
Spark Parameter Tuning via Trial-and-Error

Panagiotis Petridis1, Anastasios Gounaris1, and Jordi Torres2

1 Dept. of Informatics, Aristotle University of Thessaloniki, Greece
{ppetridis,gounaria}@csd.auth.gr

2 Computer Architecture Dept., Technical University of Catalonia, Spain
torres@ac.upc.edu

Abstract. Spark has been established as an attractive platform for big
data analysis, since it manages to hide most of the complexities related to
parallelism, fault tolerance and cluster setting from developers. However,
this comes at the expense of having over 150 configurable parameters, the
impact of which cannot be exhaustively examined due to the exponential
amount of their combinations. In this work, we investigate the impact of
the most important of the tunable Spark parameters on the application
performance and guide developers on how to proceed to changes to the
default values. We conduct a series of experiments and we offer a trial-
and-error methodology for tuning parameters in arbitrary applications
based on evidence from a very small number of experimental runs. We
test our methodology in three case studies, where we manage to achieve
speedups of more than 10 times.

1 Introduction

Spark [9, 10] has emerged as one of the most widely used frameworks for mas-
sively parallel data analytics. In summary, it improves upon Hadoop MapReduce
in terms of flexibility in the programming model and performance [6], especially
for iterative applications. It can accommodate both batch and streaming ap-
plications, while providing interfaces to other established big data technologies,
especially regarding storage, such as HDFS and NoSQL databases. Its key feature
is that it manages to hide the complexities related to parallelism, fault-tolerance
and cluster setting from end users and application developers. To support all
these, Spark execution engine has been evolved to an efficient albeit complex
system with more than 150 configurable parameters. The default values are usu-
ally sufficient for a Spark program to run, e.g., not to run out of memory without
having the option to spill data on the disk and thus crash. But this gives rise to
the following research question: “Can the default configuration be improved?”

The aim of this work is to answer the above question in an efficient manner.
Clearly, it is practically impossible to check all the different combinations of
parameter values for all tunable parameters. Therefore, tuning arbitrary Spark
applications by inexpensively navigating through the vast search space of all
possible configurations in a principled manner is a challenging task. Very few
research endeavors focus on issues related to understanding the performance of



Spark applications and the role of tunable parameters [4, 1, 7]. For the latter,
Spark’s official configuration guides and tutorial book [3] provide a valuable
asset in understanding the role of every single parameter.

Understanding the role of a parameter does not necessarily mean that the
impact of each parameter on the performance of arbitrary applications is under-
stood as well. Moreover, such an understanding does not imply that tuning is
straightforward. An added complexity stems from the fact that most parameters
are correlated and the impact of parameters may vary from application to appli-
cation and it will also vary from cluster to cluster. In this work, we experiment
with the MareNostrum petascale supercomputer at the Barcelona Supercom-
puting Center. After configuring the cluster in an application-independent way
according to the results in [7], we examine the impact of configurable parameters
on a range of applications and derive a simple trial-and-error tuning methodol-
ogy that can be applied to each application separately. We test our methodology
using three case studies with particularly encouraging results.

The summary of our contributions is as follows. (i) We provide an overview of
the known results to date on configuring Spark applications. (ii) We identify the
most important parameters in terms of their potential impact on performance
and we test them on the Marenostrum petascale supercomputer. The number
of these parameters is 12. (iii) Based on our results, we propose a novel tuning
methodology to be applied on an individual application basis (summarized in
Fig. 1). The methodology treats applications as black boxes, follows an efficient
trial-and-error approach that involves a low number of experimental runs for
just 10 different configurations at most, and takes into account the correlation
between different parameters. (iv) We evaluate our methodology in practice using
three case studies and we show that we can achieve significant speedups (up to
more than 10 times). A more extended version is in [5].

2 Overview of Existing Results for Spark Configuration

In this work, we target parameters belonging to the Shuffle Behavior, Compres-
sion and Serialization, and Memory Management categories. Note that there are
several other parameters belonging to categories such as Application Properties,
Execution Behavior and Networking that may affect the performance, but these
parameters are typically set at the cluster level, i.e., they are common to all ap-
plications running on the same cluster of machines, e.g., as shown in [7]. Next,
we summarize the known results to date with regards to Spark configuration.

Optimization of Spark on MareNostrum. The work in [7] sheds lights
onto the impact of configurations related to parallelism. The main results, which
are reused in our work, are summarized as follows. First, the number of cores
allocated to each Spark executor has a big impact on performance and should
be configured in an application-independent manner. Second, the level of paral-
lelism, i.e., the number of partitions per participating core, plays a significant
role. A range of additional aspects, e.g., using Ethernet instead of Infiniband,
have been investigated, but their significance was shown to be small. Finally,



the type of the underlying file system affects the performance, however, this is
a property of the infrastructure rather than a tunable parameter.

Guides from Spark documentation. Spark official documentation presents
a summary of tuning guidelines that can be summarized as follows. (i) The type
of the serializer is an important configuration parameter. The default option uses
Java’s framework, but if Kryo library is applicable, it may reduce running times
significantly. (ii) The memory allocated to main computations and shuffling and
the memory allocated to caching is important. It is stated that “although there
are two relevant configurations, the typical user should not need to adjust them
as the default values are applicable to most workloads”. Memory-related configu-
rations are also related to the performance overhead of garbage collection (GC).
(iii) The level of parallelism, i.e., the number of tasks in which each RDD is split
needs to be set in a way that the the cluster resources are fully utilized. (iv) Data
locality, i.e., enforcing the processing to take place where data resides, is impor-
tant for distributed applications. Apart from the tuning guidelines above, certain
other tips are provided by the Spark documentation, such as preferring arrays
to hashmaps. Also, similar guidelines are discussed more briefly in [3]. In our
work, we explicitly consider the impact of serialization and memory allocation.
Tuning the parallelism degree is out of our scope, but we follow the guidelines in
[7]. Also, we do not deal with GC and locality-related thresholds, because they
have not seemed to play a big role in our experiments, where memory was not a
scarce resource. Based on these guidelines, Alpine Data has published online a
so-called cheat-sheet, which is a tuning guide for system administrators (available
from http://techsuppdiva.github.io/spark1.6.html). The guide is tailored to the
YARN cluster manager. Compared to our tuning model, it is more complex, and
contains checks from logs and tips to modify the application code and setting
of configuration parameters per application. By contrast, we focus only on the
latter aspect considering each application as a black box requiring significantly
fewer comparisons and considering more tuning parameters.

Other sources. In [1], the impact of the input data volume on Spark’s ap-
plications is investigated. The key parameters identified were related to memory
and compression, although their exact impact is not analyzed. By contrast, we
examine a superset of these parameters. The work in [8] is similar to [7] in that it
discusses the deployment of Spark on a high-performance computing (HPC) sys-
tem. In the described its evaluation, it identifies also four key Spark parameters
along with the application-dependent level of parallelism. All these parameters
are included in our discussion.

Profiling Spark applications and other related work. A thorough in-
vestigation of bottlenecks in Spark is presented in [4]. The findings are also very
interesting, since it is claimed that many applications are CPU-bound and mem-
ory plays a key role. In our experiments, we perform memory fine-tuning, since
we also identify memory management as one of the most important parameters.
The work in [2] deals with the issue of parameter optimization in workflows,
but may involve far too many experimental runs, whereas we advocate a limited
number of configuration runs independently from the application size.



3 Parameters of Interest

Navigating through the vast search space is one the biggest challenges in pa-
rameter testing and tuning, due to the exponential increase of different config-
urations in the number of properties and their valid values. Based on evidence
from (i) the documentation and the earlier works presented in Sec. 2 and (ii)
our own runs (for which we do not present results due to space constraints), we
narrow our focus on 12 parameters, the configuration of which needs to be inves-
tigated according to each application instance separately. As already explained,
the application-independent parameters that need to be specific for a specific
data-center and those related to data parallelism are out of our scope. Finally,
we do not consider parameters related to YARN or MESOS.

1. spark.reducer.maxSizeInFlight: If this value is increased, reducers would
request bigger output chunks. This would increase the overall performance
but may aggravate the memory requirements. So, in clusters that there is
adequate memory and where the application is not very memory-demanding,
increasing this parameter could yield better results. On the other hand, if
a cluster does not have adequate memory available, reducing the parameter
should yield performance improvements.

2. spark.shuffle.compress: In general, compressing data before they are
transferred over the network is a good idea, provided that the time it takes
to compress the data and transfer them is less than the time it takes to
transfer them uncompressed. But if transfer times are faster than the CPU
processing times, the main bottleneck of the application is shifted to the
CPU and the process is not stalled by the amount of data that are transferred
over the network but from the time it takes for the system to compress the
data. Clearly, the amount of data transmitted during shuffling is application-
dependent, and thus this parameter must not be configured to a single value
for all applications.

3. spark.shuffle.file.buffer: The role of this parameter bears similarities
to the spark.shuffle.maxSizeInFlight parameter, i.e., if a cluster has
adequate memory, then this value could be increased in order to get higher
performance. If not, there might be performance degradation, since too much
memory would allocated to buffers.

4. spark.shuffle.manager: The available implementations are three: sort,
hash , and tungsten-sort. Hash creates too many open files for certain in-
puts and aggravates memory limitations. However, combining the enabling of
the spark.shuffle.consolidateFiles parameter with the Hash manager,
may mitigate this problem. Tungsten-sort is reported to yield the highest
performance in general provided that certain requirements are met. Overall,
there is no clear winner among the shuffle manager options.

5. spark.io.compression.codec: Three options are available, namely snappy,
lz4, and lzf. Although there are many tests conducted by various authors for
the generic case, the best performing codec is application-dependent.

6. spark.shuffle.io.preferDirectBufs: In environments where off-heap mem-
ory is not tightly limited, this parameter may play a role in performance.



7. spark.rdd.compress: The trade-offs with regards to this parameter are
similar to those for shuffle compress. However, in this case, the trade-off lies
between CPU time and memory.

8. spark.serializer: In Spark’s documentation, it is stated that KryoSeri-
alizer is thought to perform much better than the default Java Serializer
when speed is the main goal. However, the Java serializer is still the default
choice, so this parameter needs to be considered.

9. spark.shuffle.memoryFraction: If, during shuffling, spills are often, then
this value should be increased from its default. Since this parameter is di-
rectly linked to the amount of memory that is going to be utilized, it may
have a high performance impact. However, any increase is at the expense of
the next parameter.

10. spark.storage.memoryFraction: Since this parameter is directly linked to
the amount of memory that is going to be utilized, it affects the performance.

11. spark.shuffle.consolidateFiles: This parameter provides the option of
consolidating intermediate files created during a shuffle, so that fewer files are
created and performance is increased. It is stated however that, depending
on the filesystem, it may cause performance degradation.

12. spark.shuffle.spill.compress: As for the previous compression options,
a trade-off is involved. If transferring the uncompressed data in an I/O op-
eration is faster than compressing and transferring compressed data, then
this option should be set to false. Provided that there is a high amount of
spills, this parameter may have an impact on performance.

4 Sensitivity Analysis

We employ three benchmark applications: (i) sort-by-key; (ii) shuffling and (iii)
k-means. K-means and Sort-by-key are also part of the HiBench benchmark and
where selected because they can be considered as representative of a variety
of applications. The shuffling application generates the data according to the
terasort benchmark, but does not perform any sorting; it just shuffles all the
data in order to stress the shuffling component of the system, given that shuffling
in known to play a big role in the performance of Spark applications. To avoid
the interference of the underlying file system, in all applications, the dataset was
generated at the beginning of each run on the fly. The MareNostrum hardware
specifications are described in [7]. 20 16-core machines are used, and the average
allocated memory per core is 1.5GB. The version of Spark at the time of the
experiments was 1.5.2.

For each of the selected parameters, we perform a separate set of tests, and in
each test we examine a different value. Then, the performance is compared with
the performance of the default configuration after modifying the serializer, as
argued below. If there is a big difference between the results, then the parameter
can be considered as having an impact on the overall performance.

The parameter values are selected as follows. If the parameter takes a binary
value, for instance a parameter that specifies whether to use a feature or not, then



Table 1. Impact of parameters (in seconds)
Configuration Sort-by-key shuffling k-means(100M) k-means(200M)

spark.serializer = KryoSerializer 160 890 22 36

spark.shuffle.manager = Hash 127 994 21 39

spark.shuffle.manager = Tungsten-sort 131 737 23 36

shuffle.memoryFraction = 0.4, storage.memoryFraction = 0.4 139 912 21 42

shuffle.memoryFraction = 0.1, storage.memoryFraction = 0.7 N/A N/A 21 39

spark.reducer.maxSizeInFlight = 96mb 167 880 20 40

spark.reducer.maxSizeInFlight = 24mb 149 845 21 44

spark.shuffle.file.buffer = 64k 140 870 21 37

spark.shuffle.file.buffer = 16k 160 950 23 42

spark.shuffle.compress = false 380 2300 21 36

spark.io.compress.codec = lzf 159 882 20 37

spark.io.compress.codec = lz4 152 1057 23 39

ppark.shuffle.consolidateFiles = true 139 905 21 40

spark.rdd.compress = false 167 810 21 38

spark.shuffle.io.preferDirectBufs = false 169 734 21 36

spark.shuffle.spill.compress = true 154 896 22 38

the non-default value is tested. For parameters that have a variety of different
values that are distinct, for instance the compression codec that will be used
(snappy, lzf, lz4 ), all the different values are tested. Finally, for parameters that
take numeric values in a wide range, e.g, spark.io.file.buffer, the values
close to the default are tested. Each experiment was conducted five times (at
least) and the median value is reported.

Sort-by-Key experiments. The setup of the sort-by-key experiments is as
follows. 1 billion key-value pairs are used, and each key and value have a length
of 10 and 90 bytes, respectively. Also there are both 1000000 unique values for
both keys and values. The degree of partitioned is set to 640, which is the optimal
configuration according to the results in [7].

We first assess the impact of spark.serializer. KryoSerializer performs
significantly better than the default Java Serializer, yielding approximately 25%
lower times. Since this gap is big, and in order to be able to extract insights
regarding the performance of the rest of the parameters, the experiments that
follow were conducted with the KryoSerializer. The impact of all the remaining
parameters is summarized in Table 1 (2nd column). As baseline, we use the
KryoSerializer performance, which is approximately 150 secs.

We see that both the non-default shuffle managers perform better than the
default. Hash performs at 127 seconds and Tungsten-sort at 131 secs, nearly 30
secs faster than the default. Regarding the memory fraction parameters, the val-
ues for shuffle.memoryFraction and storage.memoryFraction both set to 0.4
provide a less significant speedup (139 secs). One would expect these parameters
to have a bigger impact, given that sort-by-key is a shuffling-intensive applica-
tion. Interestingly, the second test for these parameters, with values of 0.1 and
0.7, respectively, led to application crash. spark.reducer.maxSizeInFlight

does not appear to be have a significant impact on performance. Increasing
this parameter’s value at 96mb yields the nearly same performance with the
default (167 secs) but decreasing it to 24mb gives a small performance improve-
ment (149 secs). A similar observation can be drawn for shuffle.file.buf-fer;
here, increasing the value yields slightly better results (140 secs). The biggest
impact on performance however can be seen in the shuffle.compression test
runs. Disabling the compression degrades the performance by more than 100%.
It is worth noting that this may not always be the case, since the behavior of



this parameter heavily relies on network and hardware details. Regarding the
compression codecs, there is not any noteworthy impact, since both lzf and
lz4 seem to be performing similarly to the default codec, snappy. Also, the file
consolidation implementation does not appear to provide any significant im-
provement either. This could be attributed to a variety of reasons, one being
the fact that the sort-by-key application does not generate a very high number
of files during shuffling. The last three parameters, shuffle.spill.compress,
shuffle.io.preferDirectBufs and rdd.compress do not seem to significantly
affect the performance too. For the former, this can be attributed to the fact that
the spills conducted are few. For Rdd.compress, there is a small performance
degradation as expected, since the RDD can fit into the main memory and CPU
time is unnecessarily spent for the compression.

Shuffling experiments. In this set of experiments, the cluster setting was
kept as in the previous one. The raw dataset is 400GB. Since the RDDs occupy
more space, and the overall available memory in the executors is approximately
400GB for all RDDs and shuffling, accesses to the local storage take place.

Again, we first test the impact of spark.serializer and compare it with
the default performance. KryoSerializer performs approx. 10% better than the
default Java serializer. In the experiments that follow, we use the performance of
the KryoSerializer as the baseline performance, which is 815 secs. In Table 1 (3rd
column), the results for the performance impact of the rest of the parameters
are presented. Contrary to the previous experiments, the Hash shuffle manager
performs worse resulting in performance degradation of 200 secs. This could
probably be attributed to the fact that because the input much larger than the
available memory for shuffling. On the other hand, the Tungsten-sort manager
yields a speedup of 90 secs. Similarly to sort-by-key, increasing the memory avail-
able for shuffling at the expense of the storage.memoryFraction does not ben-
efit the performance. Also, doing the opposite does not leave enough memory for
shuffling and the application crashes. Regarding the reducer.maxSizeInFlight
parameter , there seems to be no significant impact on the application. Changing
this parameter seems to affect systems that have very small amounts of memory
available. The same applies to shuffle.file.buffer parameter. The only dif-
ference however is that, when reducing the buffer size from 32KB to 15KB, the
performance degrades by about 135 secs, which is more than 10% from the initial
execution. This might happen for the following reason. The buffers reduce the
number of disk seeks and system calls made during the creation of intermediate
shuffle files. When the input is big enough and the buffers are relatively small,
the number of system calls and disk seeks increases thus leading to performance
degradation. In addition, disabling the shuffle compression offers no improve-
ment and greatly increases completion time. Regarding the compression codec
parameter, the lzf codec does not seem to have any impact on the overall per-
formance. However, the lz4 codec increases the application completion time by
about 200 secs, i.e, incurring 25% extra overhead. Finally, the last three parame-
ters configuration produce runtimes near the default value as was the case in the
sort-by-key experiments. As such, they considered as not having any significant



Table 2. Average Parameter Impact
Sort-by-key Shuffling K-Means Average

spark.serializer 26.6 % 9.2% <5% 12.6%
shuffle/storage.memoryFraction 13.1% 11.9% 8.3% 11.3%
spark.reducer.maxSizeInFlight 5.5% 5.7% 11.5% 7.5%

spark.shuffle.file.buffer 6.3% 11.6% 6.9% 8.2%
spark.shuffle.compress 137.5% 182% <5% 107.2%
spark.io.compress.codec <5% 18% 6.1% 8.9%

spark.shuffle.consolidateFiles 13% 11% 7.7% 10.5%
spark.rdd.compress <5% <5% 5% <5%

spark.shuffle.io.preferDirectBufs 5.6% 9.9% <5% 5.9%
spark.shuffle.spill.compress <5% 6.1% <5% <5%

impact on the performance. As stated before though, this may be specific to the
infrastructure used, and in other environments, they may behave differently.

K-means experiments. The final series of experiments tests the impact of
the parameters on the performance of k-means. We experimented with two data
inputs with 100M and 200M 100-dimensional records, respectively. The number
of centers was 10 and the amount of iterations was fixed to 10 to allow for fair
time measurements. In these cases, the impact of the KryoSerializer (chosen as
default) is very small. The impact of all the other parameters is shown in Table
1. An initial observation is that the impact of all parameters is less significant
than in the previous two applications. From the fourth column we can see that,
in absolute times, the differences are at most 2 secs, which is less than 10%.
This also applies, to a slightly less extent, to the fifth column as well, where the
differences are up to 3 secs. However, although we conclude that the parameters
selected do not affect the performance of the k-means benchmark significantly,
we can note the fact that the parameter shuffle.compress that dramatically
degraded the performance in the previous experiments, has no overall impact on
the test k-means instances. This is actually expected, since it mostly affects the
data shuffling part of the application, which plays a small, non-dominant role in
k-means. The same reasoning, i.e., data shuffling is not prominent in k-means,
explains the less impact of the other parameters, too.

Summary Statistics. In Table 2, the average impact of each parameter can
be seen for each benchmark. All percentages refer to the mean deviation from
the default runtime, regardless of whether the deviation is for the better or
worse performance. The default is enabling the KryoSerializer, apart from when
testing the impact of this serializer itself. The lowest quartile of the parameters
in terms of the magnitude of their incurred average impact are disregarded in the
following tuning methodology, so that the latter remains as simple as possible.
We make an exception for spark.shuffle.spill.compress, as explained later.

5 The Proposed Tuning Methodology

Based on (i) the results of the previous section, (ii) the expert knowledge as
summarized in Sec. 2 and (iii) our overall experience from running hundreds
of experiments (not all are shown in this work), we derive an easily applicable
tuning methodology. This methodology is presented in Fig. 1 in the form of a



Fig. 1. Our proposed spark parameter tuning methodology

block diagram. In the figure, each node represents a test run with one or two
different configurations. Test runs that are higher in the figure are expected to
have a bigger impact on performance and, as a result, a higher priority. As such,
runs start from the top and, if an individual configuration improves the perfor-
mance, the configuration is kept and passed to its children replacing the default
value for all the test runs on the same path branch. If an individual configura-
tion does not improve the performance, then the configuration is not added and
the default is kept. In other words, each parameter configuration is propagated
downstream up to the final configuration as long as it yields performance im-
provements. Contrary to the previous experiments, the methodology test runs
investigate the combined effect of tuning.

Overall, as shown in the figure, at most ten configurations need to be eval-
uated referring to nine of the parameters in Sec. 3. Note that, even if each
parameter took only two values, exhaustively checking all combinations would
result in 29 = 512 runs. Finally, the methodology can be employed in a less
restrictive manner, where a configuration is chosen not only if it improves the
performance, but if the improvement exceeds a threshold, e.g., 5% or 10%.

The rationale of the diagram blocks, itemized by the main parameter they
target, is as follows:

– spark.serializer: This parameter had the highest impact in our series of
experiments, and using the KryoSerializer was the default baseline for all
the other parameters. We keep the same rationale in our methodology, so we
perform this test first.

– spark.shuffle.manager: As shown in the results of the previous section,
the shuffle manager has a high impact on performance, so it should be in-
cluded in the methodology. Since, based on documentation, tungsten-sort
works better with the lzf compression codec, we combine the test of these
two settings. Also, the test run for the other option of this parameter, the
hash shuffling manager, is conducted in combination with the implemen-



tation of consolidating files during a shuffle, to avoid problems from the
creation of too many intermediate files.

– spark.shuffle.compress: In our parameters, disabling it led to serious
performance degradation (by default it is enabled). This means that it has
an impact. Interestingly, the best results presented by Spark’s developers for
the terasort benchmark are produced when this is disabled, which further
supports our choice to include it in our methodology.

– storage/shuffle.memoryFraction: The memory fraction allocated is in-
herently important in Spark, due to its main memory-oriented execution
model. However, this parameter is also tightly connected to the hardware
characteristics of the cluster infrastructure.

– spark.shuffle.spill.compress:While this parameter appears not to have
any significant impact on the performance in the experiments that we con-
ducted, it is closely linked to the shuffling memory fraction. Since the latter
is taken into consideration, we also include this one.

– spark.shuffle.file.buffer: In our experiments, the impact of this pa-
rameters is rather small. However, it is included for completeness. A shorter
version of our methodology with two required runs less, would omit it.

We test the effectiveness of our methodology using three case studies. More
specifically, the methodology is applied to the sort-by-key, k-means and aggregate-
by-key benchmark applications, respectively. For the former, we keep the same
input as previously. For k-means, we use a different data input, which leads to
radically different performance than previously, i.e., this instance of k-means
cannot be deemed as used for constructing our methodology. Aggregate-by-key
is a new application.

Sort-by-key. For Sort-by-key over 1 billion 100-byte records, the default
performance is 218 secs. We set a performance improvement threshold at 10%
of this value, i.e., 21.8 secs. The final configuration: advocated by our method-
ology is spark.serializer= KryoSerializer and shuffle.manager= hash and
shuffle.consolidateFiles= true and shuffle/storage.memoryFraction =
0.4/0.4: 120 secs. Overall, the running time in this case study, decreased from
218 secs down to 120 secs (44% performance improvement).

K-Means. Next, we apply the methodology on K-Means for 10 centers, 10
iterations, 100 million points and 500 columns. The runtime with the default con-
figuration is 654 secs. The final configuration does not include the KryoSerializer
and is as follows: shuffle/storage.memoryFraction = 0.1/0.7 and shuffle.

spill.compress=false. Overall the running time dropped by more than 91%,
from 654 to 54 secs. An interesting note is that in the profiling experiments in
Section 4, k-means did not exhibit such high speedups. This is due to the fact
that the performance of k-means is sensitive to its input dataset.

Aggregate-by-key. The running time for the default configuration is 77.5
secs. As input, we use 2 billion key-value pairs with length of 10 and 90, re-
spectively. In this case study, we set the threshold to a lower values, at 5%.
For aggregate-by-key, the overall performance improvement is about 21%, and



the configuration is shuffle.manager= hash and shuffle.consolidateFiles=

true and shuffle/storage.memoryFraction = 0.1/0.7.

Conclusions. This work deals with configuring Spark applications in an efficient
manner. We focus on 12 key application instance-specific configurable parameters
and assess their impact using real runs on a petaflop supecomputer. Based on the
results and the knowledge about the role of these parameters, we derive a trial-
and-error methodology, which requires a very small number of experimental runs.
We evaluate the effectiveness of our methodology using three case studies, and
the results show that we can achieve up to more than a 10-fold speedup. Although
our results are significant, further research is required to investigate additional
infrastructures, benchmark applications, parameters and combinations.

References

1. Awan, A.J., Brorsson, M., Vlassov, V., Ayguade, E.: How data volume affects spark
based data analytics on a scale-up server. arXiv:1507.08340 (2015)

2. Holl, S., Zimmermann, O., Palmblad, M., Mohammed, Y., Hofmann-Apitius, M.:
A new optimization phase for scientific workflow management systems. Future
Generation Computer Systems 36, 352–362 (2014)

3. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark, LIGHTNING-
FAST DATA ANALYSIS. O’Reilly Media (2015)

4. Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.G.: Making sense
of performance in data analytics frameworks. In: 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). pp. 293–307 (2015)

5. Petridis, P., Gounaris, A., Torres, J.: Spark parameter tuning via trial-and-error.
CoRR cs.DC/1607.07348 (2016)

6. Shi, J., Qiu, Y., Minhas, U.F., Jiao, L., Wang, C., Reinwald, B., Özcan, F.: Clash
of the titans: Mapreduce vs. spark for large scale data analytics. PVLDB 8(13),
2110–2121 (2015)

7. Tous, R., Gounaris, A., Tripiana, C., Torres, J., Girona, S., Ayguadé, E., Labarta,
J., Becerra, Y., Carrera, D., Valero, M.: Spark deployment and performance eval-
uation on the marenostrum supercomputer. In: IEEE International Conference on
Big Data (Big Data). pp. 299–306 (2015)

8. Wang, Y., Goldstone, R., Yu, W., Wang, T.: Characterization and optimization of
memory-resident mapreduce on hpc systems. In: 28th International Parallel and
Distributed Processing Symposium. pp. 799 – 808 (2014)

9. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: NSDI 12

10. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. In: HotCloud’10 (2010)


