Information Systems 105 (2022) 101953

Contents lists available at ScienceDirect
Information
Systems

CREATION, MANAGEMENT AND
UTILIZATION

Information Systems

journal homepage: www.elsevier.com/locate/is

EQUALITY: Quality-aware intensive analytics on the edge N

Check for
updates

Anna-Valentini Michailidou ?, Anastasios Gounaris **, Moysis Symeonides °,
Demetris Trihinas €

2 Aristotle University of Thessaloniki, Greece
b University of Cyprus, Cyprus
¢ University of Nicosia, Cyprus

ARTICLE INFO ABSTRACT

Article history:

Received 24 June 2021

Received in revised form 13 October 2021
Accepted 10 November 2021

Available online 26 November 2021
Recommended by Lukasz Golab

Our work is motivated by the fact that there is an increasing need to perform complex analytics
jobs over streaming data as close to the edge devices as possible and, in parallel, it is important
that data quality is considered as an optimization objective along with performance metrics. In this
work, we develop a solution that trades latency for an increased fraction of incoming data, for which
data quality-related measurements and operations are performed, in jobs running over geo-distributed
heterogeneous and constrained resources. Our solution is hybrid: on the one hand, we perform search
heuristics over locally optimal partial solutions to yield an enhanced global solution regarding task
allocations; on the other hand, we employ a spring relaxation algorithm to avoid unnecessarily
increased degree of partitioned parallelism. Through thorough experiments, we show that we can
improve upon state-of-the-art solutions in terms of our objective function that combines latency and
extent of quality checks by up to 2.56X. Moreover, we implement our solution within Apache Storm,
and we perform experiments in an emulated setting. The results show that we can reduce the latency
in 86.9% of the cases examined, while latency is up to 8 times lower compared to the built-in Storm
scheduler, with the average latency reduction being 52.5%.

Keywords:

Fog computing
Optimization
Sensors

Data quality

© 2021 Published by Elsevier Ltd.

1. Introduction

In the recent years, there has been an increasing interest in the
Internet of Things (IoT) paradigm, where data are being gathered
from sensors and connected devices in order to provide services
in a diverse set of domains like smart cities, smart homes and
connected vehicles [1,2]. A common characteristic of these appli-
cation domains is that they rely upon geo-distributed devices that
produce a large amount of streaming data to be analyzed in order
to produce useful information. According to the International
Data Corporation (IDC) [3], the amount of such data being created
will increase from 33 ZB in 2018 to 175 ZB by 2025. Moreover,
most of these data require real time analysis. Further, the analysis
is usually in the form of a complex job that consists of multiple
tasks (or steps) that run sequentially or in parallel. In most cases,
the data generation devices are simple sensors or wearables that
either have very little or no computation capacity at all. Due
to that, the need to assign the analysis job to external devices
arises. A common approach is to gather these data in a central

* Corresponding author.
E-mail addresses: annavalen@csd.auth.gr (A.-V. Michailidou),
gounaria@csd.auth.gr (A. Gounaris), symeonidis.moysis@cs.ucy.ac.cy
(M. Symeonides), trihinas.d@unic.ac.cy (D. Trihinas).

https://doi.org/10.1016/j.i5.2021.101953
0306-4379/© 2021 Published by Elsevier Ltd.

location, typically in the cloud, to analyze them. However, this
can cause large delays due to the cost of transferring data through
the network [4-6]. A more recent and promising solution is to
analyze data closer to where they are produced, in line with the
edge and fog computing vision.

Fog and edge computing differ in that the former assumes that
the processing nodes may be close to the data sources (contrary
to the cloud nodes) but not necessarily at the same site as the
data sources, while the latter assumes that, apart from the cloud
nodes, only the elements at the data sources locations are capable
of processing the data on the fly [7]. In our setting, complex
analysis job tasks can be assigned to the edge devices, to the fog
devices, which are more powerful machines close to the sensors
or to the remote even more powerful cloud nodes. However,
in this work we use the terms fog and edge computing nodes
or devices, interchangeably. Each device is characterized by its
computation and storage capacities. These devices communicate
via links in order to execute jobs in co-operation. The challenge is
to devise novel techniques to assign streaming analytics job tasks
to the devices available in a way that optimizes several Quality of
Service (QoS) metrics, including latency, WAN consumption and
data quality.

In addition, the quality of the data is an important aspect in
IoT scenarios. Low quality can lead to less useful results. The

https://doi.org/10.1016/j.is.2021.101953
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2021.101953&domain=pdf
mailto:annavalen@csd.auth.gr
mailto:gounaria@csd.auth.gr
mailto:symeonidis.moysis@cs.ucy.ac.cy
mailto:trihinas.d@unic.ac.cy
https://doi.org/10.1016/j.is.2021.101953

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

quality of data can be categorized into multiple dimensions. Some
examples of these are completeness, timeliness and accuracy. Some
of the most common factors that lead to decreased data quality
include the heterogeneity of data sources, missing and dirty data
due to network malfunctions or security constraints [8]. Consider
the scenario where a user wants to analyze the output of a sensor
every 5 min. If, for some reason, the sensor malfunctions or
restarts, the output will be inaccurate or misleading and the user
should ignore it. Thus there is a need to “rate" the quality of the
data and/or to detect outliers and missing values that could lead
to misleading results. However, this data quality rating can be
very time consuming especially when dealing with streaming big
data that need to be processed under tight latency constraints.

The main novelty of our work is that it considers data qual-
ity as a first-class citizen and optimizes for both performance
and quality; more specifically, we solve a problem that trades
latency for an increased fraction of incoming data, for which
data quality measurements are performed. Apart from this, our
work is tailored to data-intensive analytics, in which each job
step is partitioned into multiple disjoint tasks, e.g., as is com-
mon in Apache Spark Streaming, Storm and Flink. In addition,
resource constraints both in terms of the computational and
memory constraints and in the eligibility to perform a task are
considered. Although some of these aspects have been examined
in isolation, e.g., [9-11], to the best of our knowledge, this is
the first work that considers data quality, partitioned parallelism
and constrained resources across heterogeneous geo-distributed
devices in combination.

As a motivation example about the trade-off between latency
and performance of quality checks, we conducted an experiment
on a single machine running Apache Storm.! In this experiment,
a continuous stream is received that consists of tuples with 10
numeric attributes. The quality check is a completeness one, i.e., it
verifies that all attributes are complete and we can configure the
percentage of incoming tuples that are checked. Fig. 1 shows the
execution and process latency (the latter also includes the ac-
knowledgment time) of the check on each tuple of the stream. As
shown in the figure, the check can become a serious overhead or
even a bottleneck in case of small inter-arrival times and/or when
few resources are available. The quality check in this example,
while not being very compute-intensive, still incurs an overhead
implying that more advanced quality checking techniques, such
as streaming outlier detection [12], will result in much higher
overheads per incoming tuple and/or more resources consumed.
Another example is data imputation, e.g. using the techniques
in [13], where missing data may be filled before they are pro-
cessed by operators downstream. Quality checks need not refer
exclusively to quality related measurements but they can cover
arbitrary quality-related operators. Overall, our work is motivated
by the fact that it is important to design algorithms that optimize
the level at which data quality checks can be performed consider-
ing the overhead they impose. To this end, we limit the fraction of
the data for which data quality checks are performed in a system-
atic manner and regardless of what exactly these checks are. Our
aim is any quality checks to be as extended as possible without
contributing to the latency, for which the dominant factor should
remain the communication cost; we enforce computation cost to
be dominated by communication cost implicitly, through setting
appropriate resource constraints on the devices.

More specifically, we consider a bi-objective problem that
targets both latency and quality, while the decision variables
are the workload allocation to each device available. We refer
to a setting, where it makes sense quality-related operators to
be applied before proceeding to further data analysis (e.g., as in

1 https://storm.apache.org/.

Information Systems 105 (2022) 101953

Table 1
Notations used in the paper.
Symbol Meaning
Gop Graph representing the overall analytics job
Vop Vertices of G, (operators or tasks)
Eop Edges of G, (data shuffling)
ED Edge devices
Si Selectivity of i € V,,
RCPU; CPU requirement of i € V;,
RRAM; RAM requirement of i € V;,
CCPU, CPU capacity of u € ED
CRAM, RAM capacity of u € ED
available; ,, Availability of u € ED for i € V,,
comCosty ,, Communication cost between u, v € ED
ED; C ED Subset of edge devices i € V,, can be assigned to

Xiy Fraction of i € V,, assigned on u € ED

RCPUpq CPU requirement of data quality check

RRAMpq RAM requirement of data quality check

DQgraction Fraction of tuples checked for data quality

XDQ.u Fraction of data quality check assigned on u € ED
m Number of (logical) data sources in G,p

o Network congestion factor

Weight denoting the importance of data quality
Number of devices that participate in (i, j) € Ep

enabledLinks; ;

the data imputation example). Since the considered problem is
intractable, we follow a hybrid approach, which comprises two
pillars. Firstly, we solve a relaxed linear programming formula
and further enhance it using local search heuristics propagat-
ing their impact to the complete execution plan. Secondly, to
avoid unnecessarily and inefficiently employing multiple remote
resources, we employ a spring relaxation algorithm that is char-
acterized by limited degree of partitioned parallelism. Apart from
this algorithmic contribution, we extend Apache Storm in order to
support our results, which entails that we define the exact portion
of the workload that a bolt instance will receive on each distinct
site. We thoroughly evaluate our solution by both deploying a
real-world prototype on a fog computing emulator and perform-
ing extensive simulations. The results show that we can yield
improvements regarding our objective function that combines
latency and extent of quality checks up to 2.56X compared to
state-of-the-art solutions. In addition, our framework, in 86,9% of
the cases, yields a latency drop of at up to 8X when compared
to the current (or default) Storm scheduler. Further experiments
show how we deviate from the optimal solution in very small
analytics jobs, for which the computation of the exact solution
is feasible. Our solution along with the accompanying system is
termed as EQUALITY.

The rest of the paper is organized as follows: First we provide
the problem statement in Section 2. In Section 3 we present our
proposed solutions for the operator placement problem. In the
next section, we discuss the Storm prototype implementation
issues. We evaluate our solution in Section 5. We continue with
some more generic discussion in Section 6. In Section 7, we
present the related work. Finally, we conclude in Section 8.

2. Notation and problem statement

In this section, we describe the system model and present
the problem formulation. Informally, the problem we target is
as follows: how to efficiently place the tasks (i.e., the operator
partitions) to the edge and cloud devices to minimize the latency
and maximize the level at which data quality checks are performed.

2.1. System model
Table 1 presents the main notation used. Specifically, we rep-

resent a streaming analytics job as a Directed Acyclic Graph
(DAG) Gop = (Vop, Eop) where each node in V,, represents an

https://storm.apache.org/

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

Information Systems 105 (2022) 101953

Data Quality check overhead

0.08
0.07
0.06
0.05
- —
0.03

et
0.02

0.01

ms

0.25 0.3

0.5 1

DQ check percentage

=== Execute latency

Process latency

Fig. 1. Overhead incurred by a data quality check on Apache Storm in the latency per incoming tuple.

operator and the edges in E,, represent the data flow between
operators. An operator represents a set of analysis job steps
at a fine level of granularity that can run on the same device
(typically in a pipelined manner). Each operator can be physically
partitioned into multiple instances, where each instance is re-
sponsible for a disjoint data partition, similarly to the partitioned
parallelism paradigm in databases [14] or the way Spark RDDs are
processed in parallel [15]. Edges represent data re-distribution
among the partitioned operator instances. For example, according
to the above description, in Apache Spark, operators correspond
to Spark job stages while edges are placed when data shuffling
takes place. The data sources are the operators in the G,, without
incoming edges, and we assume that they produce data in batches
periodically.

Each operator takes as input multiple tuples (i.e., records) in
batches that need to be analyzed and also has a certain selectivity
s; according to its functionality. For example, a transformation
operator with selectivity s; = 1 outputs a tuple for each tuple
it takes as input, while a filtering operator with s; = 0.5 outputs
a tuple for every two input tuples on average. If operator i is a
sink node in the graph, then, there is no selectivity, whereas, if it
is a source node, its selectivity is equal to 1. Also, each operator
has its own CPU and RAM requirements (e.g., when a windowed
state needs to be maintained).

Each edge device belonging to ED is characterized by its RAM
capacity in MB as well as by its CPU capacity in GHz. For example,
an edge device with a CPU capacity of 1.9 GHz can perform
1.9 x 10° clock cycles per second. Each pair of edge devices has
a different communication cost, comCost, , (u,v € ED), which
relates to the connected devices network speed; the latter is also
dependent on the physical distance and link capacity/bandwidth
between the devices.

Each operator can be assigned to multiple edge devices that
run in parallel to benefit from partitioned parallelism, as is com-
mon in frameworks such as MapReduce, Spark, Flink and Storm.
That means that each device u is assigned a fraction x; , of tuples
of an operator i to analyze. However, due to privacy, security and
other reasons, there exists a subset of edge devices where an
operator can be assigned to (denoted by the flag available; , for
operator i regarding device u). We define as EDi C ED the subset
of edge devices operator i can be assigned to. In addition to the
operators that perform analysis, there is also a special operator
that runs data quality checks and its activation is optional and
configurable. Such an operator can potentially contain multiple
quality check techniques and algorithms.

The placement problem we deal with in this work is the
assignment of fractions x;, of operators i in G,, to edge devices
u in ED so that performance and the fraction of input data for
which a data quality check is performed are maximized. As will be
detailed next in our cost model, the performance objective is the
latency in time units, where the communication cost dominates,
in line with the most common reasoning in intensive analytics
even in a cluster setting at a single geographical place (Section
2 in [16]). For simplicity, we assume that a data quality check
can be performed only on each data source; in other words, the
source devices are eligible to perform the quality checks locally
so that these quality checks precede any further analysis. We will
relax this assumption later explaining that allowing data quality
checks to be placed on downstream devices has negligible impact
on our solution. The variable DQgqqion denotes the percentage
of the input data on which the quality check is applied and is
equal to %Zuem,- Xpq.uXsource.u Where here, ED; are the devices
that produce data. Please note that we treat the quality check as a
black box and do not deal with the actual implementation as this
is out of the scope of this work; instead we aim at judiciously
defining the percentage of data these checks will be applied to.

The data quality check also has its RAM and CPU requirements
as described previously; these requirements combined with the
device capacities ensure that, if met, the device resources are not
saturated and the latency bottleneck remains the communication
cost. E.g,, in the example of Fig. 1, the capacities should be set
in such a manner that the incurred latency is an order of mag-
nitude lower than the communication costs. Overall, the decision
variables are x; , and xpg . The problem is formalized next.

2.2. Cost model and problem formulation

We formulate the operator placement problem as a non-linear
programming one, of the form shown below.

min F(x, Deraction) (1)
Sty Xiw=1,VieVy (2)
1 ueED;
E Z XpQ,uXsource,u = DQfraction (3)
u€eED;
Xi,u; XDQ.uy DeraCn‘on € [O, 1] (4)
Z(RCPU,‘ * Xi,u)+RCPUDQ * XDQ,u * xsource,u
ieVop (5)

< CCPU,, YueED;

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

Z(RRAM[* Xi,u)+RRAMDQ * XpQ,u * Xsource,u
ieVop (6)
< CRAMy, YueED;

Eq. (2) defines that the sum of the operator’s fractions, which
are divided across the devices must be equal to 1, so that there is
no data loss or data replication. Eq. (3) refers to the data quality
checks and does not impose its fractions to sum to 1. Eq. (4)
states that an operator and data quality check can be divided
into fractions, each of which can be assigned to the same or
to different devices and also bounds the DQficrion Variable, not
allowing negative values or values greater than 1. Egs. (5), (6)
ensure that the RAM and CPU requirements of an operator i and
data quality check are fulfilled and the capacities of the edge
devices are not exceeded.

As already stated, a QoS metric we try to minimize is the
average latency. This latency is equal to the latency of the critical
path (i.e., the slowest path) with regards to a single input data
batch and consists of the average communication latency be-
tween the operators in the critical path; according to the way it is
formulated, the latency defines the higher frequency at which the
end results can be updated.? As our focus is on geo-distributed
realms, we make the realistic assumption that the execution
latency of each operator is negligible and the communication cost
dominates. The total latency of a tuple is the time to flow from
its source node downstream to a sink node.

The communication latency between two nodes is expressed
by max{x;, * s; * ZveED comCosty , * Xj,}, U € ED; across all
instances of operator i. This is equal to the slowest data transfer
that comes from a single device and refers to the cost of a batch of
input data. However, this modeling is over-simplistic because it
does not take into account the overhead of an operator instance
maintaining multiple remote connections. In order to take into
account such an overhead, we introduce a parameter, notated
as o multiplied by the number of enabled links. A link between
device u and device v for two operators i, j is enabled when x; ,, #
0, xj, # 0 and u # v. Thus, enabledLinks; ; denotes the number
of devices that exchange data between two operators over the
network. In our experiments, we set « as a function of average
communication costs and based on the results of real runs, we
can claim that such an approach is effective.

The total latency of the topology is equal to the latency of the
critical path, that is the slowest path of the graph that leads from
a source node to a sink one (not including). We denote as path any
path from a source to an operator just upstream a sink operator
(j is the operator just after i).

Latency = maxpa[hecop{ Z MaXyeep, {Xiu * Si*

ieVopepath (7)
Z (comCosty , * X;) + o * enabledLinks; j}}
UEEDj
Latenc
F=— Y pog (8)

1+ ﬂ * (DQ)'raction)7
The latency represents the average time a tuple needs to come
out of a sink node, beginning from a source one. The latency
is increased with more data quality checks but the relationship
is not proportional. This is due to the fact that the more the

2 In order for the critical path’s latency to be representative of the whole
graph’s latency, we assume there is no waiting time between the tasks of the
operators. This is achieved through setting the operator requirements at such
levels, so that they sustain the input data production rate. A natural consequence
of this is that each operator can start its execution as soon as it receives its input
batch of tuples from its parent nodes in the graph.

Information Systems 105 (2022) 101953

Table 2

Communication cost between edge devices in GBps.

Device 0 1 2
0 0 15 2
1 1.5 0 1
2 2 1 0
Table 3

Fraction of operator assigned to each edge device.
Operator/device 0 1 2
0 0.8 0.2 0.0
1 0.7 0.0 0.3
2 0.3 0.4 0.3

quality checks, the less an edge device can be assigned tasks of
downstream operators, thus inducing higher communication cost.
We explain in our experiments that this difference, i.e., employing
more devices for downstream operators because source devices
are more occupied with data quality checks, has a significant
impact on the final assignment. The configuration parameter
B is a weight denoting the importance of data quality and its
exact value depends on the application. The higher its value,
the more beneficial (in terms of minimizing F) becomes to in-
crease DQfiqcrion. Setting B to 0 essentially removes DQ from the
optimization criteria.

The problem formulation above is NP-hard. We omit details
here, given also that in [9,17], even a simpler formulation without
data quality checks and partitioned parallelism is shown to be
NP-hard. Further, from the task placement point of view, the
configurable quality check introduces a new variable type that
corresponds to partial assignment of an operator to devices.

2.3. Example and motivation

Lets assume we have a simple linear DAG with 3 nodes (oper-
ators) and 3 devices. The selectivity of each node is the following:
so = 1,57 = 1.5 (s, does not have any impact). The communica-
tion costs between devices are presented in Table 2. For simplicity
we set « equal to 0.

We assign the operators as shown in Table 3. The transfer
time for each link in the graph depends on the selectivity of that
operator, the communication cost of the devices and the assigned
fractions. Each device sends data to every other device based
on the fraction of the current and the succeeding operator. For
example, for operator 0, device 0 will take 0.8 x 1 x 0 x 0.7
sec/unit to send data to device 0 (itself), 0.8 x 1 x 1.5 x 0 sec/unit
to device 1 and 0.8 x 1 x 2 x 0.3 sec/unit to device 2. We sum
these cost elements to derive the total cost of communication
between operator 0 and operator 1 for the first device with id
0; this sum is 0.48. For device 1, we have 0.2 x 1 x (1.5 x 0.7 +
0x 041 x0.3) = 0.27 sec/unit. For device 2, the communication
cost is 0. Therefore, the latency due to the link 0 — 1 is
max{0.48, 0.27, 0} = 0.48. Similarly, we can derive that the cost
between 1 — 2 is max{1.26, 0, 0.45} = 1.26 sec/unit. Therefore,
the overall latency is 1.74 sec/unit.

If we assume that the DQfgcrion is 0.5 then with g = 1,
the objective function F becomes 1.16. Further assume that we
examine another scenario, where DQfqcrion 1S 1 at the expense
of moving the complete fraction x, to device 2, i.e. the last
operator runs 40% on device 1 and 60% on device 2. Then, the
latency cost of 1 — 2 becomes max{1.89, 0, 0.18} = 1.89 and the
complete latency is 2.37. The new value of F is 1.185, i.e., despite
the important increase in latency, the new plan is not better in
terms of F. However, if we give even more weight to the data
quality through increasing the § value, e.g., setting 8§ = 2, then
the initial and modified allocation yield F values of 0.87 and 0.79,

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

A

User

& DQ Aggregate
User
User

Information Systems 105 (2022) 101953

Data ‘
T

Predict
traffic/travel
speed

Fig. 2. Example DAG with DQ node.

respectively, i.e., the trade-off in the modification has become
beneficial.

A real-world example where DQ measurement is crucial is
in a live navigation system that takes as input data from GPS
trackers or other road sensors and predicts the future traffic
and travel time. This data includes information like speed, road
segment, time and direction. Then, the data are aggregated per
road segment for each time interval (e.g. 5 min) in order to
compute statistics like the average speed. These statistics can
be stored in databases or the cloud. The data are then used to
train models that make the predictions. It is important to find
the quality of the data, as faulty data can lead to misleading
predictions. Fig. 2 shows the DAG of the above example, where
the first node represents the data quality measurement. If we
want to check the quality of an input tuple we configure the
first node appropriately; otherwise we disable it. This loosely-
coupled approach ensures that our DQ measurement technique
can be easily added to any application DAG and also, the removal
of DQ-related checks does not affect the application functionality.

3. Solution

Since the placement problem described in Section 2.2 is an NP-
hard one as proved in [17], we tackle it in two different ways that,
due to their low computational complexity, are then combined to
form a final hybrid solution:

1. We solve a relaxed version of the Non-Linear Program-
ming Formula. More specifically we solve a Linear Pro-
gramming (LP) formula for each operator considering the
placement of its parent nodes and then further optimize it
heuristically.

2. The previous solution may employ numerous devices un-
necessarily and easily fall into local optima. Thus, we addi-
tionally use a spring relaxation algorithm that produces a
solution with low or no intra-operator parallelism.

These two techniques are not seen as competing to each other.
After running both techniques, we choose the best one. Next we
present details about each of the solutions described above.

3.1. Optimization per edge

Let us first assume that the sources are fixed and we will
relax this assumption shortly. The solution starts by finding an
assignment of operators to devices solving the latency formula
in Section 2.2 for each node of the graph independently, i.e., in
Eq. (7) the latency is examined for a single edge rather than a
complete path. To place the tasks of an operator, we take into

Algorithm 1 Initial assignment of data processing and quality
checks fractions using an LP solver

1: procedure DQASSIGNMENT

2: sort operators in topological order

3: minimize Eq. (7) for each edge
4: for each source source do
5: for each device dev do
6: if Xsource,dev 7é 0 then
CCPU e, —usedCPU ey
: <« e ——— —dey
7 a RCPUpq *Xsource,dev
CRAM ge,, —usedRAM ge,,
: <« oo den——— ey
8 b RRAMDQ’_szour::e.dev
9: Xpg.dey < min{a, b, 1}
1
10: DQfraction < DQfraction + m ¥ XDQ,dev * Xsource,dev
11: end if
12: end for

13: end for
14: end procedure

consideration the placement of its parents in the graph. Thus, the
operators are examined in topological order and the problem of
finding the task assignments of the next operator downstream
is transformed to a simpler linear-programming (LP) one. This
approach is a local one but can still prevent data from being
moved from a device to another one where the communication
cost is high. Instead, data are favored to remain locally or moved
to devices where it is faster to send them.

Then, we insert DQ-related tasks. Equivalently, the solution
up to this point has assigned values to x;, variables assuming
that all xpg , variables are set to 0. However, the capacity of the
source devices may not be filled. Thus we calculate the maximum
DQ fraction that can be assigned to each device that takes on
a fraction of the sources. This DQ fraction is found by using all
the available capacity of the devices and considering the CPU and
RAM DQ check requirements, as shown in Algorithm 1. This yields
a complete initial solution.

This initial solution can be deemed as the state-of-the-art
approach to optimizing the placement per node while accounting
for partitioned parallelism [11]. Nervertheless, although the op-
erator assignment is optimal for each node in terms of latency, it
is not the optimal solution for the whole graph even if there is no
DQ optimization criterion. To improve the placement found, we
repeatedly run a local search algorithm, inspired by our previous
work [18]. We have implemented two flavors. The first one, called
latOpt, is described in Algorithm 2. It iterates through a loop
where for each edge of the graph (pair of nodes), it first detects its
bottleneck device, i.e., the one that takes the longest to transfer

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

Information Systems 105 (2022) 101953

Algorithm 2 latOpt: Moving bottleneck processing tasks

Algorithm 4 Spring Relaxation Algorithm

1: for each operator pair (op1, op2) do

2 slowest <« findSlowestDevice(op1)

3 if (Xopl,slowest 7+— 1) then

4: removeFraction(op1, slowest,)

5: divideFractionToActiveDevices(op1, ¢)
6 tempF < applyChangesDownstream()
7 if (tempF < currentF) then

8

9

keepTheChanges()
: end if
10: end if
11: end for

Algorithm 3 qualOpt: Moving processing tasks to make space for
more DQ ones
1: for each source s do
2: for each device dev do
3: if (X900 7# 0) and ((usedCPUge,
usedRAMdev > RAM[hreshold)) then

> CPUtnreshola OT

4: for each operator op not in sources do

5: if (Xop,dev 7 1 and Xgp gey 7 0) then

6: removeFraction(op, dev, ¢)

7: divideFractionToActiveDevices(op, ¢)
8: tempF <« applyChangesDownstream()
9: if (tempF < F) then

10: keepTheChanges()

11: end if

12: end if

13: end for

14: end if

15: end for

16: end for

its data and thus determines the communication latency. Then,
the solution removes a fraction ¢ of the tasks from that device
and divides it to the other available devices already employed
considering the RAM and CPU capacities; if the capacities are
not exceeded, the amount of new workload that other enabled
devices receive is equal. If, due to resource constraints, a device
cannot accept further workload, this excess workload is kept
on the initial bottleneck machine. Then, the algorithm finds a
new placement for the nodes downstream of the operator at
the start of the edge, using the same LP technique employed for
the initial assignment. By doing so, the technique propagates the
changes downstream to the graph and inspects their effect to
the total communication latency, DQ fraction and F. This new re-
assignment is accepted only if it improves the F metric. In the
experiments, ¢ is set to 30%.

The second flavor, termed qualOpt, is described in Algorithm 3
and tries to optimize the DQ part of the F parameter. Its rationale
is to remove workload from the devices that are also sources
to allow for more DQ checks. Specifically, the algorithm tries to
free resources from the devices that have reached a threshold
(set to 90% in our algorithm) of their CPU or RAM capacity. This
is achieved by removing a fraction of the analysis tasks these
devices take on (from all the operators expect the sources that
are fixed). After each operator’s re-configuration, the changes are
transferred to the whole graph as previously, and the remainder
capacity is filled with DQ tasks to the largest possible extent.

Both Algorithms 2 and 3 can run multiple times in any order.
In the experiments, the number of iterations of Algorithms 2 and
3 over the initial placement is 10 and Algorithm 3 takes as input
the output solution of Algorithm 2.

1: for each operator op do
Whl_!e ”N_“ > Ninreshold do
N <0
for each parent p do _
N < N + (Position,, — Position,) * s,
end for
for each child ¢ do, .
N <= N + (Position,, — Position) * Sop
: end for - R
10: Position,, <— Positiong, + N * §
11: end while
12: end for

2
3
4
5:
6:
7
8
9

Finally, we relax our assumption regarding fixed sources. If
there is flexibility in choosing between alternative sources, then
we need to add an initial step to choose among these alternatives.
To this end, simple heuristics can be employed. Examples include
using all or a predefined number of source devices and distribute
the source tasks either uniformly or inversely proportionally to
the average communication cost from the sources to the devices
that are eligible for the children operators.

3.2. Plan optimization with limited partitioned parallelism

Complementarily to the previous solution, we employ another
technique, which is more conservative in the number of devices
it employs in the sense that it uses, as its starting point, an
execution plan without partitioned parallelism and even when
subsequently the degree of partitioned parallelism increases, it
stays limited. The rationale is to decrease communication cost
through decreasing the number of employed devices. This solu-
tion is inspired by the work of Pietzuch et al. [19] and, in its core,
it leverages spring relaxation. We start by mapping the devices to
a three-dimensional space where the euclidean distance between
two devices is equal to the inverse of their communication cost;
two devices will be close in this space if they have low communi-
cation cost. The number of dimensions is configurable and can be
altered. The mapping of the devices is decided using the Vivaldi
algorithm [20].> Then the operators, except the sources that are
fixed, are randomly mapped to three-dimensional points and are
given as input to the spring relaxation algorithm described in
Algorithm 4.

We start, as previously, with the sources being fixed, as typi-
cally occurs in practice and as can be enforced via the availability
information. Then, for the rest of the operators, the algorithm
finds the force N its parents and children create on it. Each
parent/child tries to “pull” this operator closer like they are
connected with a_stretched spring that is then released. The
force, denoted as N, is affected by the distance of the operators
as well as the operator’s selectivity. After that, the position of
the operator is changed accordingly to the total force N and a
constant §. This is repeated until the magnitude of the force is
less than a defined threshold Nipresnoiq. Similarly to [19], we set §
equal to 0.1 and the Niyresnoia €qual to 1.

After the algorithm comes up with the new positions for the
operators we map them to the closest devices using the recursive
procedure described in Algorithm 5. The algorithm takes as input
(i) the operator, the placement of which is performed, (ii) a
number k indicating that the kth closest device to the initial
position will be examined during this procedure call, and (iii) a

3 A python implementation is available at https://github.com/pekko/vivaldi.

https://github.com/pekko/vivaldi

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

Algorithm 5 Operator placement to devices

1: procedure PLACEMENT(k, f, op)

2: ¢ < findKthClosestDevice(op, n)

3: if (RCPU,, < (CCPU. — usedCPU.) and RRAM,, < (CRAM, —
usedRAM.) and available,, . == 1) then

4 assign(op, c, f)
5: return()
6: else if available,, . == 0 then
7: Placement(k + 1, f, op)
8: else . RRAMop *f —(CRAM —usedRAM)
9: ramDiff <« RRAVop d
. RCPUqp#f —(CCPU —usedCPU,
10: cpuDiff <« L fR(cpuop*f
11: if (ramDiff > cpuDiff) then
12: assign(op, c, f — ramDiff * f)
13: Placement(k + 1, ramDiff x f, op)
14: else
15: assign(op, ¢, f — cpuDiff *f)
16: Placement(k + 1, cpuDiff * f, op)
17: end if
18: end if

19: end procedure

fraction f of tasks, which is set to 1 when the procedure is first
called for a given operator. If the requirements of the operator can
be handled by the kth closest device and if the device is available,
we place the operator to that device and the procedure ends.
Otherwise, if the algorithm continues due to the CPU or the RAM
capacities/requirements, we calculate the largest fraction that can
be assigned to that device and we call the same algorithm for
the same operator but with an updated fraction and k + 1 as
parameters. If the kth closest device is unavailable, the fraction
for the new call does not change. The procedure is recursive and
runs until all the tasks of an operator are assigned to a device.
Operators are examined in a topological order.

To further optimize this solution, we apply a heuristic on top
of it. This heuristic bears many similarities with the one in Algo-
rithm 2. Specifically, the algorithm finds the bottleneck operator
and removes a fraction of tasks from the slowest device (in many
cases this device holds 100% of the tasks) and assigns them to
its closest device in the three-dimensional space. As previously, if
that device cannot handle the tasks, these are assigned to the next
closest one. In case no better solution comes from this algorithm,
we keep the initial solution.

4. Proof-of-concept implementation in apache storm

Our solution is, in principle, compatible with current stream
processing engines, such as Spark, Flink and Storm. As a proof-
of-concept implementation of EQUALITY, and to showcase the
practicality and performance gains of our solution in real world
edge computing scenarios, we use Apache Storm 2.1.0. Storm
topologies consist of two components; spouts and bolts with the
former representing the source nodes and the latter encompass-
ing the other operators. The parallelization in Storm is achieved
by dividing the components in tasks. We create a custom sched-
uler by implementing the IScheduler interface to assign tasks
(which are mapped to executors) to specific worker nodes. There
are two alternatives. The first one is to create a very large number
of equal tasks for each operator, at the order of hundreds, and
assign them to devices proportionally to the placement decisions.
This incurs a very high overhead. The second alternative that we
have chosen is to create as many tasks as the enabled devices, and
assign tuples to them through using the so-called direct grouping

Information Systems 105 (2022) 101953

built-in functionality.* For example, if our algorithms suggest
an operator workload assignment of {20%, 70%, 10%} over three
devices respectively, we create three tasks; the first one receives
20% of the tuples, the second one 70% and so on. We achieve
this by sending each tuple to a task with probability equal to the
fraction our algorithms decided; a tuple has 20% probability to
end up in the first task etc.

In summary, Nimbus (aka the Storm master) receives the
compiled (jar) file that implements the new scheduler. Then, in
the topology source code, each producer node, either a spout or
a bolt, emits output tuples to specific tasks proportionally to the
outcome of the optimization algorithms. Then, due to the new
scheduler, each task goes to a predefined worker node, where
each worker node runs on a distinct device. To achieve this, we
restrict each topology node to correspond to a single executor on
each distinct device.

To evaluate the efficacy of our algorithms, while also ensuring
result reproducability, we use the open-source Fogify emula-
tor [21]. Fogify eases the modeling of complex fog topologies
consisting of heterogeneous resources, network capabilities and
QoS criteria, while also handling the deployment and runtime
monitoring of the topology over an emulated geo-distributed
setting.

We provide our algorithms implemented in Python, as well as
our custom scheduler and Storm topologies in a github repository
at https://github.com/annavalentina/Equality.

5. Evaluation

The evaluation includes two parts, namely simulations and
runs in an emulated geo-distributed setting over real hardware
using Fogify [21]. The first part thoroughly investigates the merits
of our algorithmic solutions and includes sensitivity analysis. The
second part provides evidence that the simulated results can
indeed model real runs and that our solutions improve upon the
default Apache Storm scheduler.

5.1. Simulation setting and main results

Here, we compare our solutions against the baseline that
distributes evenly the workload across the available devices and
we also discuss how our complete solutions improve upon simply
resorting to a LP solver applied edge-by-edge (as in Algorithm 1),
which is the rationale in [11,23]; i.e., the comparison against the
simple LP solution is essentially the comparison against the state-
of-the-art. Finally, we show the benefits from the hybrid nature
of our solution.

The DAGs used cover a broad range of scenarios and are
shown in Fig. 3 (taken from [22]) and in Fig. 4 (taken from [9]).
The former have always 10 non-source operators. The DAGs in
Fig. 4 consist of three types: (i) Replicated, (ii) Sequential and (iii)
Diamond. For each of these three DAG types, n is the number of
the operators overall. Initially, n=5. As explained in [9,22], these
DAG types cover a particularly broad range of real-world complex
analytics jobs.

The number of devices is equal to 5 times the number of
operators of the running topology. The communication cost of
the devices is set between 0.1 and 10 covering a range of net-
work infrastructures speeds that may differ by up to two orders
of magnitude; such heterogeneity is common in fog environ-
ments. The selectivity of the operators is in the range of [0.5,2]
following the real-world evidence in [23]. The sources always
have selectivity equal to 1. The CPU capacities and operator/DQ
requirements are between 1 GHz and 10 GHz and the RAM

4 https://storm.apache.org/releases/current/Concepts.html.

https://github.com/annavalentina/Equality
https://storm.apache.org/releases/current/Concepts.html

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

/

OURC]

A)
B)
—
@
©)
@
< \
(D)
KoK
(E)

Fig. 3. DAGs used in experiments taken from [22].

pw— v Ve
~_ !

Fig. 4. Replicated, Sequential and Diamond DAGs used in experiments taken from [9].

Information Systems 105 (2022) 101953

capacities/requirements range between 100MB and 1000MB uni-
formly; again, such a heterogeneity is anticipated in fog settings.
For each operator, approximately 85% of the devices are available.
Also, 1/3 of the devices take on source nodes. The o parameter is
set to {comCost/10} or {comCost/5}. Each experiment is executed
50 times.

Tables 4 and 5 present detailed results for the two values of «
examined and 8 = 1. The results are normalized so that 1 is the
value of the solution that uniformly distributed the workload to
all available devices. Both mean and median values are provided.
The minimum (for latency and F) and maximum (for DQ) average

values are in bold. The main observations are summarized as
follows:

(i) The improvements in F over the uniform solution are more
important when « is greater, i.e., there is a higher penalty when
all devices are employed that is not outweighed by the smaller
amount of data each device receives. When o = comCost/5, the
decrease in F can reach 22 times, while it is less than 16.4 times
for o« = comCost/10.

(ii) There is no significant difference between mean and me-
dian values.

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

Table 4

Information Systems 105 (2022) 101953

Normalized average and median F, DQ and latency values for ¢ = comCost/10.

DAG LP avg Spring avg latOpt avg qualOpt avg [LP med Spring med latOpt med qualOpt med
Normalized F values
A 0.089 0.238 0.061 0.061 0.084 0.241 0.060 0.059
B 0.093 0.226 0.071 0.071 0.084 0.226 0.064 0.064
C 0.106 0.200 0.075 0.074 0.101 0.200 0.063 0.063
D 0.088 0.176 0.066 0.065 0.084 0.172 0.063 0.062
E 0.121 0.248 0.089 0.088 0.115 0.239 0.085 0.085
Replicated 0.296 0.454 0.259 0.258 0.270 0.435 0.227 0.227
Diamond 0.348 0.441 0.308 0.307 0.337 0.436 0.268 0.268
Sequential 0.213 0.411 0.177 0.176 0.178 0.407 0.163 0.163
Normalized DQ values
A 1.043 0.862 1.040 1.043 1.004 0.858 1.011 1.018
B 1.103 0.842 1.104 1113 1.060 0.822 1.072 1.093
C 1.046 0.879 1.039 1.040 1.020 0.877 1.012 1.017
D 1.065 0.910 1.055 1.056 1.068 0.902 1.054 1.054
E 1.063 0.870 1.082 1.087 1.051 0.867 1.074 1.076
Replicated 1.164 0.943 1.165 1.181 1.056 0.893 1.056 1.085
Diamond 1.169 0.936 1.149 1.153 1.128 0.958 1.109 1.114
Sequential 1.122 0.963 1.118 1.119 1.080 0.951 1.095 1.095
Normalized latency values
A 0.090 0.221 0.061 0.061 0.084 0.218 0.060 0.060
B 0.097 0.208 0.075 0.075 0.091 0.207 0.064 0.063
C 0.108 0.188 0.076 0.076 0.106 0.185 0.066 0.066
D 0.090 0.169 0.067 0.067 0.085 0.165 0.064 0.064
E 0.124 0.232 0.092 0.092 0.118 0.232 0.088 0.088
Replicated 0.306 0.432 0.267 0.267 0.265 0.430 0.241 0.241
Diamond 0.367 0.422 0.322 0.323 0.345 0.411 0.290 0.290
Sequential 0.220 0.401 0.182 0.182 0.200 0.396 0.160 0.160
Table 5 ___
Normalized average and median F, DQ and latency values for « = comCost /5.
DAG LP avg Spring avg latOpt avg qualOpt avg [LP med Spring med latOpt med qualOpt med
Normalized F values
A 0.059 0.152 0.045 0.045 0.055 0.148 0.044 0.043
B 0.062 0.135 0.050 0.049 0.061 0.138 0.045 0.045
C 0.053 0.124 0.044 0.044 0.048 0.123 0.043 0.043
D 0.058 0.113 0.048 0.048 0.056 0.113 0.044 0.044
E 0.070 0.154 0.060 0.059 0.067 0.147 0.057 0.056
Replicated 0.149 0.298 0.142 0.141 0.143 0.294 0.127 0.127
Diamond 0.214 0.291 0.199 0.199 0.200 0.279 0.171 0.171
Sequential 0.142 0.293 0.121 0.120 0.141 0.287 0.117 0.117
Normalized DQ values
A 1.045 0.863 1.045 1.055 1.047 0.884 1.034 1.038
B 1.138 0.942 1.137 1.148 1.084 0.904 1.084 1.100
C 1.044 0.894 1.048 1.050 1.050 0.887 1.059 1.060
D 1.080 0915 1.069 1.070 1.082 0914 1.064 1.067
E 1.054 0.869 1.051 1.067 1.038 0.871 1.033 1.054
Replicated 1.555 1.041 1.550 1.564 1.115 0.946 1.146 1.150
Diamond 1.212 0.982 1.196 1.204 1.123 0.936 1.133 1.133
Sequential 1.177 0.968 1.151 1.171 1.093 0.968 1.079 1.092
Normalized latency values
A 0.059 0.142 0.046 0.046 0.056 0.141 0.045 0.045
B 0.066 0.130 0.052 0.052 0.063 0.132 0.049 0.049
C 0.054 0.118 0.045 0.045 0.050 0.117 0.045 0.045
D 0.060 0.108 0.049 0.049 0.058 0.107 0.045 0.045
E 0.072 0.143 0.061 0.061 0.068 0.141 0.058 0.057
Replicated 0.157 0.286 0.150 0.150 0.151 0.274 0.136 0.136
Diamond 0.225 0.283 0.209 0.209 0.218 0.275 0.190 0.192
Sequential 0.149 0.284 0.126 0.127 0.148 0.282 0.120 0.121

(iii) qualOpt is slightly better than latOpt on average. In all
cases, a better solution in terms of F, which is our main metric,
is found by either one or both our proposals compared to sim-
ple LP (i.e., the state-of-the-art); the highest average difference
is 36% for DAG type E. Moreover, both proposals, on average,
significantly improve upon the spring relaxation technique that
is conservative in the number of devices employed for each
operator.

(iv) DQ values are almost always higher than 1, meaning that
the uniform workload allocation performs less DQ checks. In
other words, our algorithms manage to increase DQ checks and
decrease latency at the same time.

(v) There is a significant difference in the behavior between
the DAGs in Fig. 3 and those in Fig. 4. The benefits for the latter

are lower. This is mainly due to the lower number of edges in
their critical paths; Replicated and Diamond have only 3 and 2
edges, respectively, regardless the number of operators, whereas
Sequential has 4 edges when n=5, which is much lower than the
number of edges in the DAGs of Fig. 3. This corresponds to less
opportunities for optimization.

Next, we turn our attention to two important questions that
have arisen from the third observation above. The first one is
“Can our complete solutions yield significant benefits compared to
the state-of-the-art, represented by the simple LP-based Algorithm
1?” To answer this question, we examine all runs individually, as
shown in Fig. 5 for the DAGs in Fig. 4, where runs are sorted by
their improvement factor. In more than half of the runs there is an

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

267 _g- Replicated

—%- Diamond

2.4 1 Sequential

improvement factor
= = = N N
> [} o o N
: 1 . : :
T

=
[N]
)

1.04

runs

Fig. 5. Improvement factor of our complete solution over simple LP (¢ =
comCost/10, B = 1) (Y axis - 1 equals to no improvement).

0.30 1 mmm Replicated
mmm Diamond
Sequential
0.25 A

0.20 1

normalized F
o
=
w
A

0.10 4

0.05 1

Fig. 6. Mean normalized F for the DAGs in Fig. 4 for varying n (¢« =
comCost/10, B = 1).

improvement, whereas in the Sequential DAG type this improve-
ment occurs in more than 2/3 of the runs. The improvements
for this DAG type can be up to 2.56X. For the other two types,
the maximum improvement factor observed is 2.2X and 2.31X,
respectively.

The second question is: “Are there any benefits from the spring
relaxation technique?” On average, spring relaxation is inferior,
but in fact, dominates the other solutions in 5.9% of the cases.
When it dominates, the mean improvement factor over latOpt
and qualOpt is 40.1%, while the highest improvement observed
is 3.64X. Therefore, the spring relaxation component does play
an important role in the efficiency of the hybrid solution.

5.1.1. Scalability and sensitivity analysis

In the next set of experiments, we perform further scalability
and sensitivity analysis tests. First, we examine the behavior with
increasing number of operators. Please note that when referring
to F values, we provide the minimum F value our algorithms
achieved in each run. This is due to our solution being hybrid,
meaning that we run latOpt, qualOpt and Spring Relaxation and we
keep the best outcome among the three intermediate allocations.
The results in Fig. 6 show that our solution yields higher relative
performance with increasing DAG size, i.e., the more complex the

10

Information Systems 105 (2022) 101953

Table 6

Mean normalized F values for different 8 values for @ = comCost/10, n = 5.
DAG 0.5 1 15 2 3
A 0.061 0.061 0.061 0.061 0.059
B 0.069 0.071 0.074 0.079 0.081
C 0.082 0.088 0.076 0.078 0.071
D 0.083 0.087 0.091 0.086 0.079
E 0.084 0.088 0.082 0.082 0.090
Replicated 0.237 0.253 0.241 0.241 0.234
Diamond 0.283 0.296 0.278 0.290 0.302
Sequential 0.160 0.176 0.163 0.163 0.176

Table 7

Mean normalized F values for different
comCost/10, n=5, B=1.

threshold values in qualOpt for o =

DAG 0.75 0.8 0.85 0.9 0.95

Replicated 0.244 0.240 0.231 0.253 0.213
Diamond 0.270 0.271 0.301 0.296 0.282
Sequential 0.182 0.179 0.164 0.176 0.166

analytics job the higher the benefits from adopting our proposal.
This is also an outcome of the critical path’s length as discussed
previously.

Second, we assess the impact of g, varying it from 0.5 to 3
as shown in Table 6. No clear conclusion can be drawn, but the
behavior of our proposal is rather insensitive to 8. This indicates
that our algorithms can find a trade-off between DQ check and
latency while keeping the overall objective function F minimized.

Next, we examine the impact of the threshold in the qualOpt
algorithm. In most of our experiments the threshold of each
device is set to 90% of the total RAM and CPU capacity. However,
we also examine the values 0.75, 0.8, 0.85 and 0.95. From the
results, presented in Table 7 we conclude that there is not a clear
winner but a value between 0.85 and 0.95 is preferable because
this range includes either the minimum value or a value very
close to the minimum.

Our last experiment in this section is motivated by the fact
that finding the communication cost between devices in a real
edge computing environment can be a challenge and the ob-
served values may differ from the ones that are fed to our op-
timization module. Thus, in the next experiment we assess the
behavior of our solutions when there is inaccuracy in the initial
communication cost metadata. More specifically, we run our algo-
rithms and find an optimized task placement and its correspond-
ing F and latency values. Then, we perturb the communication
costs by randomly increasing/decreasing them in the ranges (i)
+10% and (ii) £50%. Finally, we calculate the real F and latency
values due to allocations based on the perturbed data. Fig. 7
presents the difference between the estimated values calculated
using the original communication costs and the values calculated
using the perturbed metadata. In the figure, we show 50 itera-
tions using the Diamond DAG. We have repeated this experiment
for the Sequential and the Replicated DAGs and the results were
similar (no detailed results are presented). The average relative
error when the actual communication costs differ in the range
+10% is 0.025 whereas in the second case where the costs differ
in the range +50% the error becomes 0.107. This shows that even
when the actual network links exhibit very high deviance from
the simulated ones, the estimation error of our algorithms is on
average small, e.g., 10%. Thus, we can claim that our solution is
robust to metadata inaccuracies.

5.1.2. Optimization time

The running times for the optimization algorithms were mea-
sured on a machine with the following specs: AMD FX-6300
six-core CPU @ 3.5 GHz, 8 GB of RAM. The median times are
presented in Table 8. For latOpt and qualOpt, the overhead is

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

144 -®- Estimated Value
Actual Value (+ 10%)
—#- Actual Value (+ 50%) h

=0

i
i
i\ L
N iR
i {
[}
8 Thai 8 ro
age B IR
L BTV AT Y IR
h g "W [
A At ¥ I
of L ompfYTUA el (Y
* '*'\‘. y AR 'm!\'\,”*\ bl |
",\Jé 1ga ik e Xoal "‘,-‘.)r‘% L B
L4 B 1¥«“\,,- ¥ he 1
4 o e Ty i
* L
0 10 20 30 40 50

runs

Information Systems 105 (2022) 101953

5.0 ~® Estimated Value T
. Actual Value (£ 10%) ‘
—*- Actual Value (+ 50%) i
22.5 i
o N
20.0 4 'l
hon
2175 b * [t
g HETIR LI
® . 1 L
S1s.0 :l‘”,-” i‘ . | |I‘ 1(:
g { 1 [
1254 Ko MG Fhon A AR
1 {1 !] | |

R LK 'y 'R K IR
R { el A Iy

10.09 M4 ¥ | 1R LWAR iy ® 8 TR A lx

s 189 oY EN e T 8 WS -\

5 {" © W *

* L}
0 10 20 30 40 50

runs

Fig. 7. Estimated and actual F and latency values considering the communication cost inaccuracy for the Diamond DAG («¢ = comCost/10, n =10, B =1).

Table 8

Time overheads for n = 10 (in secs).
DAG LP Spring latOpt qualOpt
A 0.65 1.31 4.70 0.59
B 0.72 1.30 1.06 0.05
C 1.34 1.58 3.08 2.27
D 1.84 1.71 3.69 3.27
E 0.81 1.31 2.05 0.73
Replicated 0.66 0.98 2.07 0.01
Diamond 1.83 153 1.12 0.01
Sequential 0.58 1.34 343 0.60

directly affected by the number of iterations, which is kept fixed
to 10 in all our experiments. Also, in these experiments, the
machines are always 5 times the number of DAG operators.

We conduct another experiment and we consider the number
of devices to be 10n. Then, for the Sequential DAG, for n = 5, 10,
and 15 the optimization median times for latOpt, become 0.12,
5.72 and 38.19 secs, respectively. For the simple LP solution, the
corresponding times are 0.26, 2.09 and 6.61 secs, respectively.
Please note that in smaller graphs the chance for latOpt and
qualOpt to find a better solution decreases and in some cases the
applyChangesDownstream() function may not be called making
the runtime of the algorithms lower than the LP one.

These experiments prove that our solutions are suitable for a
real-time streaming scenario since they do not incur high over-
head relatively, given that DAGs may correspond to either long-
running or even continuous analyses.

5.1.3. Convergence to the optimal solution

In order to investigate the convergence of our algorithms to
the optimal solution regarding latency, we conducted another
experiment. In a small sequential DAG with n=3 and 15 de-
vices, we find the optimal solution that minimizes the transfer
time through solving the corresponding Quadratic Programming
problem; i.e., in this flow, we jointly optimize the placement of
both operators in a single QP, rather than stage-by-stage. Then
we compare the relative F, DQ and latency values of optimal
solution in terms of latency with our algorithms. The results are
presented in Fig. 8. The lower the value, the less our algorithms
deviate from the optimal solution. On average, in this DAG, our
algorithms achieve 34.2% higher latency than the optimal, while
the maximum observed deviation is 2.51X. In 40% of the runs, the
deviation does not exceed 10%. In general, the relative differences
are smaller for the F criterion. Moreover, in 44% of the runs, our
algorithms yield a higher DQ value. This experiment provides
insights into the capability of our techniques to find a close to
optimal solution.

5.1.4. Moving data quality check away from the sources
In this section we relax the assumption that data quality check
can take place only in source nodes. Since the data quality check

11

-e- F ’
—- 1
3.0 bQ i
Latency ‘1
{
2.5 1
1
1
_ $
g 2.01 "**
© I
= ’.J 1
c 1
o
£ 1.5 Fad f'
H povs .d’“ #
© N x
1.0 4 § o8 -v';;;Z***f*M********’
P
o5 *'W
1
1
1
1
0.04 *
T T T T T T
0 10 20 30 40 50

runs

Fig. 8. Convergence to the optimal solution for a sequential DAG with n=3
(¢ = comCost/10, B = 1) (Y axis - 1 equals to no deviation from the optimal,
whereas values lower than 1 denote that our techniques are superior to the one
that finds the optimal latency).

needs to be completed before the actual analysis of data, which
will transform or reduce them, the check can only be assigned
either to the sources or to the nodes right downstream (the chil-
dren nodes in the DAG). We implemented and experimented with
an additional data quality check assignment. More specifically,
the experiments compared the following two assignment types
against each other:

1. The data quality check is assigned only on the devices
that act as data sources. This is the main technique used
throughout the paper.

2. In case the resources of the devices of a source node are
saturated, the devices that are responsible for (part of) the
source’s children nodes are assigned the quality check, if
this assignment results in a higher data quality fraction.

The results showed no difference between the two alternatives
because, even in the second case, in almost all cases, the most
beneficial assignment was to place data quality checks on source
devices rather than using the devices running the children nodes.
This is mainly due to the nature of our technique, which implicitly
aims to employ as few devices as possible when assigning tasks
in order to incur less data transfers. Thus, the devices that take on
the children nodes end up being more saturated than the source
devices and not able to take on the quality check. Therefore, the
approach of assigning data quality check only on source devices
is simpler and, given that the differences from more complicated
solutions are negligible, does not compromise the performance.
Based on this evidence, the fact that we place data quality checks

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

F Latency

I No solution
Better

I Worse
Il Same

Fig. 9. Performance of the no-parallelism ILP solution compared to ours (400
runs).

only on data sources should not be interpreted as a limitation,
but as a simplification that does not impact on the final task
assignment result.

5.1.5. Comparison against a non-parallel task placement solution

In order to further examine if techniques with no operator
parallelism are suitable to our scenario, we conducted the fol-
lowing experiment. We compare our solution with a method,
denoted as no-parallelism ILP (Integer Linear Programming) that
finds the optimal operator placement of the whole graph, but
without parallelizing operators, a widely used approach in state-
of-the-art papers [9,24]. This technique assigns each operator
to only one device by solving the ILP once for each graph. The
experiment was performed for all the DAGs and was repeated
50 times for each one of them, resulting to 400 runs. The results
presented in Fig. 9 provide useful insights into the performance of
the no-parallelism ILP solution. As can be seen, in most cases, the
technique was not able to find a solution, i.e., to detect a single
device for each operator meeting the constraints. In general, no-
parallelism ILP achieves a better outcome only in 20% of the
runs. Fig. 10 analyzes the decrease over no-parallelism ILP in
the cases where our solution yields a better outcome and vice-
versa. From the figures we can observe that in case no-parallelism
ILP finds a better solution, the Interquartile Range falls between
11% and 39% with a median value of 27%, while in the cases
our solution is better, the Interquartile Range also falls between
11% and 39% with a median value of 18%. More importantly,
although it can be claimed that our solution is superior based
on the data above, we do not treat no-parallelism ILP solutions
as competitors. Given that we advocate a hybrid solution, any
such method can be leveraged to provide an initial assignment
and then perform modifications similarly to the spring relaxation
case. An immediate consequence of this is that all results pre-
sented previously can be slightly improved through modifying
our approach to choose the best among the LP-based, spring
relaxation and non-parallel-ILP-based solutions (when the latter
manages to yield a solution).

5.2. Prototype experiments

Using the custom scheduler to enforce the optimization de-
cisions and the Fogify emulator described in Section 4, we con-
ducted experiments to prove the efficiency of our algorithms
in a real environment even when we are interested in latency
exclusively. We performed experiments for three types of DAGs,
shown in Fig. 11. The first one is a simple chain DAG, the second

12

Information Systems 105 (2022) 101953

Our solution No-parallelism ILP

60 -

[=)]
o
L

50 A

u
o
L

40 -

N
o
L

30 A

w
o
L

20 A

N
o
!
Percentage decrease over our solution

Percentage decrease over no-parallelism ILP
=
o
A

T T
F Latency F Latency

Fig. 10. Relative improvements of each solution when no-parallelism ILP finds
an allocation.

Table 9
Estimated and actual percentage reduction in latency over equal task distribution.

Exp. no. Sequential Diamond Two-sources
Est. Actual Est. Actual Est. Actual
1 48.54 95.18 25.85 87.72 4.88 34.74
2 39.14 89.14 38.52 92.88 44.07 67.30
3 48.08 90.66 36.46 79.72 38.73 47.45
4 48.94 91.74 33.37 90.17 42.76 65.75
5 40.95 45.36 38.96 58.70 25.67 16.57

DAG includes a binary logical operator and the third is a DAG
with two sources that are joined. We ran our algorithms with
5 random combinations of selectivities and communication costs
for 10 devices using the same procedure as previously to derive
the random values, and came up with optimized placement de-
cisions. However, each source is fixed and placed in only one of
the devices. Then we emulate the characteristics of the network
and we run the topologies using both original Storm and a Storm
flavor that encapsulates the custom scheduler to enforce a pre-
defined task placement on the devices. In each experiment, we
compare our placement decision with the equal distribution of
the tasks across all 10 devices (this is the uniform approach,
where each node is equally distributed across all devices) and also
with the default Storm scheduler. We repeated the 5 experiments
for each DAG 5 times each (in total 75 runs) and calculated the
median latency (in msecs).

The results are presented in Fig. 12. The first observation is
that our algorithms outperform the equal distribution of tasks in
all cases; the improvements reach 95.2% of reduction (i.e., approx-
imately 20X faster) with an average reduction of 70%. The second
observation is that in 13 out of the 15 experimental settings
(86.7% of the cases), our solutions were faster than the default
Storm scheduler that does not necessarily split the workload
evenly across available executor nodes. More specifically, in the
13 out of the 15 cases that our solution is superior, it is on average
more than 2X faster; the average reduction in latency is 52.5%.
In one Diamond setting, this reduction is 87.9%, i.e., we have
achieved a performance improvement of latency by a factor of
8X. On the other hand, in the two cases that the default Storm
scheduler was faster, this was by 39.9% and 7.2%, respectively.

Finally, in Table 9 we compare the estimated percentage re-
duction that our algorithms achieved over the equal distribution
with the actual reduction. As shown, in most cases, the reduction
estimated internally by our cost model was lower than the actual
results. Based on our overall findings, we can claim that our

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

° 9 ¢
LN N
o
l

Fig. 11. Sequential, Diamond and Two-sources DAGs used in prototype
experiments.

optimizations are robust and are capable of yielding performance
improvements over simpler solutions like equal distribution of
tasks as well as state-of-the-art frameworks like Apache Storm,
in heterogeneous and geo-distributed environments even when
the user is interested in latency solely. This is attributed to the
fact that our solution considers inter-device communication costs
explicitly.

6. Discussion

In the previous sections, we have presented the algorith-
mic and system part of EQUALITY along with thorough exper-
imental results. Our novelty is not only in considering quality
checks during task allocation, but also in dealing with a new
task allocation problem per se, where aspects such as massive
parallelism, partial execution of an operator and complex ana-
lytics jobs are combined. However, a broader vision may cover
additional dimensions like those presented below:

(1) Running data quality checks is important in its own right;
however, a more complete solution should also address
the problem of trading resource usage and latency for
increased effectiveness of the quality checks, e.g., increased
recall values regarding the anomalies detected. Another
direction is to allow quality checks to be performed af-
ter merging multiple input data streams and not on each
source individually, before any other type of data process-
ing. These issues are out of the scope of this work but they
are important.

Fog environments are subject to frequent changes in terms
of the nodes available and the communication costs. There-
fore, a practical task allocation solution should also account
for adaptivity (and elasticity) and fault tolerance aspects.
Modern platforms, such as Storm, are fault tolerant by
design. However, devising adaptive flavors of EQUALITY
raises new challenges, especially when the operators are
stateful. In parallel with investigating adaptivity issues, a
complete solution should also account for (i) cases, where
the computation costs have a tangible impact on latency
and (ii) acquiring CPU and RAM requirements in a practical
manner.

Finally, we clarify that our work can be easily adapted to
stateful operators, where the fraction of workload allocated does
not refer to input tuples but to keys, e.g., as is the case in
partitioned group-by. Also, we can easily cover cases, where data
sources differ in aspects such as validity of data produced and

13

Information Systems 105 (2022) 101953

trustworthiness. This can be achieved as follows. When com-
puting the DQgqcrion Variable, instead of regarding all sources as
of equal weight, we can use a formula, where each source’s
quality check ratio is weighted by a factor indicating the valid-
ity/trustworthiness of that source.

7. Related work

We present related work on four main research fields: (A) Geo-
Distributed Data Analytics, (B) Edge Computing, (C) Data Quality
and (D) Apache Storm scheduler proposals. Each of these fields is
examined in turn.

Geo-Distributed Data Analytics. Edge Computing inherently
falls within the geo-distributed research field. The main similar-
ities include the representation of the jobs as DAGs, the massive
parallelism of its nodes’ execution and the geo-distribution of the
executor nodes. When designing an edge computing placement
algorithm, we can benefit from previous works that deal with
geo-distributed environments. One of the differences is the type
of data that needs to be analyzed. Edge analytics refer to stream-
ing data whereas the works described below deal mostly with
batch processing. Also in an edge computing setting, the require-
ments for latency, security and placement are usually stricter
than those in cluster/cloud/data center-based analytics. Finally,
the heterogeneity of executor nodes in computing capacities and
network bandwidth is higher.

The most notable proposals on geo-distributed analytics in-
clude the proposal of Flutter [24], which focuses on the placement
of tasks closer to the data-centers, where the data are generated
and optimizes each stage of the graph independently. WANalyt-
ics [4] also optimizes each node of the graph separately using
a heuristic mechanism with a view to minimizing the network
usage. WhiteWater [25] focuses on maximizing the throughput by
setting the order and placement of operators using hill-climbing
algorithms. Viswanathan et al. [26] deal with the scheduling
and placement of the queries’ tasks in a WAN-aware manner in
order to minimize the response time. The accompanying query
optimizer, called Clarinet, chooses the best execution plan using
a modified shortest job first algorithm. Li et al. [27] solve a
Mixed Integer Linear Programming formula for task placement
in order to minimize the WAN traffic. Xiao et al. [28] balance
bandwidth, storage, latency, computing and migration cost by
formulating the problem into a joint stochastic integer nonlinear
optimization one. Gu et al. [29] propose a communication cost
model and place operators by solving a relaxed MILP formulation.
Pietzuch et al. [19] describe a multidimensional cost space and
place operators using a spring relaxation algorithm to minimize
the network usage while keeping the delay low.

Nardelli et al. [9] propose heuristics to determine the place-
ment of streaming analytics jobs while considering heterogeinity
in network and computation resources as well as different quality
of service metrics. Similar to Nardelli et al.’s [9] system model,
Niu et al. [30] also formulate the task placement problem as a
bi-partitioned graph matching (tasks to machines). However the
machine computation and memory capacities are not heteroge-
neous. Tetrium [11] on the other hand considers heterogeneous
geo-distributed clusters but does not deal with streaming data.
In our previous works, [18,31], we have built upon Iridium [23],
a system that minimizes the query response time. In those works,
we proposed algorithms that jointly optimized both latency and
network traffic and we also optimized the whole graph (and
not each stage independently). However the heterogeneity of the
machines referred only to network speeds and the data we dealt
with was not streaming.

The present work can be deemed as an extension of the afore-
mentioned geo-distributed data analytics proposals, where not

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

Information Systems 105 (2022) 101953

7000
6000
6000
5000
5000

4000

ms)

£ 4000

Latency (:
y (in m

£ 3000
3000 £

Lat

2000 2000

1000 1000

Fig. 12. Prototype experiments results for the Sequential (left), Diamond (middle) and Two-sources (right) DAGs.

only heterogeneity and a streaming setting are taken into account
but data quality is included as a first-class optimization objective
that needs to be traded for latency.

Edge Computing. EdgeWise [32] is a Stream Processing Engine
built on top of Apache Storm, which aims to improve latency
and throughput by assigning operations to workers. However, it
does not focus on network characteristics and privacy of the data
as we do in our work through the availability constraint. They
assign at-most one worker to any operation, thus not parallelizing
them across multiple resources. SpanEdge [33] approaches the
minimization of latency and bandwidth usage by placing op-
erators on edge and central workers. Geelytics [6] is a system
that considers heterogeneous compute nodes when placing the
tasks and also supports on-demand edge analytics. Foggy [34] is
a framework that offers an automated IoT application deployment
and update but the job placement targets only the minimization
of latency. Wan et al. [35] consider mobile devices with limited
storage and computation capacities. They target the maximum
system throughput and place tasks based on a 3-dimensional
distance metric (considering CPU, memory and geographical dis-
tance) from the edge nodes. Skarlat et al. [36] organize the devices
into fog colonies containing fog cells. Each fog cell has certain
CPU, storage and RAM capacities. The colonies communicate with
each other and with the central cloud. Finally, Renart et al. [37]
propose a solution on how to efficiently split applications among
edge devices and the cloud improving metrics like latency, band-
width consumption and messaging cost. We differ from the so-
lutions mentioned above and we enrich the research in edge
computing operator placement with the data quality objective
and by combining edge analytics with partitioned parallelism
while respecting any resource and privacy-related constraints.

Data Quality There are several recent studies that investigate
the quality of data in streaming analytics. Zhang et al. [38] profile
the accuracy-bandwidth trade-off by adjusting the data rate in
Wide-Area Streaming analytics applications. They also extend
JetStream [39], which adjusts the quality of data in multiple ways;
through sampling, roll-ups on the storage cube, setting thresholds
for the values and synopsis approximation. By doing so, JetStream
can achieve lower bandwidth usage. Heintz et al. [40] also studied
a trade-off between timeliness and accuracy but focused on win-
dowed grouped aggregation of streaming data. ApproxIoT [41]
and StreamSight [42] apply sampling on the streaming data in
order to achieve higher throughput with a trade-off in accuracy.
MobiQoR [43] is a mobile edge analytics framework that focuses
on finding the optimal trade-off between acceptable quality of
results decreasement, energy consumption and response time
by solving a Linear Programming formula. Kuemper et al. [44]
propose a framework that evaluates and ensures the quality of
streaming data from IoT sensors. As can be seen, there is an
increasing interest in data quality-related solutions and many
of the works try to decrease the quality of data to attain faster
response time. However, the problem we tackle in this work is
the opposite. We try to find at which extent can we measure the
quality of data at the expense of increased latency.

14

Apache Storm schedulers. Many works propose schedulers
for Apache Storm. T-Storm [45] is a traffic-aware system that
is based on the idea of not using all available worker nodes.
R-Storm [46] and T3-Scheduler [47] focus on placing commu-
nicating tasks closer with each other. D-Storm [48] is also a
resource-aware scheduler which is dynamic and self-adaptive.
Aniello et al. [49] propose two schedulers; an offline topology-
based and an online traffic-based one. Eskandari et al. [50] make
use of graph partitioning heuristics in order to fuse commu-
nicating tasks into groups. Fan et al. [51] propose a scheduler
consisting of a runtime load tracker, and both static and dynamic
scheduling strategies. AdaStorm [52] makes use of machine learn-
ing to adaptively adjust the Storm configuration based on the
streaming data rate. In the future, we plan to investigate com-
bining our solution with such proposals to deliver an adaptive
quality-aware scheduler that judiciously allocates tasks to specific
resources.

8. Conclusions

In this work, we examine a task allocation problem for com-
plex analytics over edge devices, while taking into account both
latency and data quality. The two examined optimization ob-
jectives are contradicting, therefore we propose a solution that
trades latency for an increased fraction of incoming data, for
which data quality checks are performed. The overall solution is
a hybrid one, consisting of (i) a first part that computes locally
optimal task allocations and then improves the partial solution
employing local search heuristics and (ii) a second part that
places emphasis on limited degree of partitioned parallelism.
We thoroughly evaluate our proposal using both extensive sim-
ulations and emulations after importing our optimizations into
Apache Storm. The results are particularly encouraging in the
sense that we manage to reach cost-based trade-offs between
latency and data quality checks, we improve upon state-of-the-
art by up to 2.56X in our simulations, and we drop the latency
compared to the default scheduler in Apache Storm up to 8X.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The research work was supported by the Hellenic Foundation
for Research and Innovation (H.F.R.I.), Greece under the “First Call
for H.F.R.I. Research Projects to support Faculty members and Re-
searchers and the procurement of high-cost research equipment
grant” (Project Number: 1052).

A.-V. Michailidou, A. Gounaris, M. Symeonides et al.

References

[1]

S.Yi, C. Li, Q. Li, A survey of fog computing: Concepts, applications and
issues, in: Proc. of Workshop on Mobile Big Data, 2015, pp. 37-42.

[2] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet

3]
[4]

[5

[6

[7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

of things: Architecture, enabling technologies, security and privacy, and
applications, IEEE Internet Things J. 4 (5) (2017) 1125-1142.

D. Reinsel, J. Gantz, J. Rydning, The Digitization of the Worldfrom Edge To
Core, Tech. Rep., International Data Corporation, 2018.

A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, G. Varghese, Wanalytics:
Analytics for a geo-distributed data-intensive world, in: CIDR 2015, 2015.
L. Liu, Z. Chang, X. Guo, S. Mao, T. Ristaniemi, Multiobjective optimization
for computation offloading in fog computing, IEEE Internet Things J. 5
(2018) 283-294.

B. Cheng, A. Papageorgiou, M. Bauer, Geelytics: Enabling on-demand
edge analytics over scoped data sources, in: BigData Congress, 2016, pp.
101-108.

X. Sun, N. Ansari, Edgeiot: Mobile edge computing for the internet of
things, IEEE Commun. Mag. 54 (12) (2016) 22-29.

A. Karkouch, H. Mousannif, H.A. Moatassime, T. Noel, Data quality in
internet of things: A state-of-the-art survey, J. Netw. Comput. Appl. 73
(2016) 57-81.

M. Nardelli, V. Cardellini, V. Grassi, F. Presti, Efficient operator placement
for distributed data stream processing applications, IEEE Trans. Parallel
Distrib. Syst. 30 (08) (2019) 1753-1767.

T. Hiessl, V. Karagiannis, C. Hochreiner, S. Schulte, M. Nardelli, Optimal
placement of stream processing operators in the fog, in: 3rd Int. Conf. on
Fog and Edge Computing, ICFEC, 2019, pp. 1-10.

C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, M. Zhang, Wide-area
analytics with multiple resources, in: EuroSys, 2018, pp. 12:1-12:16.

T. Toliopoulos, A. Gounaris, K. Tsichlas, A. Papadopoulos, S. Sampaio,
Continuous outlier mining of streaming data in flink, Inf. Syst. 93 (2020)
101569.

M. Khayati, A. Lerner, Z. Tymchenko, P. Cudré-Mauroux, Mind the gap:
An experimental evaluation of imputation of missing values techniques in
time series, Proc. VLDB Endow. 13 (5) (2020) 768-782.

DJ. DeWitt, J. Gray, Parallel database systems: The future of high
performance database systems, Commun. ACM 35 (6) (1992) 85-98.

M. Zaharia, M. Chowdhury, T. Das, A. Dave,]. Ma, M. McCauly, M.J.
Franklin, S. Shenker, 1. Stoica, Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing, in: S.D. Gribble, D. Katabi
(Eds.), NSDI, 2012, pp. 15-28.

]J. Leskovec, A. Rajaraman, J.D. Ullman, Mining of Massive Datasets, third
ed., Cambridge University Press, 2020, URL http://www.mmds.org]/.

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal operator placement
for distributed stream processing applications, in: Proc. of the Int. Conf. on
Distributed and Event-based Systems, DEBS, 2016, pp. 69-80.

A.-V. Michailidou, A. Gounaris, A fast solution for bi-objective traf-
fic minimization in geo-distributed data flows, in: IDEAS, 2019, pp.
27:1-27:10.

P. Pietzuch, J. Ledlie,]J. Shneidman, M. Roussopoulos, M. Welsh, M. Seltzer,
Network-aware operator placement for stream-processing systems, in:
ICDE, 2006, p. 49.

F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: A decentralized net-
work coordinate system, in: Proc. of Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2004, pp.
15-26.

M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, M.D. Dikaiakos, Fogify:
A fog computing emulation framework, in: SEC, New York, NY, USA, 2020.
A. Gounaris, G. Kougka, R. Tous, C.T. Montes,]. Torres, Dynamic configura-
tion of partitioning in spark applications, IEEE Trans. Parallel Distrib. Syst.
28 (7) (2017) 1891-1904.

Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, I
Stoica, Low latency geo-distributed data analytics, in: SIGCOMM, 2015, pp.
421-434.

Z. Hu, B. Li, J. Luo, Flutter: Scheduling tasks closer to data across
geo-distributed datacenters, in: INFOCOM, 2016, pp. 1-9.

I. Stanoi, G. Mihaila, C. Lang, T. Palpanas, Whitewater: Distributed
processing of fast streams, IEEE Trans. Knowl. Data Eng. 19 (2007)
1214-1226.

15

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]
[49]
[50]

[51]

[52]

Information Systems 105 (2022) 101953

R. Viswanathan, G. Ananthanarayanan, A. Akella, CLARINET: Wan-aware
optimization for analytics queries, in: OSDI, 2016, pp. 435-450.

P. Li, S. Guo, T. Miyazaki, X. Liao, H. Jin, A.Y. Zomaya, K. Wang, Traffic-
aware geo-distributed big data analytics with predictable job completion
time, IEEE Trans. Parallel Distrib. Syst. 28 (6) (2017) 1785-1796.

W. Xiao, W. Bao, X. Zhu, L. Liu, Cost-aware big data processing across geo-
distributed datacenters, IEEE Trans. Parallel Distrib. Syst. 28 (11) (2017)
3114-3127.

L. Gu, D. Zeng, S. Guo, Y. Xiang,]. Hu, A general communication cost
optimization framework for big data stream processing in geo-distributed
data centers, IEEE Trans. Comput. 65 (1) (2016) 19-29.

Z. Niu, B. He, C. Zhou, CT. Lau, Multi-objective optimizations in
geo-distributed data analytics systems, in: ICPADS, 2017, pp. 519-528.
A.-V. Michailidou, A. Gounaris, Bi-objective traffic optimization in
geo-distributed data flows, Big Data Res. 16 (2019) 36-48.

X. Fu, T. Ghaffar, J.C. Davis, D. Lee, Edgewise: A better stream processing
engine for the edge, in: D. Malkhi, D. Tsafrir, (Eds.), USENIX.

H.P. Sajjad, K. Danniswara, A. Al-Shishtawy, V. Vlassov, Spanedge: Towards
unifying stream processing over central and near-the-edge data centers, in:
Symposium on Edge Computing, SEC, 2016, pp. 168-178.

E. Yigitoglu, M. Mohamed, L. Liu, H. Ludwig, Foggy: A framework for
continuous automated iot application deployment in fog computing, in:
Int. Conf. on Al Mobile Services, AIMS, 2017, pp. 38-45.

Z. Wan, X. Deng, Z. Cao, H. Zhang, Mobile resource aware scheduling for
mobile edge environment, in: IEEE Int. Conf. on Communications, ICC,
2018, pp. 1-6.

0. Skarlat, M. Nardelli, S. Schulte, S. Dustdar, Towards qos-aware fog
service placement, in: Int. Conf. on Fog and Edge Computing, ICFEC, 2017,
pp. 89-96.

E. Gibert Renart, A. Da Silva Veith, D. Balouek-Thomert, M.D. De As-
sungdo, L. Lefévre, M. Parashar, Distributed operator placement for iot data
analytics across edge and cloud resources, in: CCGRID, 2019, pp. 459-468.
B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, E.A. Lee, Awstream: Adaptive
wide-area streaming analytics, in: SIGCOMM, 2018, pp. 236-252.

A. Rabkin, M. Arye, S. Sen, V.S. Pai, M. Freedman, Aggregation and
degradation in jetstream: Streaming analytics in the wide area, in: NSDI,
2014, pp. 275-288.

B. Heintz, A. Chandra, RK. Sitaraman, Trading timeliness and accuracy
in geo-distributed streaming analytics, in: Proc. of Symposium on Cloud
Computing, SoCC, 2016, pp. 361-373.

Z. Wen, D.L. Quoc, P. Bhatotia, R. Chen, M. Lee, Approxiot: Approximate
analytics for edge computing, in: Int. Conf. on Distributed Computing
Systems, ICDCS, 2018, pp. 411-421.

Z. Georgiou, M. Symeonides, D. Trihinas, G. Pallis, M.D. Dikaiakos,
Streamsight: A query-driven framework for streaming analytics in edge
computing, in: UCC, 2018, pp. 143-152.

Y. Li, Y. Chen, T. Lan, G. Venkataramani, Mobiqor: Pushing the envelope of
mobile edge computing via quality-of-result optimization, in: ICDCS, 2017,
pp. 1261-1270.

D. Kuemper, T. Iggena, R. Toenjes, E. Pulvermueller, Valid.iot: A framework
for sensor data quality analysis and interpolation, in: Proc. of the 9th ACM
Multimedia Systems Conference, 2018, pp. 294-303.

J. Xu, Z. Chen,]. Tang, S. Su, T-storm: Traffic-aware online scheduling in
storm, in: ICDCS, 2014, pp. 535-544.

B. Peng, M. Hosseini, Z. Hong, R. Farivar, RH. Campbell, R-storm:
resource-aware scheduling in storm, 2019, CoRR abs/1904.05456.

L. Eskandari, J. Mair, Z. Huang, D. Eyers, T3-scheduler: A topology and
traffic aware two-level scheduler for stream processing systems in a
heterogeneous cluster, Future Gener. Comput. Syst. 89 (2018) 617-632.
X. Liu, R. Buyya, D-storm: Dynamic resource-efficient scheduling of stream
processing applications, in: ICPADS, 2017, pp. 485-492.

L. Aniello, R. Baldoni, L. Querzoni, Adaptive online scheduling in storm, in:
DEBS, 2013, pp. 207-218.

L. Eskandari, J. Mair, Z. Huang, D. Eyers, Iterative scheduling for distributed
stream processing systems, in: DEBS, 2018, pp. 234-237.

Jiahua Fan, Haopeng Chen, Fei Hu, Adaptive task scheduling in storm, in:
Int. Conf. on Computer Science and Network Technology, ICCSNT, 01, 2015,
pp. 309-314.

Z. Weng, Q. Guo, C. Wang, X. Meng, B. He, Adastorm: Resource efficient
storm with adaptive configuration, in: ICDE, 2017, pp. 1363-1364.

http://refhub.elsevier.com/S0306-4379(21)00149-6/sb2
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb2
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb2
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb2
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb2
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb3
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb5
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb7
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb7
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb7
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb8
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb8
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb8
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb8
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb8
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb9
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb9
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb9
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb9
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb9
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb12
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb12
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb12
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb12
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb12
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb13
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb13
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb13
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb13
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb13
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb14
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb14
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb14
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb15
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb15
http://www.mmds.org/
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb18
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb19
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb19
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb19
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb19
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb19
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb22
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb25
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb25
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb25
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb25
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb25
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb27
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb28
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb29
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb31
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb31
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb31
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb46
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb46
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb46
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb47
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb47
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb47
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb47
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb47
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb49
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb49
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb49
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb50
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb50
http://refhub.elsevier.com/S0306-4379(21)00149-6/sb50

	EQUALITY: Quality-aware intensive analytics on the edge
	Introduction
	Notation and problem statement
	System model
	Cost model and problem formulation
	Example and motivation

	Solution
	Optimization per edge
	Plan optimization with limited partitioned parallelism

	Proof-of-concept implementation in apache storm
	Evaluation
	Simulation setting and main results
	Scalability and sensitivity analysis
	Optimization time
	Convergence to the optimal solution
	Moving data quality check away from the sources
	Comparison against a non-parallel task placement solution

	Prototype experiments

	Discussion
	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

