decision tables, are often not avail-
able at the beginning of the process; moreover, there is
some cost and/or time overhead associated with their ac-
quisition, e.g., a costly operation needs to be performed
to obtain them. This gives rise to the problem of defining
the optimal order of acquiring input data and checking
the corresponding rules in terms of execution time and
execution cost. As explained later, this problem gener-
alizes operator and task ordering optimization, which is

BICOD 2021: The British International Conference on Databases
2021, December 09–10, 2021, London, UK

kmvarvou@csd.auth.gr (K. Varvoutas); gounaria@csd.auth.gr
(A. Gounaris); georkoug@csd.auth.gr (G. Kougka)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

a key and persistent challenge in query processing and
data-intensive workflows [3, 4].

The Product DataModel is a data-centric approach, tai-
lored to information-intensive processes, which are used
by an array of industries, including insurance companies[5,
1], banking[6] and manufacturing[7]. It places empha-
sis on modeling the requirements for the production of
its output product rather than on the exact way of pro-
ducing it. To this end, it is accompanied by a set of
decision strategies, e.g., through a method referred to
as Product Based Workflow Support (PBWS) [5]. PBWS
features a set of decision strategies that aim to produce
the end-product step-by-step, in a cost efficient manner
and is recently extended by data management-inspired
optimization strategies [8]. More specifically, the work
in [8] shows how the rationale of defining the order of
joins in database queries and the tasks in data-intensive
workflows under arbitrary precedence constraints can
be transferred to optimizing PDM execution.

Due to the similarities between the two standards, namely
DMNand PDM, in terms of structure and use-cases, PDM
could be used to represent the decision logic of processes,
originally captured in DMN. Such a conversion would
make DMN models compatible with the dynamic opti-
mization techniques that have been developed for PDMs.
To this end, we propose an approach to converting a
DMN model into a PDM one. Our approach produces
a PDM given the Decision Requirement Diagram (DRD)
graph and decision table of a process; the resulting PDM
is then amenable to optimizations.

In summary, our contribution is twofold: (i) the intro-
duction of an approach to map DMN decisions and input
data to a PDM and (ii) the provision of example cases
to show the benefits that can stem from optimizing the
order in which DMN decisions are taken leveraging the
same techniques that optimize the operation ordering in
PDMs.

The remainder of this paper is structured as follows.

mailto:kmvarvou@csd.auth.gr
mailto:gounaria@csd.auth.gr
mailto:georkoug@csd.auth.gr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Section 2 provides the background and the motivating
examples. Next, we introduce our approach followed
by discussion of examples. We discuss the additional re-
lated work in Sec. 5 and we conclude in Sec. 6.

2. Background and main rationale

2.1. Decision Model and Notation (DMN)
basics

TheDMN standard complements control flow-oriented
initiatives, such as BPMN. It is a declarative approach
that models decisions on two levels, the requirements
level and the decision logic level. On the first level, the in-
formation requirements of the decisions are represented
by a decision requirements diagram (DRD). These diagrams
consist of four types of elements: decisions, input data,
business knowledge models and knowledge sources. The
decision logic is most commonly expressedwith the help
of decision tables. In a nutshell, the role of a DMN deci-
sion model is to contribute to the business process exe-
cution and provide the requirements that must be pre-
served taking into account the input data [9]. Figure
1 presents the DRD graph of an example claim assign-
ment DMN process, where the decisions nodes areDeter-
mine Employee, Employee appropriateness score and Expe-
rience of people, while the input data are represented by
the DRD nodes Region of customer and employee, Claims
expenditure, Number of open claims of employee and Ap-
proval authority. In thiswork, we focus on the casewhere
thewhole decision process is captured by theDMNmodel.
As such, in our approach, it suffices to focus on decisions
and input data solely.

On the second level, decision tables are used to rep-
resent decisions (nodes) that have been specified in the
DRD in detail; an example is presented in Figure 2. Each
row of a decision table represents a rule, which specifies
how a decision is taken. The top-left cell specifies the
hit policy. This policy defines whether one or all rules
need to be triggered, whether rules need to be checked
in a specified order and so on.

2.2. Optimization in DMN: a motivation
example

In many cases, the execution of specific decisions can
be optimized for a specific decision model. There are
cases where the decision inputs can be available with a
specific cost and the need arises to define the most cost
efficient execution plan for specific input values. Addi-
tionally, there are multiple process models that can be
generated based on a decision model, which implies the
demanding need to introduce a method to “evaluate” the

process models for selecting the best business strategies
[9].

In Figure 2, we present the decision table of the claim
assignment example. Without explaining the full details
at this stage, the outcome of a decision is the rightmost
column and depends upon a set of input values, which
are represented in the blue-colored fields. Often, these
decision inputs are not available upfront, while acquir-
ing each one of them incurs a certain cost. Therefore,
aside from finding the correct outcome for a specific set
of values, a cost-efficiency issue is encountered. The re-
search question that motivates this work is: what is the
optimal order of acquiring the input values and executing
the sub-decisions (i.e., rules) of a decision model?

Let us assume for the moment that the hit policy in
Figure 2 is “U”, which means that only one rule may
match as the rule overlapping may lead to an error and
the costs of acquiring the four input fields are 3, 2, 2 and 5
cost units, respectively. Given these costs, it seems that
acquiring the first input regarding the region of the em-
ployee and the customer with cost 3 is the most efficient
choice. But what if, with probability 30%, when acquir-
ing the first input, its value is “no”, which implies that no
rule in the decision table can be triggered and additional
rules need to be checked? To make the case even more
complex, we also need to account for the fact that check-
ing each rule (i.e., each row in the table) comes with a
cost that potentially differs between rows. To complete
the example, if we assume that in most of the cases the
experience of the employee is high, the open claims are
always more than 10 and each rule has the same cost to
execute, then, in the average case, it is beneficial first
to extract the number of the open cases and then define
the final outcome (i.e., the score) based on the retrieved
value. This is despite the fact that extracting the num-
ber of open cases comes with the highest cost of input
acquiring, i.e., 5 cost units.

In the example above, we essentially had to determine
the most beneficial ordering of operations. However,
this problem has been investigated in depth in works
such as [5, 8], when the model is PDM rather than DMN.
Therefore, our main contribution is to capitalize on the
optimization techniques for PDMs and apply them to
DMN models after translating them.

2.3. Product Data Model
According to [1], the Product DataModel (PDM) is the

key mechanism to define the process structure of an in-
formational product, where example informational prod-
ucts include a decision as to whether to grant approval
to a specific admission request, approval of a mortgage
application, and so on. PDM is used to represent the
structure of a workflow product in a rooted graph-like
manner. One of the most important phases during the



Figure 1: The DRD graph for the claim assignment example (taken from [10])

Figure 2: The decision table for the Employee appropriateness score decision of the claim assignment example (adapted from
[10])

PDM design is the analysis, where the information ele-
ments, dependencies and production logic are identified
[1]. PDMs describe the required elements for generat-
ing the end product of a workflow and a PDM mainly
consists of connected data elements (nodes), which rep-
resent the information that is processed in the workflow.
The data element values are produced by executing op-
erations, which are represented by the graph edges on
the data elements. Each operation requires a set of in-
put data elements and produces exactly one output data
element. Additionally, the dependencies between the
PDMelements definewhich data are required to produce
other data.

A PDM does not specify per se how the end product
(i.e., the root element) is produced, but allows multiple
sequences of operations to derive the root information
product. In other words, there may be multiple paths
to the production of the root element. Usually, each of
these paths has a different cost of execution, giving rise
to the following optimization problem: which paths of
operations to choose for a specific case in order to optimize

given quantitative objectives of cost and time? To answer
this question, which relates to the execution of PDMs,
the PDM is accompanied by a set of decision strategies
in a method referred to as Product Based Workflow Sup-
port (PBWS) [5]. PBWS entails both local and global de-
cision strategies, however, in this work we will focus
only on local decision strategies and benefit from im-
provements over [5], as these are presented in [8]. A
local strategy adopts a step-by-step approach, meaning
that, at each step, it examines the set of operations avail-
able for execution and chooses the best one, according
to a particular metric, e.g. cost of execution. Such cost-
based decisions are enabled because PDM operations are
typically annotated with quantitative metadata regard-
ing the cost and duration of their execution and the prob-
ability of failure to produce a data element.

Note that optimizing PDM execution is at least as diffi-
cult as detecting the optimal order of tasks in data-intensive
workflows under arbitrary constraints; it is beyond the
scope of this work to provide more details, but this is
due to the fact that task ordering in workflows can be



mapped to a PDM, in which each element can be pro-
duced via a single operation. As explained in [3], based
on the analysis of [11], the task ordering problem in
workflows is not onlyNP-hard but it is unlikely any poly-
nomial algorithm to manage to approximate the optimal
solution within a polynomial factor.

2.4. Decision Strategies in DMNs
DMN and PDM models share some inherent similari-

ties with regards to their structure and use-cases. Both
of them are used to represent information-intensive pro-
cesses, centered around some type of decision making.
Similarities are also apparent when it comes to their ex-
ecution. Both of these standards feature models that can
be directly executed. In such cases, the execution is ap-
proached in a dynamic step-by-step manner, which aims
to produce the final outcome optimizing a particular ob-
jective, i.e. cost of execution. However, while, for PDMs,
there is a set of decision strategies available to solve this
problem, this is not the case for DMNs. Therefore, by
providing an approach that converts DMN models into
PDM, we also render the existing decision strategies that
are available for PDMs applicable to DMNs.

3. Mapping DMNs to PDMs
In this section, we present our approach for convert-

ing a DMN model into a PDM. Our approach takes as
input both the DRD graph and the decision table of a
DMN model. We present a high-level algorithmic out-
line of our approach in Algorithm 1, while also present-
ing a more detailed outline of each step below.

The first step relates to the graph structure of themodel.
Each element of the DRD graph, either a decision or an
input node, is mapped to a PDM node. The top element
of the DRD is set as the root element of the PDM, while
DMN input data elements are mapped to leaf data ele-
ments.

The next step is to extract the decision logic from the
decision tables, when such tables are available, and the
DRD, and convert this logic into the format of PDM op-
erations. Each decision table corresponds to a different
decision node, and therefore to a different PDM node
based on the output variable in the table. Each row of
a decision table corresponds to a PDM operation, but a
single PDM operation may cover multiple decision table
rows. Each of these operations produces as output the
same output node as defined in the decision table. The
input elements of each operation are determined based
on the values of their respective column. For example,
we present the decision table of the Employee appropri-
ateness score decision node in Figure 2. The second row
represents an operation that takes as input the nodes

Algorithm 1 Mapping DMNs to PDMs
Require: (1) DRD graph of the DMN as depicted in figure 1.

(2) Decision tables of the DMN as depicted in figures 2
and 3.

1: for every element 𝑒 in DRD do
2: if 𝑒 is the top element of DRD then
3: make 𝑒 root element of PDM
4: else if 𝑒 is an input data element of DRD then
5: make 𝑒 leaf element of PDM
6: else
7: make 𝑒 regular element of PDM
8: end if
9: end for

10: for every decision node 𝑒 in DRD with a decision table
do

11: convert decision logic of table into PDM operations.
12: end for
13: for every decision node 𝑒 in DRDwithout a decision table

do
14: extract decision logic from DRD.
15: end for
16: for every input data element 𝑒 in DRD do
17: insert a corresponding leaf operation in the PDM.
18: end for
19: return 𝑃𝐷𝑀

Claims Expenditure and Experience of employee (this is
because empty columns signify that the respective input
data do not play any role in this particular rule). In the
corresponding PDM, there would be an operation con-
necting these two inputs to the output node, where the
output node would correspond to the appropriateness
score data element.

In addition, when a decision node does not have a cor-
responding decision table, the decision logic used for its
production is captured by the DRD exclusively. In such a
case, we take into account the incoming edges of the de-
cision node. The decision logic then is transformed into
an operation that produces the decision node as output
and takes as input the nodes which are connected to it
(via the DRD edges).

Finally, for each input data node in the DRD, a leaf op-
eration (i.e operation with no input elements) is added
to account for the production (acquisition) of its corre-
sponding data element in the PDM.

This process is summarized inAlgorithm 1 and is poly-
nomial in the size of DRD and the entries of DMN deci-
sion tables.

4. Examples
In this section, we present two DMN models that will

be used as examples to showcase our approach. The first
DMN model has already been introduced in Section 2.1
and its DRD graph is presented in Figure 1. It repre-



Figure 3: The decision table for the Experience of Employee
decision.

sents a claim assignment process and the DRD consists
of three decision nodes and five input data nodes. The
second DMN model represents a complex decision man-
agement problem of tax regulations [12].

4.1. Mapping to PDM and optimization
of execution

4.1.1. First example.

Figure 2 presents the decision table of the Employee
appropriateness score decision node as already explained.
In addition, Figure 3 presents the decision table of the
Experience of Employee decision node.

The resulting PDMmodel after applying our approach
is presented in Figure 4. It contains eight data elements
and ten operations, presented in detail in the upper and
lower tables of Figure 4. The operation costs in the bot-
tom table in the figure are assumed to be either extracted
from logs or provided by a domain expert.

Regarding the operations of the PDM, we take into ac-
count both the decision table and the DRD of the DMN.
The three operations Op05, Op06 and Op07 that produce
data element i5, which corresponds the decision of the
Employee appropriateness score, are derived from the de-
cision table presented in Figure 2. The first row of the ta-
ble corresponds to an operation that takes as input data
elements i1 and i2. Rows 2 to 4 are bundled (i.e., knot-
ted) together into a single operation that takes as input
elements i3 and i7. Finally, rows 5 to 7 are bundled to-
gether into a single operation that takes as input element
i4. The operation Op08 that produces element i7, which
represents the decision node Experience of Employee, is
derived from the corresponding decision table in Figure
3. The table’s three rows are reduced into a single oper-
ation that takes as input element i6. Decision node De-
termine Employee, which is represented by data element
i8, does not have a corresponding decision table. There-
fore, the operation that produces this element is derived
from the DRD graph exclusively, taking into account the
incoming edges of the node. The remaining operations
relate to the production of either the leaf data elements
of the PDM (Op01-Op04, Op09) or the root element out of

the appropriateness score (Op010). The rationale above
is not specific to this specific example but generalizes to
any case.

What if the hit policy was different? In Table 2, the
hit policy denoted by the leftmost cell in the top row
is “U” meaning that any of the rules triggered can yield
the output element in its own right. In the original ver-
sion of this table, the hit policy was “C” meaning that
all rules need to be evaluated and contribute to the fi-
nal outcome. This case corresponds to a simpler PDM,
where, instead of Op05-Op06, there is a single operation
knotting 𝑖1 − 𝑖4 and 𝑖7 to produce 𝑖5. Finally, we do not
target “P (priority)” policies, since they strictly define the
execution order thus leaving no space for optimization
through choosing among alternatives.

4.1.2. Second example.

Regarding the taxmanagement example from [12], the
DRD graph is presented in Figure 5 and it consists of
eight decision nodes and a single input data node. Fig-
ure 6 presents the decision table of the Income Tax deci-
sion node, which constitutes the outcome (top-decision)
of the model. As previously we assume that it suffices
a single rule to be triggered for the final decision to be
taken. The resulting PDMmodel is presented in Figure 7.
It contains nine data elements and thirteen operations.

Op01 aims to produce i9, which, through Op02-Op04
andOp06,Op07 produces the data elements i6-i8 and i3,i4,
respectively. Op05 derives i2 through combining i6,i7.
Similarly, Op8 produces i5 through combining i8,i9.

The five remaining operations all produce data ele-
ment i1, which represents the decision node Income Tax.
These operations are derived from the decision table in
Figure 6. More specifically, we group the rows that share
the same attributes in the table into common operations.
Therefore, the first two table rows yield Op13, which
takes i2 as inputs and produces i1. The third, fourth and
last row of the table correspond to three distinct oper-
ations, namely, Op09, Op10 and Op11, respectively. Fi-
nally, the fifth and sixth table rows are mapped to Op12.

4.2. Optimization of the execution
Themainmotivation behindmapping DMNs to PDMs

is to enable optimizations, which refer to the ordering in
which operations are executed and thus data elements
are produced. In this section, as a proof of concept, we
execute the two example PDMs discussed above. The
optimized execution is based on the heuristic decision
strategies discussed in PBWS [5] and [8]; the latter work
introduced the notion of rank to prioritize operations
inspired by optimization techniques in database queries
and data-intensive analytics. Here, we demonstrate the
applicability of such heuristics, which act as decision



Figure 4: The product data model for the claim assignment example

Figure 5: The DRD graph for the tax management example from [12]

strategies in a case-by-case manner; i.e., they may de-
rive a different operation ordering even for the same
PDM but different instances. mentioned in [9], which
assumes that not all input of the process is available up-
front. Each input element is produced by an operation,
which has a cost of execution. The cost of execution is
used as a criterion to assess the different operations, us-
ing the aforementioned decision strategies. In addition
to the cost, we could use other quantitative attributes,
such as operation time duration and failure probability.
Such attributes are omitted here for simplicity, but the
interested reader can refer to [5, 8], whereas some sum-

mary information is provided in the appendix.
To demonstrate the impact on the total cost of the de-

cision strategies and the potential for optimization, we
present a detailed step-by-step execution instance of the
claim assignment example. We assume a PDM case, for
which the cost metadata are presented in the lower table
of Figure 4. We employ three heuristics, i.e., three dif-
ferent decision strategies to choose the next operation
to execute. These are (i) Random, which makes a ran-
dom choice between all operations for which the input is
ready, (ii) Lowest Cost, which chooses the next available
operation with the lowest cost and Ranked-Cost, which



Figure 6: The decision table for the Income Tax decision of the tax management example.

Figure 7: The product data model for the tax management example

is detailed in [8] and takes into account the full path from
an operation to the production of the root element with-
out performing an exhaustive search of alternatives. The
execution paths (i.e., operation orderings) of the three
strategies are presented below:

1. Random: 𝑂𝑝02, 𝑂𝑝03, 𝑂𝑝04, 𝑂𝑝01, 𝑂𝑝07, 𝑂𝑝05, 𝑂𝑝09,
𝑂𝑝10. Total Cost: 45

2. Lowest Cost: 𝑂𝑝02, 𝑂𝑝01, 𝑂𝑝03, 𝑂𝑝04, 𝑂𝑝05, 𝑂𝑝09,
𝑂𝑝10. Total Cost: 37

3. Ranked-Cost: 𝑂𝑝02, 𝑂𝑝01, 𝑂𝑝05, 𝑂𝑝10. Total Cost:
21

From the example above, we see thatmaking informed
decisions can yield cost reduction by a factor more than

2X even in simple cases. Mapping DMNs to PDMs al-
lows us to benefit from the existing state-of-the-art opti-
mizations regarding operation ordering in PDMs. These
optimizations include more heuristics, but based on the
evidence in [8], on average, the rank-based ones are the
better performing ones.

We now go a step further and we conduct a bigger ex-
periment, wherewe simulate 10,000 random cases, where
each operation is randomly assigned a cost value in the
range of [0,10] following a uniform distribution. Figure 8
presents the results of the execution in terms of average
cost of execution per case. The left chart corresponds to
the claim assignment example, while the right chart cor-
responds to the tax management example. In the former



 37.4

26.66

15.56

Random LowestCost Rank-Cost

0

5

10

15

20

25

30

35

40
42.69

 32.2 31.56

Random LowestCost Rank-Cost

0

5

10

15

20

25

30

35

40

45

Figure 8: The average cost per case that each strategy achieved for the claim assignment (left) and tax management (right)
PDMs respectively.

case, a random choice after each operation execution in-
curs 2.4X higher cost compared to the rank-based heuris-
tic in the average case; the difference shrinks in the sec-
ond example but is still significant (> 35%). It should be
noted that such a performance gain is in line with the
results of former optimization use cases of PDM found
in industry [13], and are significant enough to yield tan-
gible benefits [1].

5. Related Work
In the area of decision modeling, a lot of attention

has been placed on the separation of (decision) logic from
business processes. The work in [14] presents a formal-
ization of decision requirements with the aim of achiev-
ing integration between a decision and process model.
In [15], an approach that extracts the decision logic from
an existing BPMN process model and obtains the corre-
sponding DMN model is presented. In a similar context,
the work in [16] presents a DMN-based approach that
proposes to separate consideration of decisions and pro-
cesses. An automated approach to mining decision rules
from event logs has also been proposed in [17].

Additionally, there is also research that focuses on de-
cisionmakingwith the aim of achieving process improve-
ment. The work in [18] presents an approach that relies
on data from past executions to make dynamic decisions
related to resource assignment and process utilities. We
differ in that we make dynamic decisions regarding the
order of acquiring input data and execute rules. Finally,
our work relates to the proposal in [19], which discusses
an automated methodology that derives a BPMN/DMN
model from an input PDM workflow. However, we fo-
cus on the reverse mapping from DMN to PDM.

6. Summary
In this work, we discuss mapping DMN decisions and

input data to a PDM model, the execution of which can
be optimized in a cost-based manner. Apart from show-
ing the connection between different decision models,
we enable optimizations regarding the ordering inwhich
data elements are produced and rules leading to the fi-
nal decision are fired. Through illustrative examples, we
show that the cost gains can be significant; thus map-
ping DMNs to PDMs amenable to optimizations aspires
to open new directions in themanner business processes
are optimized. In the future, we aim to explore these di-
rections in more depth, covering also BPMN models.

Acknowledgments. The research work was supported
by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “First Call forH.F.R.I. Research Projects
to support Faculty members and Researchers and the
procurement of high-cost research equipment grant”
(Project Number:1052, Project Name: DataflowOpt). We
would also like to thank Prof. Hajo Reijers for his in-
sightful comments when discussing the main idea of this
paper.

References
[1] M. Dumas, M. L. Rosa, J. Mendling, H. A. Reijers,

Fundamentals of Business Process Management,
Second Edition, Springer, 2018.

[2] OMG: Decision model and notation (DMN), 2015.
URL: https://www.omg.org/dmn/.

[3] G. Kougka, A. Gounaris, A. Simitsis, The many
faces of data-centric workflow optimization: a sur-
vey, Int. J. Data Sci. Anal. 6 (2018) 81–107.

[4] A. Rheinländer, U. Leser, G. Graefe, Optimization
of complex dataflows with user-defined functions,
ACM Comput. Surv. 50 (2017) 38:1–38:39.

https://www.omg.org/dmn/


[5] I. T. P. Vanderfeesten, H. A. Reijers, W. M. P.
van der Aalst, Product-based workflow support,
Inf. Syst. 36 (2011) 517–535.

[6] H. Reijers, S. Mansar, W. Aalst, Product- based
workflow design., J. of Management Information
Systems 20 (2003) 229–262.

[7] H. van der Aa, H. A. Reijers, I. T. P. Vanderfeesten,
Designing like a pro: The automated composition
of workflow activities, Comput. Ind. 75 (2016) 162–
177.

[8] K. Varvoutas, A. Gounaris, Evaluation of heuris-
tics for product data models, in: Business Process
Management BPM Workshops, volume 397, 2020,
pp. 355–366.

[9] L. Janssens, J. D. Smedt, J. Vanthienen, Model-
ing and enacting enterprise decisions, in: Ad-
vanced Information Systems Engineering Work-
shops - CAiSE 2016 Int. Workshops, volume 249,
2016, pp. 169–180.

[10] B. Rücker, Decision model and notation (dmn) –
the new business rules standard. an introduction
by example, 2015. URL: http://www.bpm-guide.de
/2015/07/20/dmn-decision-model-and-notation-in
troduction-by-example/.

[11] J. Burge, K. Munagala, U. Srivastava, Ordering
Pipelined Query Operators with Precedence Con-
straints, Technical Report 2005-40, Stanford Info-
Lab, 2005.

[12] F. Hasic, J. Vanthienen, From decision knowl-
edge to e-government expert systems: the case
of income taxation for foreign artists in belgium,
Knowl. Inf. Syst. 62 (2020) 2011–2028.

[13] H. Reijers, Design and Control of Workflow Pro-
cesses: Business Process Management for the Ser-
vice Industry, volume 2617, 2003. doi:10.1007/3-
540- 36615- 6 .

[14] L. Janssens, E. Bazhenova, J. D. Smedt, J. Van-
thienen, M. Denecker, Consistent integration of
decision (DMN) and process (BPMN) models, in:
Proc. of the CAiSE’16 Forum, volume 1612, 2016,
pp. 121–128.

[15] K. Batoulis, A. Meyer, E. Bazhenova, G. Decker,
M. Weske, Extracting decision logic from process
models, in: Advanced Information Systems Engi-
neering - 27th Int. Conf., CAiSE 2015, volume 9097,
2015, pp. 349–366.

[16] R. Song, J. Vanthienen, W. Cui, Y. Wang, L. Huang,
A dmn-based method for context-aware business
process modeling towards process variability, in:
Business Information Systems - BIS, volume 353,
2019, pp. 176–188.

[17] J. D. Smedt, F. Hasic, S. K. L. M. vanden Broucke,
J. Vanthienen, Holistic discovery of decision mod-
els from process execution data, Knowl. Based Syst.
183 (2019).

[18] K. Batoulis, A. Baumgraß, N. Herzberg, M. Weske,
Enabling dynamic decisionmaking in business pro-
cesses with DMN, in: Business Process Manage-
ment BPM Workshops, volume 256, 2015, pp. 418–
431.

[19] H. van der Aa, H. Leopold, K. Batoulis, M. Weske,
H. A. Reijers, Integrated process and decision mod-
eling for data-driven processes, in: Business Pro-
cess Management BPM Workshops, volume 256,
2015, pp. 405–417.

A. PDM Optimization Techniques
In this appendix, we provide some background infor-

mation about the heuristic decision strategies [5, 8] for
PDMs that were used in Section 4.2 of our work. The
first two strategies, Random and Lowest Cost are presented
in [5] as part of the PBWS methodology. The third strat-
egy, referred to as Rank-Cost, relies on an approach that
treats the operations of a PDMas knockout activities and
their optimal ordering is similar to the ordering of data
analytics operators ad database joins [8].

An activity is traditionally classified as knockoutwhen
its execution leads directly to the completion of its pro-
cess. This approach takes into account the probability
that an activity (i.e., a PDM operation) produces the root
element, either directly or indirectly. In the latter case,
it is treated as a sequence of operations, starting from
that particular operation. More specifically, it relies on
a rank function to select the next operation for execu-
tion. The rank value of an operation Op is defined as
follows:

𝑟𝑎𝑛𝑘(𝑂𝑝𝑖) =
∏𝑂𝑝′∈𝜋(𝑂𝑝𝑖) 1 − 𝑝𝑟𝑜𝑏𝑂𝑝′
∑𝑂𝑝′∈𝜋(𝑂𝑝𝑖) 𝐶𝑜𝑠𝑡𝑂𝑝′

(1)

where 𝜋(𝑂𝑝𝑖) is the path from𝑂𝑝𝑖 (including) to an op-
eration directly producing the root. It should be noted
that, in the context of this work, we considered PDM
operations to be always successful, therefore the numer-
ator is equal to 1 for every operation.

Example: In the PDM in Figure 4, let us assume a state
where leaf elements i4 and i6 have already been pro-
duced. Therefore, operations 𝑂𝑝07 and 𝑂𝑝08 are avail-
able for execution and a choice must be made for ei-
ther of them to be executed. The path that that corre-
sponds to 𝑂𝑝07 is: 𝑂𝑝07, 𝑂𝑝10, which has an aggregate
cost of: 𝐶𝑜𝑠𝑡𝑂𝑝07 +𝐶𝑜𝑠𝑡𝑂𝑝10 = 8+7 = 15. While, the path
corresponding to 𝑂𝑝08 is: 𝑂𝑝08, 𝑂𝑝05,𝑂𝑝10, which has
an aggregate cost of: 𝐶𝑜𝑠𝑡𝑂𝑝08 + 𝐶𝑜𝑠𝑡𝑂𝑝06 + 𝐶𝑜𝑠𝑡𝑂𝑝10 =
8 + 4 + 7 = 19. Consequently the rank value of the
two operations are: 𝑟𝑎𝑛𝑘(𝑂𝑝07) = 1/15 = 0.0666 and
𝑟𝑎𝑛𝑘(𝑂𝑝08) = 1/19 = 0.0526 respectively. Based on
these values, 𝑂𝑝07 is selected for execution.

http://www.bpm-guide.de/2015/07/20/dmn-decision-model-and-notation-introduction-by-example/
http://www.bpm-guide.de/2015/07/20/dmn-decision-model-and-notation-introduction-by-example/
http://www.bpm-guide.de/2015/07/20/dmn-decision-model-and-notation-introduction-by-example/
http://dx.doi.org/10.1007/3-540-36615-6
http://dx.doi.org/10.1007/3-540-36615-6

	1 Introduction
	2 Background and main rationale
	2.1 Decision Model and Notation (DMN) basics
	2.2 Optimization in DMN: a motivation example
	2.3 Product Data Model
	2.4 Decision Strategies in DMNs

	3 Mapping DMNs to PDMs
	4 Examples
	4.1 Mapping to PDM and optimization of execution
	4.1.1 First example.
	4.1.2 Second example.

	4.2 Optimization of the execution

	5 Related Work
	6 Summary
	A PDM Optimization Techniques

